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Abstract–Data collaborations allow users to draw upon 

diverse resources to solve complex problems. While 

collaborations enable a greater ability to manipulate data 

and services, they also create new security vulnerabilities. 

Collaboration participants need methods to detect suspicious 

behaviors (potentially caused by malicious insiders) and 

assess trust in information when it passes through many 

hands. In this work, we describe these challenges and 

introduce provenance as a way to solve them. We describe a 

provenance system, PLUS, and show how it can be used to 

assist in assessing trust and detecting suspicious behaviors. A 

preliminary study shows this to be a promising direction for 

future research. 

Index terms—provenance, trust, insider threat, lineage, 

pedigree 

I. INTRODUCTION 

There is a growing need for cross-organizational 

collaboration to address important problems such as 

improving healthcare outcomes, law enforcement across 

federal, state, and local agencies, and improving inter-

organizational disaster response. Increasingly, complex 

problems require data collaboration, in which disparate 

partners share data sets to which other partners add value 

via additional data and analysis steps.  As a simple 

example, a loan broker takes customer information, 

individual quotes from various banks, and credit rating 

data to provide a customer a package of different loan 

options.  Such collaborations require the participation and 

data of multiple banks, the loan broker, a credit rating 

agency, and a customer. 

Other trends, such as increasingly available online 

services, and government mandates to increase 

information sharing have driven more such 

collaborations.  One major risk of these collaborations is 

the potential for bad actors (individuals or organizations) 

to subvert the overall process.  More participating 

organizations means that more users receive insider 

privileges, exacerbating the problem of insider threat [7]. 

A recent study by a prominent security firm highlighted 

the critical nature of supply chain threats [24]; this applies 

not only to suppliers of physical goods but also to data 

suppliers in large scale collaborations. Another limitation 

of current practice is that when data quality problems are 

detected somewhere in a cross-organizational data 

collaboration, it is difficult to understand and manage the 

consequences. Finally, as data comes increasingly from 

far-flung sources, it becomes more difficult for users to 

know how much to trust the data and whether it is of 

sufficient quality to feed their decision making processes.  

Consider the following scenario (Figure 1): A user 

requests a loan quote from a Loan Broker service. Behind 

the scenes, the Loan Broker uses four different bank 

services. It also uses a credit agency to check the loan 

applicant, providing the rating as an input to each of the 

four bank services.  Each lender provides a quote, all of 

which are returned to the user
1
. Collaboration provides a 

larger selection of data and services, e.g. more loan 

quotes, more quickly, but opens up the possibility for 

problems.  If the gateway is not properly protected and an 

attacker can divert personal information, and if the credit 

rating is not handled properly, banks may issue incorrect 

quotes to unqualified loan candidates. Having records of 

executions of this collaboration would enable the loan 

broker to look for instances of where the collaboration ran 

differently than expected.  Further, should the loan broker 

become aware of a specific problem in, for example, the 

handling of credit scores, the loan broker can trace 

through the provenance to identify all of the impacted 

customers and quotes. 

Data provenance
2
 enables critical functionality for 

these cross-organizational collaborations.  First, 

provenance helps establish a baseline for normal 

behavior.  Participants need to know how the 

collaboration or workflow normally runs, in order to 

understand its dynamic and potential exposure points.  A 

baseline of normal behavior is also very useful in 

detecting possible malicious behavior. In collaborations 

where many participants must be granted some level of 

                                                           
1 This example is provided by www.mulesoft.com. 
2 Provenance is ―information that helps determine the derivation 

history of a data product...[It includes] the ancestral data product(s) from 

which this data product evolved, and the process of transformation of 
these ancestral data product(s)‖ [22] 
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privileges, there will naturally be many opportunities for 

bad actors to subvert the process; changing the 

collaboration’s data inputs ultimately may alter its final 

product.  Second, provenance helps users make trust 

decisions about their data, and know how much they 

should trust derived data that may come from unfamiliar 

sources. Third, provenance helps users understand the 

impact of erroneous data or defective data-generating 

processes.   

In order to provide these services, provenance must 

contain certain basic information: what, when, who, 

where, how, why. For instance, in the Loan Broker 

example, basic information captured for each provenance 

item would be: what the data or service was, a timestamp 

(when), who ran it, where it was executed, any parameters 

used (how), and where its inputs came from and outputs 

went to (why). Additional information (annotations) can 

also be stored with the basic provenance information—for 

example, a given user’s assessment of the quality of a 

particular data source. Importantly, the basic provenance 

information is a historical record of what actually 

happened, as opposed to what was supposed to happen 

and, as such, must be captured as processes are executed 

and data is modified at each organization. We are agnostic 

as to whether the information is stored in a centralized 

provenance manager, or over a distributed set of 

managers [2]. 

An example of a provenance graph from one use of the 

LoanBroker system is shown in Figure 2. The information 

in this graph helps address the challenges described 

above. For instance, it is possible to see how the 

LoanQuote was created: a customer created a request, 

which was sent through LoanBroker to a credit agency 

and two banks. Notice that this is distinctly different from 

the expected behavior of the collaboration. As shown in 

Figure 1, three banks were expected to contribute to the 

final loan quote. Thus, provenance can inform a user of 

the exact occurrences which produced a given piece of 

data. Additionally, if future investigation shows that 

Bank1 was hacked and produced bad data, subsequent 

users of that data can be informed by tracing through the 

graph. Finally, since we can see what actually occurred 

over many executions of this workflow, we can establish 

a baseline of normal behavior, and we can look for 

deviations from that baseline that may indicate suspicious 

behavior.  

The remainder of this paper is organized as follows. 

Section II describes the PLUS prototype provenance 

manager. We then show how PLUS supports the three 

application needs described above: detection of potential 

malicious behavior, particularly by authorized insiders 

(Section III), trust assessment, and taint analysis (both in 

Section IV). We describe the approach to detecting 

suspicious behaviors in some detail, and present an initial 

proof-of-concept evaluation through a user study in 

Section V. We discuss related work and conclude in 

Sections VI and VII respectively. 

II. PLUS 

PLUS [10] is a provenance manager developed at The 

MITRE Corporation to address these previously unmet 

requirements shared by most of our U.S. government 

customers: 

 ―Open world‖ collection in distributed, 

heterogeneous environments, [1] 

Figure 1. Cross organizational collaboration to produce a loan 

quote (from mulesource.org) 
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Figure 2. Sample provenance graph captured from an execution 

of the LoanBroker. Ovals indicate data; rectangles are processes. 



 Flexible annotation management over provenance, 

which enables a number of important analysis 

applications, including the ―taint analysis‖ 

application in Section IV 

 Attribute-based access controls that support flexible 

sharing of provenance across different classes of 

users with different privilege levels [23], and 

 Techniques to provide more informative provenance 

when the sensitivity of certain nodes or edges 

precludes sharing the entire graph [8]. 

We now describe PLUS capabilities essential for large-

scale, distributed collaborations and that enable detection 

of suspicious behavior and improved tools for assessing 

trust in information.  

A. Distributed Capture Methods 

The ability to provide provenance information to assist 

with collaboration efforts rests on capturingthe 

provenance information. Similar to [17, 26], we supply an 

API that any legacy system can call to log provenance 

information. However, in addition to this basic service, 

we have focused the system on ―coordination‖ points that 

are often used in cross-organizational data sharing. For 

example, an Enterprise Service Bus (ESB) is often used to 

coordinate applications comprised of data and 

components from many different organizations. We have 

modified MULE, a popular open source ESB, to 

automatically capture and report provenance for all 

messages passed [1]. Our MULE-based provenance 

collector is the first provenance capture facility of which 

we are aware to collect provenance in heterogeneous 

multi-organizational environments. This capture 

technique scales effectively and does not noticeably 

impact the underlying systems [10], but it does enable 

users of integrated information greater insight into that 

information’s usefulness and flaws.  In a nutshell, this 

method captures provenance by observing the functioning 

of the ESB as it happens, and reporting appropriate 

provenance.  

The key issue is that the coordination point (in this case 

the ESB) must capture as much information as possible 

about the collaboration. Without this information, the 

ability to provide trust assessments and detect suspicious 

behaviors is limited. To facilitate collaboration, most 

collaborative enterprises have a central means of 

orchestrating information sharing. In our examples, the 

overall collaboration (such as the loan broker workflow) 

runs on a common technical infrastructure, such as the 

MULE ESB. The use of an ESB is not required; however, 

the use of a central coordination point, whether or not an 

ESB, provides a simple one-stop place for provenance 

collection to occur. Alternatively, if no central 

coordination point is available, this technique can still be 

used if all collaborators agree on a tool set such that each 

tool can be provenance enabled (i.e., can report 

provenance to the PLUS API).  

B. PLUS Provenance Storage 

Once provenance information is captured, it must be 

stored for later use. As stated earlier, PLUS can be run as 

a stand-alone manager, a centralized repository or a set of 

provenance managers distributed across organizations [2]. 

PLUS utilizes a MySQL database for provenance storage, 

and it models provenance similar to OPM [21] as a 

directed acyclic graph (DAG),        , containing a 

set of nodes,  , and a set of edges,  . Each node has a set 

of features describing the process or data it represents, 

e.g., timestamp, description, etc. Edges in the graph 

denote relationships, such as usedBy, generated, inputTo, 

etc., between nodes in the graph. A provenance graph 

may include disconnected subgraphs.  

A data node can represent any object the user wishes to 

register, for example, strings, files, XML messages, 

relational data items of arbitrary granularity, etc. The data 

itself is not stored in the PLUS system for security and 

archiving reasons. However, the provenance capturers can 

provide any additional ―breadcrumbs,‖ such as access 

method and identifier, to allow users to access the 

underlying information.  Users may annotate anything in 

a provenance graph with additional metadata. 

III. DETECTING SUSPICIOUS BEHAVIORS 

Bad actors are a potential problem for all 

collaborations, especially collaborations among larger 

groups. In a large, distributed collaboration environment, 

it is possible for a malicious user to wreak havoc, from 

stealing data, to disrupting service, to altering results. A 

malicious user may not even be a part of the 

collaboration, but merely an opportunistic outsider who 

has found the weak security link within the set of 

collaboration services. As a data user today, it is 

impossible to know for sure that every service provided 

by other organizations is sufficiently secure.  

Consider the problem faced within the intelligence 

community: sharing data across organizations is being 

encouraged, but an astute bad actor may be able to quietly 

redirect data in a workflow to an unauthorized external 

recipient. In an alternative scenario, instead of merely 

copying information to an illegal recipient, a bad actor 

may be able to modify data and therefore decrease the 

reliability of that data. One of the most effective attacks is 

to alter just enough data that the entire dataset is untrusted 

and not used. 

We have developed a pilot capability to detect 

suspicious activities. Given provenance information, we 

have the ability to describe what actually happened, as 

opposed to what should have happened. By using this 

information, we can discover anomalous and suspicious 



behavior. Figure 3 shows modifications to the graphs 

from Figure 2, illustrating four ways that provenance 

might be altered in the face of an attack, along with 

notional explanations for what could cause such 

modification:  (a) disruption of service, (b) data 

modification, (c) data stealing, and (d) a man-in-the-

middle interception of all processing. Even an unknown 

attack that somehow slips around the provenance capture 

device would still cause changes to the provenance 

information that are detectable, as shown in Figure 3e.  

In other words, we can use changes in the expected 

provenance graph as the basis to detect suspicious 

behavior. We posit that certain attacks will have 

characteristic signatures in provenance graphs. For 

instance, consider the provenance graph in Figure 3b, 

which is identical to the original except for the addition of 

the black nodes, showing how a man-in-the-middle attack 

may manifest in the provenance store.  Because the point 

of coordination (an ESB in our earlier example) logs all 

interactions between the data and processes, if an attacker 

were to insert an additional step in the workflow, that step 

would be captured as an additional process and data item. 

However, there are many different places a man-in-

the-middle might be placed, depending on the security of 

the underlying services, and thus enumerating all possible 

attacks in a given system and how they would manifest in 

the provenance would be impractical.  Further, not all 

attacks will have characteristic signatures, or some classes 

of attacks may have many possible patterns or 

manifestations.  Instead, we should look for three distinct 

patterns: 

 Truncation: Workflows get shorter or less complex 

than the expected norm. 

 Augmentation: Workflows get longer or more 

complex than the expected norm. 

 Modification: Workflows stay the same size, but the 

arrangement of internal nodes changes. 

These general patterns are easy to identify, so there is 

no need to enumerate how different types of attacks 

would affect particular workflows and provenance capture 

setups. Obviously, with this oversimplification, the false 

positive rate may be high. For instance, we may flag test 

runs or user-aborted runs as suspicious behavior. 

However, at an initial, proof of concept phase, we deem 

this acceptable. 

A. Technique Considerations 

We make several assumptions in order to use 

provenance information to detect suspicious behavior. 

These include: 

 The provenance system itself has not been 

compromised.   

 When an attack happens, it will modify the 

provenance graph in some way, as the provenance is 

a record of what executed, and what its result was.  In 

other words, provenance capture is instrumented in a 

way that it captures actual interactions; and the 

capture record will change as the interactions change. 

 Provenance can typically only detect anomalies at the 

level of granularity for which it was configured.   

We believe that these are valid assumptions. The first 

assumption conforms to the belief that the goal of any 

security system should be to raise the bar beyond the 

reach of most attackers. An attacker must be exceedingly 

sophisticated to hack both an underlying data or service 

and a separate provenance system. Ultimately there is no 

such thing as an impenetrable system; additional security 

layers seek to make it progressively more unlikely that an 

attacker could cause problems and go undetected.  

The second assumption places the onus on the 

provenance system developer to ensure that provenance 

capture points are placed at appropriate points in the 

system. Above we argue that there are high-value capture 

points which can maximize provenance capture at 

minimal developer cost. To improve the ability to handle 

detection of suspicious activities, high-value capture 

points and obvious exit-points (such as open points in a 

firewall) should be provenance enabled.  Provenance 

capture must be truly observational and make no 

assumptions like ―if the workflow reached this 

checkpoint, then these three processes must have just 

executed successfully.‖ 

Finally, provenance granularity can play a large part in 

whether an attack is detectable or not. Attacks that are 

substantially below the captured level of granularity 

cannot necessarily be detected.  For example, if a 

provenance system is monitoring web services, and 

someone hijacks the operating system running the web 

service, that may not be detectable through provenance. 

For this reason, provenance should not be considered a 

silver bullet; other more traditional layers of security are 

still required to provide defense in depth. 

IV. ASSESSING TRUST IN INFORMATION 

Collaboration participants may have a clear picture of 

the overall set of services and data and how they 

interplay, but may only truly understand the details of 

services and data local to themselves. For example, 

consider the collaboration in Figure 1 to provide loan 

quotes. The participant responsible for the Banking 

Gateway understands the minutiae of contacting banks, 

but only has a vague overall understanding about what 

occurs to run a credit check. Alternatively, some 

participants (e.g. the end user) may not have any real idea 

how data was created or services are expected to behave, 

and therefore have no basis on which to judge their 

quality. 
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Figure 3: Examples of how different attacks could alter the provenance graph from Figure 2. Suspicious behaviors include: 

a) disruption of service; b) data stealing; c) data modification; d) man-in-the-middle; e) external/unknown attack. 



Provenance provides the ability to give participants 

greater information about actions that occurred outside 

their purview. Using this information, users can more 

easily assess whether to use data produced through the 

data and services utilized. The provenance that PLUS 

captures is immutable, mirroring the assumption of most 

prior work. However, in exploring our customers’ 

requirements, it quickly became clear that many of them 

needed a flexible facility for adding annotations to 

provenance information. For example, a user may want to 

enter an opinion about his confidence in a particular piece 

of information or to note special circumstances that 

surrounded a certain process execution. These additional 

annotations (not strictly provenance information) are 

mutable, since any of these assessments might change. 

Such annotations are essential in cross-organizational 

information sharing, in which a user from Organization2 

who uses data from Organization1 may have no 

knowledge of how that data was generated, and whether it 

can truly be used for her purposes. In such cases, 

provenance together with user assessments of confidence 

and social networks of trusted colleagues can do a great 

deal to increase trust that information is suitable for the 

intended purpose. 

In addition, provenance provides additional 

functionality that can help alert users to potentially 

harmful data. In a widespread collaboration, if a problem 

with a dataset or service is detected, the process of 

identifying other users of that dataset is often either 

impossible or at least arduous. Building a ―taint analysis‖ 

application over provenance can help inform all users of 

potentially bad information. 

Such annotations can help our customers understand 

the consequences of a data modification cyber-attack. For 

example, suppose that a credit check agency discovers 

that an attacker has subverted the LenderService to send 

incorrect credit scores with all loan requests. In the past, 

an organization would correct the problem locally, but 

downstream users of that data, such as Bank1, would 

remain unaware of the consequences of any actions they 

had already taken on the basis of bad information. PLUS 

provides the ability for a user to annotate the suspect data 

or service invocation as being ―tainted‖ (e.g., the 

LenderService service in Figure 4) This taint marking is 

then propagated forward to all data and processes that rely 

upon it (the nodes with a bold, dashed outline in Figure 

4), and can be seen by the data owners in a different 

organization, thus alerting them to a potentially serious 

issue. While a bank may have already generated a quote 

on the basis of the bad credit report, provenance provides 

the ability to assess the scope and severity of the problem, 

since the bank and the loan broker can enumerate exactly 

which customers were affected.  Whenever integration is 

being performed with data generated across multiple 

organizations, this is an essential capability to support 

proper data usage and error correction. 

V. FEASIBILITY EXPERIMENT 

To our knowledge, this work represents the first effort 

to apply provenance to the problem of identifying 

suspicious behavior that may indicate insider attacks. 

Section III presented our initial ideas about attack 

signatures that could be detectable in provenance. This 

section describes a small scale feasibility experiment we 

conducted to see if this approach warranted further 

development and more rigorous evaluation.  

A. Implementation 

Provenance can be used to detect suspicious behavior 

by finding deviations from the norm. If we can compare 

any provenance graph to a known good set, it will be 

possible to see suspicious patterns. However, provenance 

graphs quickly become large and unwieldy with too many 

nodes and edges for a human to track.  Additionally, 

sometimes there are a number of legitimate patterns to the 

collaboration, not just one.  (For example, some banks 

might not respond with quotes for low-credit applicants; 

others might provide multiple quotes for different 

products).  Even further, the population of provenance 

graphs can grow quite large, and an attacker may only 

modify a few instances of a collaboration which runs 

dozens of times per hour. 
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Figure 4: Taint propagation using PLUS 



We have developed an easy way for a human user to 

―eyeball‖ the properties of a large population of graphs to 

highlight information outside of the norm. 

Each provenance graph is given a number of summary 

statistical ―features‖, such as total number of nodes, ratio 

of processes to data, and so on.  All of these statistical 

features together comprise a ―fingerprint‖ of a particular 

provenance DAG; Figure 5 shows selected properties 

from 6 sample graph fingerprints.  The interface provides 

the user with the ability to sort a large number of graphs 

on the basis of how much one of those features deviates 

from the norm for the database; for example, the program 

quickly allows users to display all graphs whose number 

of nodes is three standard deviations higher than the mean 

for a given population of known graphs. Using this 

information, a user can take a population of many 

thousands of graphs, and quickly determine the small set 

of graphs where potentially suspicious activity is present. 

Once a suspicious graph is located, the software 

permits searching on other criteria besides just the 

statistical measures.  For example, users can find all 

nodes in all graphs that share a common name, or 

particular annotation or item of metadata. 

B. Dataset 

Our limited initial experiment was conducted with 

more than 17,000 captured provenance graphs from a 

large scale simulation exercise. These graphs were 

captured through the Mule ESB, and represent real 

records of a complex, multi-organizational collaboration 

(one of the 17,000 is shown in Figure 6).  Starting with 

these graphs, five different target suspicious graphs were 

inserted into the base (clean) set of provenance graphs.  

Briefly, the five suspicious graphs represented notional 

examples of: 

 A data modification attack, where data is ―stolen‖, 

modified, and then re-injected into the normal 

workflow. 

 A data stealing attack, where data is ex-filtrated via 

an unknown process. 

 A disruption attack (or ―denial of service‖), where a 

number of services are taken off-line. 

 A man-in-the-middle attack, where every application 

interaction was run through an external (unknown) 

process. 

 An uncategorized attack that severs a single graph 

into two distinct graphs by breaking or obscuring a 

single application interaction. 

C. Method 

We recruited an experienced information security 

analyst with some prior knowledge of provenance but no 

experience with the PLUS tool.  The user was given some 

background information about what constituted a 

―normal‖ pattern in the graph, and what the mission 

behind the graph was.  He then spent three hours over two 

sessions searching the data set for suspicious graphs. The 

user was given a significant amount of time to browse 

graphs chosen at random to build up an intuition of what 

was considered normal. The user concluded that small 

graphs that generally looked like a tree with one main 

branch, splitting to two branches, and comprising five to 

seven nodes were most prevalent. 

 

Figure 5. Example of graph "features"; each row is considered a fingerprint 



D. Results and Discussion 

The user reported using the following search 

heuristics: 

 Looking for graphs with large Z scores for an 

attribute – graphs were filtered based on having a Z 

score of 3 or more for total nodes, total edges, and 

max incoming edges.  The graphs with the largest Z 

scores using these measures were then each 

considered.  If a small number of these looked 

unusual compared to the others, then those were 

tagged as being suspicious.  However, not all such 

graphs were suspicious. 

 Looking for graphs with a node labeled ―x‖ – node 

labels tended to be identifiers of one or two multi-

letter identifiers.  Some nodes were simply labeled 

with an ―x‖ and those stood out as being unusual. 

 Looking for graphs with nodes with repeated labels – 

most graphs seemed to represent a flow from one 

process to the next.  No graphs had cycles 

represented graphically but all nodes in a graph 

tended to have distinct labels.  So two nodes in the 

same graph, in the same path, with the same label, 

appeared anomalous. 

 

Using these heuristics, the user discovered two of the 

five attacks in the data set, specifically the 

―uncategorized‖ attack, and the ―man-in-the-middle‖ 

attack.  In addition, the user discovered two additional 

anomalous graphs that were not part of the original 

experimental setup.  These graphs corresponded to test 

data from an unrelated process that was present in the 

database at the time.   

While the test graphs that were unexpectedly found 

were not part of the experiment at the time, they did 

serendipitously demonstrate the user’s ability to find 

something out of the ordinary in the data set.  

Additionally, the two attacks that were found provide 

initial evidence that provenance can be a useful tool for 

detecting suspicious behavior. In addition, our expert 

security analyst was enthusiastic about the potential of 

this approach, and was especially interested in how it 

could be combined with other techniques, such as more 

traditional intrusion detection systems, to provide 

improved multi-layer defenses.  Indeed, looking for 

anomalous patterns inside of transaction logs is a 

technique used in many other places within the security 

community; provenance however represents a 

fundamentally new data feed that details high-level 

application and service interactions.  Existing security 

tools have traditionally focused on much lower-level data 

feeds (such as network protocol interactions) that provide 

value at a different layer of security. 

 

VI. RELATED WORK 

Provenance, or the history of information, has garnered 

interest in government, commercial and scientific circles. 

Topics of provenance study include capture [9, 17], 

storage [11], reasoning [6, 15], security [18, 27], usability 

[12, 20, 25], etc.  

In particular, provenance has been touted as a tool to 

assist with scientific collaboration. A large number of 

scientific applications [3, 9, 12, 16, 17, 19, 20, 25, 26] 

have been built to assist scientists harness the power of 

provenance using specific applications. For instance, in 

ES3 [16], the applications used by scientists for data 

analysis are modified to capture provenance. Other 

applications that wish to be provenance-aware build this 

capability directly into the application [9], or require the 

user to utilize a specific workflow manager which quietly 

collects provenance information [3, 19, 25]. Each of these 

methods is limiting in terms of the applications and 

environments that scientists are constrained to use. Other 

methods such as: PASS [22], Karma [26], and PreServ 

[17] allow more general capture by positioning capture 

points anywhere of interest. Of the techniques described 

Figure 6: Sample real provenance graph generated via a large 

scale simulation exercise. 



so far, this technique can capture provenance from the 

most diverse set of applications, and does not require pre-

planning on the part of the user. 

Descriptions of provenance usage for scientific 

collaboration was used during a galaxy cluster finder 

experiment [4], or for finding appropriate visualization for 

scientific experimentation [5]. In [14] the needs and 

requirements for provenance to assist in scientific 

collaboration are discussed. Further research into what 

provenance is needed to support collaboration in a given 

domain is needed. 

[13] describes provenance-based techniques for 

assessing data trustworthiness using data and path 

similarity. The work does not address provenance 

collection and could leverage PLUS’ ―open world‖ 

collection techniques. In addition, their trust assessment 

framework could be implemented on top of the PLUS 

annotation facility. 

VII. CONCLUSIONS AND FUTURE WORK 

In this work, we describe how provenance adds value 

in large-scale collaborations by detecting suspicious 

behaviors that could result from cyber-attacks, helping 

users assess trust in information, and managing the 

downstream consequences of faulty data or process 

executions. We showcase PLUS, a working provenance 

system with robust capture, storage and administrative 

capabilities. Using PLUS, we present an initial user study 

on the ability of provenance to detect suspicious behavior. 

This early feasibility experiment provides some 

encouragement that provenance can improve detection of 

improper behavior in large-scale collaborations. 

In our limited experiment, detection of anomalous 

behavior was performed by a skilled human analyst using 

a simple tool that allowed query over provenance graph 

fingerprints. A promising research direction is to 

automate some or all of the anomaly detection, using both 

supervised learning (under the guidance of a security 

expert) and unsupervised approaches. Better visualization 

tools may supplement machine learning approaches; for 

example, analysts might benefit from flipbooks of graph 

thumbnails (inspired by the iPod’s ―cover flow‖). Finally, 

research is needed to combine provenance-based 

approaches with more traditional intrusion detection 

techniques and to evaluate the performance of the 

resulting hybrids. 

In addition, once we provide better tools to identify 

suspicious behaviors, further research is needed to 

attribute them to bad actors. Finally, additional patterns 

that distinguish suspicious activities should be explored, 

in particular the pattern of ownership, i.e., the ―chain of 

custody‖ showing which organization owns which data at 

which point, may change in the provenance store during 

an attack. 
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