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Abstract—Business process prediction technologies are being
increasingly used by organisations to provide timely feedback to
their customers and improve their overall productivity. In order
to provide valuable information to both customers and system
managers, the timings of business processes need to be forecast
with high accuracy and efficiency. In particular, organisations
require to predict the process and event flows, recognize their
patterns, and forecast the total time it would take for a workflow
to complete, in order to meet the Service Level Agreements
(SLAs) signed with the customers.

In this paper, we focus on the prediction models that could
be used for forecasting time to completion of business processes
by analysing historical event logs. First, we propose a service
oriented architecture that provides a test-bed for carrying out
predictions on business processes. Second, we propose a Hidden
Markov Model (HMM) based prediction technique that produces
a model based on event logs, and compare it against existing
prediction models. Finally, we describe an implementation of the
system, where we simulate the execution of a business process
and obtain predictions using both the proposed and existing
prediction techniques.

Keywords-Business process simulation, prediction techniques,
hidden Markov model

I. INTRODUCTION

Nowadays, most business processes are supported by infor-
mation systems that store data about the process execution
in logs [8]. These historical data play an important role
in forecasting information about future business activities.
Prediction information not only guides the end-users of the
state/time-line of their processes, but plays a significant role
when determining the quality of service and level of SLA
satisfaction at the service provider’s side.

Most business processes are complex, and understanding
their flow is even more difficult. Thus, simulation in advance
is required for complex, high-impact business processes [9].
In order to carry out the simulation of executing complex
business processes, logging information, extracting knowledge
and forecasting information on future events, the simulation
framework needs to provide several features, such as design,
execution, analysis, prediction, monitoring, and optimization
of business processes. The system also needs to meet the
workflow workload requirements and integrate a varying num-
ber of external resources (human and computing), so that
the simulation environment can closely match the real world
execution scenarios. In particular, the prediction component of

the simulation system should provide an extensible mechanism
for plugging in prediction techniques so that all types of
business process workloads can be analysed for accurate and
timely forecasting.

Realizing the importance of the prediction in Business
Process Management (BPM) systems, this paper proposes a
generic system architecture for business process simulations,
where various prediction models can be used to analyse stored
historical log data. It incorporates an extensible framework
for the prediction component, where both existing and new
prediction techniques can be implemented.

The proposed layered architecture is unique in several as-
pects. It facilitates the integration of a semantics layer to define
templates for business processes and associate management
and operational information based on process ontologies. The
workflow templates generated using this knowledge-base form
the execution instances for an individual end-user, which are
then simulated using the Business Process Engine (BPE). The
use of a message queue for enabling interactions between
internal and external entities by using existing interchange
standard (e.g., messages defined using XML Process Defini-
tion Language (XPDL)) makes the system highly portable [6].
The prediction engine works seamlessly with all these com-
ponents in a time efficient and scalable manner. The work
presented in this paper focuses on describing these components
and experimenting the capability of the proposed architecture
through a prototype implementation.

One of the important and useful information that organ-
isations need to analyse is related to the prediction of the
path that processes could follow during the execution of
business processes [3]. Based on the likelihood of paths
being followed, the overall time to completion could be
estimated more accurately. Identification of the likelihood of
paths could be achieved through critical paths [7], dependency
detection [8] [3], exceptions [5], and so forth.

Predictions could also be obtained using historical event
logs. Aalst et al. [12] presented a method for predicting the
remaining time until the completion of business processes
by building an Annotated Transition System (ATS). ATS
is an abstraction of event logs from past executions. Their
method learns the model, constructs the ATS, and uses it
for predictions. In this paper, we implemented the annotated
transition system (described in Section III). We used sequence
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abstraction to predict remaining time of business processes.
Path mining and ATS based systems heavily rely on the

existence of historical event logs and assume that the logs
contain all the paths and patterns that would be traversed while
executing business processes. In reality, not all the paths and
events occur with equal likelihood. Business process patterns
and their likelihood of occurrences are dependent on several
factors, such as resource availability and their characteristics,
resulting in the processes changing patterns over time. The
assumption that the system is in steady state is not very
helpful for dynamic processes. To overcome these limitation,
we propose a method to fit the historical data onto a model
and update the model as and when required. We use a Hidden
Markov Model (HMM) based fitting to learn the patterns of
workflows existing in historical event logs.

The contributions of this paper can be summarized as
follows:

1) An architectural framework that facilitates the simula-
tion of business processes and prediction techniques.

2) A HMM based prediction model for predicting time to
completion values of business processes.

3) A prototype test-bed that implements the proposed ar-
chitecture and the prediction techniques for simulation.

The rest of the paper is organized as follows: we start
by describing three basic prediction techniques in Section II;
Section III describes the system architecture that provides a
test-bed for simulating business processes; Section IV presents
the experimental results using the prediction models described
in Section II; and finally, Section V concludes the paper by
providing insights into potential future work.

II. PREDICTION MODELS

In this section, we first present the existing techniques
commonly used in predicting time for business processes.
They are: descriptive statistics, multivariate regression, and
annotated transition system based methods. They have been
used for prediction of future states of business processes based
on information collected from historical data. We then present
our approach of using the HMM for prediction of business pro-
cesses, and identify its benefits and weaknesses as compared
to the existing techniques. We present the prediction results
obtained by using each of these techniques in Section IV.

In all these prediction techniques, we are interested in
the events generated by tasks and their timestamps. Let
E = [e1, e2, ..., em] be a set of events of a workflow in-
stance, with m as the time length of the observations, and
te = [t1, t2, ..., tn] the n measurements of the timestamps for
an event e ∈ E.

A. Descriptive Statistics

Descriptive statistics summarize the historical log data
using numerical descriptors that include mean and standard
deviation. We calculate the mean, minimum, maximum, and
standard deviation of the timestamps taken from event logs for
every event (generated by tasks) registered by the BPE during
a simulation.

The numerical descriptors are defined by the following
equations:

AvgT : te =

∑n
i=1 t

e
i

n
(1)

Stdev :

∑n
i=1(t

e
i − te)2

n− 1
(2)

MinT : mininum{t1, t2, ..., tn} (3)
MaxT : maximum{t1, t2, ..., tn} (4)

Equations (1)-(4) simply applies the respective function to
all the timestamps for a particular event, irrespective of the
business process template it was generated from. They do not
take into account the dependencies between tasks.

If we do not know the states (set of events), then the best
prediction is the mean te, but the variability in this prediction
is high. However, if we do know the states, then the prediction
can be given by the regression fit [4].

B. Multivariate Regression

Regression analysis is used for explaining or modeling the
relationship between the timestamps (the response variable)
and the sequence of events (input variables) taken from event
logs. The objective of using regression is to predict the future
observations based on the modelled relationship between the
input variables. Since we do not have enough data to estimate
the relationship between the input variables, we usually have
to assume the relationship to be linear, to start with. Let us
assume that RT is the Remaining-Time variable that depends
on the set of events that have already occurred.

RT = β0 + β1e1 + β2e2 + . . . βnen + ε (5)

where βi, i = 0, 1, 2, ..., n, are unknown parameters for the fit,
and ε is the error. We will rely on least squares estimation of
β, as the Gauss-Markov theorem states that it is the best linear
unbiased estimate [4]. The confidence intervals are based on
the assumption of normal errors. To verify that the least
squares estimates are acceptable, we test the normality using
the Q-Q plot (Quantile-Quantile plot).

In Equation (5), we have assumed (for simplicity) that
the relationship between tasks is linear. However, this is not
the case in real business processes. Tasks are dependent on
each other based on the control flow and data flow, which
in turn depend on the availability of resources, capability of
resources, and so forth. The relationship (regression function)
is different for every business process, which is why the
precision of the results is always questionable. Aalst et al. [12]
have demonstrated that their annotated transition system based
approach outperforms regression models in terms of efficiency
and precision.

C. Annotated Transition System

Aalst et al. [12] proposed an annotated transition system
(ATS) based on process mining. They built the ATS by
mapping partial traces of event logs onto the states of the
transition system. The states of the transition system could be



Fig. 1. An example workflow that contains basic workflow patterns. (Resembles the travel agency process in [8])

defined based on the type of business process being simulated
(started, executing, completed, failed, etc.).

To understand how the remaining time is calculated in the
ATS system, let us assume each task in the workflow, depicted
in Figure 1, takes 2 seconds to reach the completed state. As
soon as the tasks complete, the completion events are recorded
in the event log. A log entry is retrieved from historical data
for each task that we are interested, in the sequence given by
the workflow. The following sequence describes each task’s
completion time using a superscript:

< Task0
1, Task

2
2, Task

4
4, Task

6
7, Task

8
9, Task

10
10, Task

12
14 >

The total time taken for this sequence is 12 seconds (time
difference between the last task and the first task in the
sequence). If the current state is Task4, the remaining time
to completion is (12 − 4 = 8). Similarly, if the current state
is Task10, the remaining time to completion from this state
is (12 − 10 = 2). For calculating average remaining time,
we computed the remaining time value for each matching log
record (sequence of paths recorded in the log, which have the
current state in them) and divided the result by the number of
matching records.

D. Hidden Markov Model

ATS provides a more precise mechanism to predict time
values for business processes than descriptive statistics and
regression, however, it relies heavily on the availability of
information on task sequences, as it is not a model fitting
historical data. The prediction accuracy cannot be relied on
when the number of events being recorded are few in number,
which is true even for descriptive statistics. Moreover, the
model assumes a steady state based process mining. In steady
state, the processes are not dependent on factors such as:
time of the year, resource availability, resource characteristics,
cost of operations, and so forth. Business processes change
over time and their flows are dependent on probability of
occurrences of several other related events. Our approach is
to use HMM to describe these probabilities and build a fitting
model.

A HMM is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with hidden
states. Unlike the ATS, this method computes a set of HMM
parameters after analysing the log data (training set). The

model thus formed can then be applied to unseen log data
for prediction purposes.

A HMM for predicting time of business processes can be
defined as follows:

States E: Each event that gets recorded from an execution
of a workflow instance is modeled as a HMM state. HMM
states are different to the states of a workflow and its tasks.

Observations O: In any HMM, during the time of recording
of the states, each state can have a set of observation values.
In this paper, we are only considering two states: completed
denoted by “1” and other state denoted by “0”. Hence, the
observation set is: Ot = {1, 0}.

Transition Matrix AN×N : Each element aij denotes the
probability of transition from state i to state j. In our system,
the transition probability is the probability of a parent event
emitting a “completed” event and changing its current state to
one of its immediate children.

Observation Emission Matrix B: in which bej (Ot) de-
notes the probability of observing Ot in state ej ∈ E. This
matrix gets calculated during the training phase of the HMM.

Initial Probability πN×1: in which πi denotes the proba-
bility of being in state i when the time t = 1. Regarding the
fact that in business processes, the process starts from some
initial state, we have:

πi =

{
1 if i = 1
0 if i 6= 1

}
Using the above defined parameters, a HMM λ can now be

represented as:

λ = (π,A,B) (6)

A HMM assumes that the hidden state ei is dependent
only on ei−1, and so is the observation at the same time
as ei. Similarly, in the context of a workflow, a task will
have control and/or data dependencies only with its immediate
parent. Having the Equation (6), the questions we need to
answer for predicting time values for business processes are:

1) How to tune parameters (π,A,B) to find a model λ
that best matches the observations of O for the series of
events in E? In the context of business processes, how
do we compute a HMM so that its parameters represent
the event logs?

2) How to compute the probability of the occurrence of
a specific sequence of observations, P (O|λ) for the



series of events in E? For business processes, given
a sequence of tasks and their event logs, how do we
find the probability of occurrence of the same series of
tasks in the future, and eventually the time values (e.g.,
remaining time) for sequences of tasks?

The unknown parameters of a HMM can be found us-
ing the Baum-Welch algorithm. The BaumWelch algorithm
can compute maximum likelihood estimates and posterior
mode estimates for the parameters (transition and observation
probabilities) of a HMM, when given only observations as
training data. Another method is to use the Viterbi training
algorithm, which, for an initial HMM and a given sequence of
observations, infers near optimal parameters to the HMM. The
trained model can then be used for predicting the occurrence
of specified sequence of observations (events). Blum et al. [1]
constructed a HMM from process logs and used Viterbi
algorithm to estimate the most likely sequence of states in
the model.

For predicting the time values for the specified sequence
of task events, we propose a weighted average of the prob-
abilities given by the trained HMM. We assign the weights
for each sequence as the time values given by the ATS model
(remaining time in this paper), and compute the weighted sum,
described in greater detail in Section IV-E. The weighted sum
given in Equation (7) is not the optimal way for predicting time
values. We are exploring the ways of relating the probability
of occurrence of sequences with the time values recorded for
these sequences, as part of our future work.

III. SYSTEM ARCHITECTURE

Before delving into the specifics of the system architecture
and the prediction techniques, we briefly describe relevant
work on BPM. Ko et al. [6] presented a survey on existing
BPM languages, standards, and notations, and identified their
strengths and limitations. They described the usage of XPDL
in both process design and process enactment stages of the
BPM life cycle. Following their guidelines, our system archi-
tecture adopts XPDL as the interchange standard and BPMN
as the graphical standard.

Existing tools, such as ProM1 and YAWL2, provide support
for the automated discovery of simulation models based on
event logs. Aalst et al. [11] thoroughly studied these existing
simulation approaches and identified their limitations. They
pointed out the fact that predictions are not restricted to time,
but can also be related to costs, resource availability [2], etc.
Our system architecture takes into account the possibility of
addition of additional parameters to the prediction techniques.

A business process execution (simulation) environment
should provide basic functionalities to describe any busi-
ness process, instantiate workflows out of business process
templates, simulate the executions of workflow instances,
predict process parameters (e.g., remaining time to completion,
average time for a process, etc), and store and access past

1http://www.processmining.org
2http://www.yawlfoundation.org

data (events, computed prediction values, etc.) as and when
needed. Such an environment must also be able to simulate a
large number of processes in parallel and, at the same time,
facilitate end-user (customers) requests. In order to provide
these basic features, we propose an architecture for business
process simulation, as depicted in Figure 2.

The system comprises of three layers: semantics,
core/middleware, and persistence.

A. Semantics

The components in this layer are responsible for determin-
ing the way workflows are defined and instantiated using pre-
defined business process templates. A business process is de-
fined using a BPMN-XPDL schema. The semantics associated
with business processes are part of the ontology. When a new
workflow instance is created, its elements take specific values
and types, as defined by the mapping between the business
process the workflow belongs to and its associated semantics.
Some parts of the instantiated workflow need to be updated
using data generated by the prediction engine.

Once the right kind of workflow templates are identified,
they are instantiated and submitted to the middleware compo-
nent for execution.

B. Core/Middleware

The core part of the system, where the actual simulation is
carried out, comprises of: a message queue, a Business Process
Engine (BPE), prediction algorithms, and a BPM service.

Business Process Management Service: The BPM service
links the end-users to the entire system through Web services.
Users, reporting tools, or any external component interested
in business process monitoring, subscribes to the events from
the BPM service. The BPM service provides the latest updates
on the workflows it is running on their behalf. The BPM
service may directly access the storage and obtain stored data
on workflow states and past predictions on those states. Our
design facilitates the reporting of data to customers either
synchronously or asynchronously. In the former case, the BPM
service requests the prediction engine to immediately carry out
predictions using the latest set of events, in which case, it waits
until it receives results from the prediction engine. In the latter
case, it issues a request to the prediction engine, but does
not wait for the results to be completed on the fly. Instead,
it obtains the recently computed prediction results from the
storage.

Message Queue: A Message Queue (MQ) facilitates the
execution system by providing a publish-subscribe based queu-
ing system. Any form of information, including events and
messages, that need to be exchanged between components
are published by the underlying components in the queue.
These messages are then queued awaiting the subscribers
to eventually consume them, asynchronously. In our system,
the MQ is predominantly used by the business process and
prediction engine, as depicted in Figure 2. The BPE publishes
any events/messages resulting from the execution of workflow
instances being simulated. The BPM service subscribes to



Fig. 2. System architecture for work tracking and prediction.

Fig. 3. A sequence diagram showing the flow of messages between system components during the simulation of business processes.



these events and notifies any user-side applications about
event/data availability. Similarly, the prediction engine sub-
scribes to the events and performs predictions. After prediction
results are available, the BPE publishes them to the MQ for
the BPM service to consume. In this way, the MQ plays a
major role in connecting the components asynchronously.

Business Process Engine: The BPE simulates the flow of
events based on the simulation parameters provided to it at the
run-time. These parameters are associated with the workload,
which could be: the number of workflow instances to run at a
time, types of workflow templates to be used, types of events
to generate, and so forth. Based on these parameters, the BPE
constructs the workflow instances and starts executing them
in parallel. While in execution, BPE publishes all specified
events/messages to the MQ. It preserves the execution order
of tasks and workflows defined in the instantiated business
processes. The events/messages published are timestamped
according to this logical control and data flow. The BPE
also provides capability to control the generation of user-
defined types of events/messages associated with each business
process.

The BPE stores all the events and messages generated
during the simulation as event logs through the persistence
layer. This log forms the historical data for the prediction
engine.

The event processing functionality in our prototype im-
plementation is based on the open source complex event
processing engine, Esper3. Esper provides support for triggers
(messages that can then be used as events for the workflow)
on workflow event patterns. Using SQL queries, we register
our interest on event patterns of any workflow instance, and
the Esper’s lightweight processing engine forwards them to
the MQ. The simulation of business proceses is thus carried
out using event stream processing through Esper.

Prediction Engine: The prediction engine (PE) is a plug-
gable component that is responsible for predicting time infor-
mation of business processes, such as the remaining time to
completion, average time taken for execution, start time, and
so forth. It does this with the help of prediction models im-
plemented as algorithms. Some of these prediction algorithms
are described in Section II. In order to carry out predictions
based on the stored historical data, we need to build an
information system. This can be achieved using a process
mining component that extracts specific data and forms a
transition system. This transition system is then annotated
with timing values that help in representation and analysis
of prediction values. The design of this ATS is the same as
the system proposed by Aalst et al. [12]. The ATS consists of
records of events with annotations that represent one or the
collection of: elapsed time (e.g., the average time to reach a
particular task), execution time (e.g., the average time taken to
execute the current task, averaged over a fixed period of log
data), remaining time (e.g., the average time to reach the end
of the current workflow, calculated from historical executions).

3http://esper.codehaus.org/

For more detailed analysis of the process mining technique,
and the annotation system, we refer the reader to Aalst et
al. [12].

In this paper, we have implemented the transition system
using a database system. The events/task states are stored
in one table and annotations (time values) for each event
in another table. Each event’s attributes are elapsed time,
execution time, and remaining time, which are stored as
columns in the annotation table.

The processing time taken by the PE depends on: a) the
size of the historical data to be analysed, and b) the number
of requests received by the PE for computing predictions. The
updating of the transition system occurs every time an event is
registered at the MQ, which is subscribed by the PE. The PE
recalculates the annotated values for each of the associated
tasks that are related to the event just registered. After the
transition system is updated, the PE publishes the updated
values to the MQ, which is then interpreted as prediction
values by the subscribers. The BPM service could also directly
trigger the transition system update process whenever the end-
users request for an updated prediction values. In this latter
case, the PE returns the latest values computed and stored in
the system.

Figure 3 shows a sequence of message exchanges between
the system components for delivering updated prediction data
to the end-users. The figure shows how an end-user retrieves
prediction data for a new workflow, currently monitored
workflows, and past workflows. When the end-user requests
to create a new workflow from an existing business process
template, the BPM service retrieves the template from the
semantics layer, which is then forwarded to the BPE for exe-
cution. When the end-user requests information for a selected
workflow instance, the BPM service retrieves the instantiated
workflow template from the semantics layer and its associated
data from the persistence layer. It then requests the PE for
the prediction data. The PE has two options: a) return the
recently stored prediction data and wait for the next round
of prediction process to start and notify the PE about the
number of requests coming from end-users, or b) re-compute
the prediction data and send the computed results to the BPM,
in which case the end-user will need to wait for the updated
data to be available. If the PE follows the first choice, it notifies
the BPM service about the availability of updated prediction
data only after it completes the computation, which will then
get pushed to the end-users. The workflow instances that are
being observed by the end-user and are configured to receive
updates periodically will receive the prediction data from the
BPM service as soon as they are updated by the BPE. The BPE
is constantly carrying out workflow simulation that registers
events to the MQ. As the PE is a subscriber of these events,
it starts the prediction process as soon as an event (or a group
of events) is registered at the MQ. This triggered computation
guarantees that the prediction results are updated as and when
activities change state, irrespective of the end-user requesting
for them.



C. Persistence

The persistence layer is used for storage of events, processes
states, prediction data, and the ATS data. Individual schemas
are defined for each of these types. For instance, events
data are formatted in conformance to events schema and
stored. Similarly, the annotated transition data have their own
schema, as discussed in earlier sections. We implemented the
persistence layer using MySQL database.

IV. EXPERIMENT AND RESULTS

In this section, we present the prediction results given by
descriptive statistics, multivariate regression, the ATS, and
the proposed HMM methods. We use a synthetic event log
obtained via executing the workflow depicted in Figure 1 on
our simulation test-bed.

In general, the simulation parameters are application con-
text dependent. Fundamentally, these parameters describe the
number and type of business processes to be simulated.
When a business context is added to a workflow, relevant
parameters are introduced to distinguish processes. For ex-
ample, application documents submitted by customers could
be instantiated into different types of workflows based on the
customer’s background; and the workflow could be processed
by specialized group of people. Although our proposed system
architecture is capable of handling these complex variations
on business processes, we only use one workflow template for
reporting the prediction results in this paper.

When generating the event logs, we used 1000 concurrent
threads that record the events occurring from one workflow
template. Essentially, each thread is responsible for one in-
stance of the workflow depicted in Figure 1. The time for
running these threads is fixed at 120 seconds. As soon as the
1000 threads complete executing, the event log creation ceases,
irrespective of the time (120 seconds) elapsed. This event log is
used by each of the prediction techniques, independently. The
interpretation of the results and their significance is described
in Section IV-F.

A. Application Workflow

Aalst et al. [13] described a number of workflow design
patterns that focus on control-flow and events, which are the
underlying design principles and execution models of business
workflow approaches. Some basic patterns are: sequential,
parallel split, and synchronization. In this paper, we use these
basic control flow patterns to study the prediction techniques.

Figure 1 depicts the control flow of a complex business pro-
cess. It contains the sequential, parallel, and synchronization
patterns. This workflow resembles the travel agency workflow
presented by Schonenberg et al. [8] in both control flow and
the number of tasks. However, we name the tasks from Task
1 to Task 14, not characterising to any specific application as
we are interested in the performance and capability of the test-
bed. Two annotations “S1” and “S2” are added in the workflow
to track the current state of the workflow. For example, after
either Task 2 or Task 3 has completed, the current state is
“S1”.

TABLE I
AVERAGE VALUES OF TIMESTAMPS OF EVENTS OBTAINED USING

EQUATIONS (1)-(4).

Current Average
State AvgT MaxT MinT Stdv Remaining

Time
Task 1 13636 28800 3600 4259 13572
Task 2 11336 25200 3600 4636 11250
Task 3 12776 21600 3600 3515 12876
S1 10582 25200 0 4120 10548
Task 4 8938 14400 0 3223 9000
Task 5 7589 18000 0 3429 7673
Task 6 9523 18000 3600 3720 9337
S2 7055 18000 0 3579 7020
Task 7 5314 10800 0 3355 5274
Task 8 5336 14400 0 3262 5305
Task 9 3418 10800 0 2577 3384
Task 10 1575 3600 0 1786 1694
Task 11 2110 7200 0 2759 2040
Task 12 1872 7200 0 2067 1800
Task 13 1523 7200 0 2040 1466
Task 14 302 766 0 1902 0

We assign uniformly distributed timestamps to each task in
the workflow. This is achieved by generating random sequence
of timestamps between two points in time (SecureRandom
class from Java) and assigning them to the tasks in the work-
flow in sequence. This preserves the dependency constraints
(tally between parallel tasks is resolved randomly).

B. Descriptive Statistics

Table I lists the average, maximum, minimum and the
standard deviation values for the execution times of each task
of the workflow depicted in Figure 1. These data are averaged
over all the event logs obtained from the historical data.

When the value given by MinT for a task is “0”, practically
the task took no time for execution and/or it was simply
skipped. In practice, this type of scenario is common when
tasks in a workflow do not need to be executed. Similarly, the
values given by MaxT vary significantly in the range between
28800 and 7200, reflecting the variability in execution times
of tasks in real environments.

C. Annotated Transition System

In Table I, we also list the average remaining time of the
workflow for any current state between Task 1 and Task 14
(inclusive).

The average remaining time value is calculated after the
process mining component creates the ATS using event logs.
The annotations for each event is created using a sequence
abstraction (See [12] for more details on types of abstractions)
and using the “completion” event only. The sequence abstrac-
tion preserves the control dependencies between the tasks and
provides a meaningful abstraction when predicting information
on paths of a workflow.



Fig. 4. Analysis of the fit given by multivariate regression.

D. Multivariate Regression

We make the remaining time as the dependent variable upon
the various states of tasks (Task 1 to Task 14). Using R’s4

linear model fitting, we obtain prediction of remaining time for
any given task sequence. For instance, if the task sequence is
T1, T3, T6, T9, then the predicted value denotes the remaining
time for completion given that Task 9 has already completed.
We fix the confidence interval at 0.95 and plot the predicted
values at different states, depicted in Figure 5.

Before accepting the result of the linear regression, we
evaluate its suitability by examining the residuals. We check to
see if the residual errors are random and normally distributed.
We also examine if the model is sensitive to one or two cases
(event sequences in our experiment). This is carried out by
using R’s plot() command and the results are depicted in
Figure 4. The plot in the upper left shows the residual errors
plotted versus their fitted values. The residuals are randomly
distributed around the horizontal line representing a residual
error of zero. The plot in the upper right shows the square root
of the standardized residuals as a function of fitted values,

4http://www.r-project.org/

which also shows randomness. The Q-Q plot in the lower
left shows the closeness to normality. Finally, the plot in the
lower right shows the measure of each point’s importance
in determining the regression result. Smaller (close to zero)
distance of Cook’s distance shows that removing observation
has little effect on the regression result.

E. Hidden Markov Model

In this paper, we used the following set of values to initialize
the HMM given by Equation (6).

• Observation vector has the values “1” and “0” that
corresponds to either “completed” or “other state”, re-
spectively. O = 1, 0.

• Transition and observation matrices are initialized using
Dirichlet distribution [10].

• Training data set is a series of observations taken from
the event log.

• Baum Welch algorithm is used to train the HMM [10].

The beta distribution can be used to model events which
are constrained to take place within an interval defined by a
minimum and maximum value (e.g., to describe the time to



completion of a task). The Dirichlet distribution is the mul-
tidimensional generalization of the beta distribution. Hence,
we initialize both the transition and observation probability
matrices A and B, using the random Dirichlet distribution.

The historical log data contains a path that was executed
in the past from the workflow depicted in Figure 1. If the
tasks that were completed were: T1, T2, T5, T7, T9, T11, T14,
the observation assigns “1” for each task completed, and “0”
otherwise. This can be represented as the observed values:
1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1. If the path in the log was
T1, T2, T5, T7, T9, T10, T14, the observed value would change
to: 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 15.

After we obtain the trained HMM, we use it to calculate
the probability of occurrence of the path that is of interest
to the end-user. For instance, if the user desires to calculate
the probability of occurrence of paths that contain Task 7 or
Task 8, the paths for query could be several for the workflow
pattern shown in Figure 1. Four of the possible paths Pathi,
where i ∈ N and their corresponding HMM representations
are:

1) Path1 = T1, T2, T4, T7, T9, T13, T14

HMM Observation = (1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1)
2) Path2 = T1, T3, T6, T8, T9, T10, T14

HMM Observation = (1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1)
3) Path3 = T1, T2, T5, T7, T9, T11, T14

HMM Observation = (1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1)
4) Path4 = T1, T3, T4, T8, T9, T12, T14

HMM Observation = (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1)

We use the Forward algorithm (PF ) to calculate the proba-
bility of occurrence of a given observation sequence. We use
this probability value to predict the remaining time for a given
sequence of probable tasks (Tk, Tk+1, . . .) using Equation (7).

AvgT (Tk)
n∑

i=1

PF (Pathi) +AvgT (Tk+1)
n∑

i=1

PF (Pathi) + . . .

n∑
i=1

PF (Pathi)

(7)

In the above example scenario, the paths that could be taken
after any of the tasks Task 4 to Task 6 complete is either
Task 7 (Tk) or Task 8 (Tk+1). The average remaining time
to completion can now be obtained from the sample mean
function AvgT (described in Section II-A) using Equation (7).

In Figure 5, we compare the remaining time values obtained
using the annotated transition system alone [12] and the time
calculated by HMM using the average time of each task
(Equation (7)).

F. Discussion

In Figure 5, we have plotted the predicted remaining time
for the sample workflow (Figure 1) using: Maximum Time
(MaxT), multivariate regression (MReg), annotated transition
system (ATS), and hidden Markov model (HMM). The re-
maining time is obtained when the current execution state of

5Notice the change of value for positions 10 (completed) and 11 (other
state)

Fig. 5. Predicted remaining time of a workflow when using: Maximum
Time (MaxT), Multivariate Regression (MReg), Annotated Transition System
(ATS), and Hidden Markov Model (HMM)

the workflow is Task 1, intermediate states (S1 or S2), or Task
9.

Not surprisingly, the MaxT method gave the highest pre-
dicted values for the remaining time to completion for all the
tasks in the workflow. As MaxT sums the real values from
the historical log data (not based on a fitting), these values
provide the upper-limit to the time values when comparing
against other results obtained using model-based predictions.

The remaining time predicted by the MReg method was
in low values for the beginning states of the workflow and
approached the values given by MaxT for the states near
the completion. This trend could be due to the linear model
we constructed during the regression phase, where the inde-
pendent variables (tasks) were linearly summed to obtain the
dependent variable time. The assumption that the tasks were
independent is also an over simplification to obtain the model.
Nevertheless, the predicted values remained within the upper-
limit defined by MaxT. We also plotted the error margins for
MReg by taking the difference between the predicted value
and the value (minimum and maximum) existing in the event
log. The errors increased in value towards the end states of
the workflow, which shows that the MReg based fitting does
not take into account workflow state dependencies.

We implemented the ATS based prediction method as de-
scribed in [12]. The predicted times for each task linearly
decreased as the tasks completed from Task 1 through Task
9. This is an expected behaviour, assuming that the process
that is observed is in steady state. The interesting parameter to
notice is the slope of the ATS line in Figure 5, which is similar
to the MaxT’s prediction. As the ATS is based on real values
obtained from log data, and not on a model, the similarity of
slope values for ATS and MaxT validates the implementation
of the simulation system.

The predicted remaining time values given by the HMM
is the lowest amongst all the other approaches. This can



be attributed to the characteristics of HMM. Its prediction
technique is based on model fitting (training its parameters
based on historical data). In addition, in HMM, the current
state is dependent on its immediate predecessor, which enables
it to incorporate dependencies defined in a workflow into its
model. These two characteristics have enabled the HMM to
predict the remaining time as closely as the ATS and well
below the upper-limit defined by MaxT. The values obtained
are not the optimal values, as the HMM based method is highly
dependent on the values chosen during the construction of its
transition matrix, observation probabilities, and initial states.
Nevertheless, HMM provided a model based fitting and is not
susceptible to minor fluctuations to the event logs.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an architecture that facilitates the
simulation as well as time prediction of business processes. We
implemented four prediction techniques: descriptive statistics,
regression, annotated transition system, and hidden Markov
model as plug-in components in the simulation system. We
also evaluated the techniques using a simulated business
process and compared the predicted remaining time values
given by each technique. These values followed the expected
trend (decrease in remaining time as tasks get completed), thus
validating the simulation system. We also found that hidden
Markov model based prediction provides better predictions as
compared to regression and the annotated transition system.

Business process predictions are not just driven by time, but
also the availability of human (and computing) resources and
their capabilities, existing process queues, operational costs,
etc. As part of our future work, we are interested in studying
the impact of these parameters when predicting remaining time
to completion of business processes. We would also like to
validate the algorithms by using real-world application use-
cases.
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