
TweetGames: A Framework for Twitter-based
Collaborative Social Online Games

Markus Esch∗, Aleksandrina Kovacheva∗, Ingo Scholtes† and Steffen Rothkugel∗

∗ University of Luxembourg
Computer Science and Communications Research Unit

Luxembourg, Luxembourg
Email: markus.esch@uni.lu, aleksandrina.kovacheva.001@student.uni.lu, steffen.rothkugel@uni.lu

† University of Trier
Department of Computer Science

Trier, Germany
Email: scholtes@syssoft.uni-trier.de

Abstract—Today social networks and microblogging services
attract much attention and their importance and pervasion is
constantly increasing. This trend is fostered by the increasing
prevalence of mobile internet devices, which enable users to be
online every time and everywhere. A popular kind of applications
provided via social network platforms are games. While existing
social network games basically realize common online game prin-
ciples where each user controls a single game entity and acts on
its own behalf, this paper presents a framework for the creation
of a novel kind of social online games. The idea is to enable games
where users do not act as individual game entities, instead groups
of users control one game entity whose behavior emerges from
the collective behavior of all group members. The framework is
based on the microblogging service Twitter and users interact with
the game via Twitter messages. These collaborative social online
games are not just an innovative social network application, the
intention of our framework is rather to provide a useful and
powerful tool to complex social network researchers to study
emergent and collective user behavior on a large scale utilizing
the huge user base of a social network service like Twitter. In
addition to presenting the idea of collaborative social online
games along with the so-called TweetGame framework, this paper
presents a sample application that has already been realized on
top of this framework as proof of concept.

Index Terms—Social Networks, Collaborative Games, Twitter,
Collaboration, Emergence, Collective Behavior, Social Dynamics

I. INTRODUCTION

The increasing prevalence of social network services like
Facebook1, Twitter2 or LinkedIn3 has changed and accelerated
every day live and social interactions. On the other hand social
aspects yield the demand of novel network infrastructures
which consider emerging phenomena and the high dynamics
in social networks. By this means, technical and social systems
exert mutual influence and the field of socio-aware technical
network systems establishes a new interdisciplinary field of

1www.facebook.com
2www.twitter.com
3www.linkedin.com

research incorporating computer science, complex network
science as well as social sciences.

From the computer science perspective, one of the key
challenges in this field is to answer the question, how emergent
behavior of socially interconnected groups can be analyzed
and modeled in order to dynamically adapt technical network
systems to social dynamics [1] and emergent phenomenas
like internet memes or slashdot effects. For this purpose it
is important to acquire a deep knowledge about the collective
user behavior in social networks. This includes studying and
modeling of dynamic process in social networks like agree-
ment processes [15], collective behavior [8] [16], influence
propagation [12], consensus dynamics [19] [18], collective
motion [22] [23], opinion dynamics [11] [10], social dynamics
[5], emergent phenomenas [6] etc. The Twitter-based gaming
framework presented in this paper enables complex social
network researchers to study and analyze these aspects of
social networks. The framework introduces the concept of
collaborative social online games, a novel and innovative kind
of social network application. The basic idea is to create
games where users do not act as individual game entities as
in traditional online games. Instead groups of users act as one
game entity and the behavior of this entity is emerging from
the collective behavior of the group members. The TweetGame
framework presented in this paper provides a platform for
the implementation of this kind of online games based on
the microblogging service Twitter, which means that users
participate in these games by sending twitter messages to
the game. The framework offers extensive support for the
implementation of TweetGames in terms of providing an
application server, handling Twitter messages, managing user
groups and so on.

A simple example for such a TweetGame is the Gorillas
game presented as proof of concept in this paper. This game
features two competing teams each represented by a gorilla.
The goal for both teams is to hit the other gorilla with a banana
that is thrown at the opponent. For this purpose the game

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247127



defines two input parameters: the angle and the power of a
throw. All users are able to send Twitter messages with their
guess for the input parameters. The actual parameters for a
throw are then given by the mean values of all group members.
While this scheme is a quite simple example for the mapping
of individual input onto group behavior more sophisticated
schemes are realizable as well.

This kind of collaborative social online games enables
various experiments and empirical studies in the field of social
dynamics as well as complex social networks. It is for example
intended to utilize the Gorillas game for studies on the wisdom
of crowd effect [7], [14], [21]. In this regard the huge user
base of social networks and the popularity of online games
provides the opportunity to conduct studies on a large scale
and to aggregate large data sets about collective user behavior,
agreement process, opinion spreading etc. Social science can
profit from our framework by the opportunity of analyzing
social process on a larger scale than this is often possible in
traditional empirical studies.

The rest of this paper is organized as follows. After
introducing the concept of collaborative online gaming in
Section II, Section III describes the TweetGame framework
in detail. Subsequently Section IV presents the Gorillas game
that has been implemented as prove of concept on top of
the TweetGame framework. Section V discusses the scientific
applicability of our approach and presents usage scenarios.
Related work is presented in Section VI. The paper concludes
with a discussion of our main contributions, open issues and
future work in section VII.

II. COLLABORATIVE SOCIAL ONLINE GAMING

The basic idea behind collaborative social online gaming is
to provide games where users act collaboratively in groups in
order to reach certain common goals. The main difference
to existing online games is the fact that users do not act
as individual game entities, rather groups of users form one
game entity which is controlled by the emergent behavior
of all group members. By this means, no user is able to
perform game actions solely by individual activities. Instead
the collective behavior of a group is considered.

Figure 1 depicts the basic principle and the general control
flow of games based on the TweetGame framework. All games
are round-based and users interact with the games by sending
Twitter messages (Tweets). Each game defines two or more
different teams. Before being able to play users have to register
to one of the teams. The actual number of different teams
depends on the specific game. The sample game presented
in section IV for example supports just two different teams.
Users can join teams at any time during the runtime of a
game. It is also possible to switch to another team later on.
But, in order to prevent cheating, a team memberships persist
for at least one round. In order to join a certain team in a
certain game, a user has to send a Twitter message with a join
command to the Twitter account of the game. Note, that each
game has an associated Twitter account and user commands
are sent as Twitter messages directed to this account using

Begin time slot

Game commands

End time slot

Evaluating Tweets and 
performing game actions

Join messages

Users send tweets to the game

Begin new game

End game

Game ended?

yes

no

Fig. 1. Basic Principle of TweetGame-based Collaborative Games.

Twitter’s @reply notation. A join message could for example
look like this: @samplegame join team a. More details about
game commands will be described in section III. After joining
a game, a user is able to send game commands in order to
influence the game flow. Game commands again have to be
directed to the Twitter account of the game using the @reply
notation. As mentioned above TweetGames are round-based.
The length of a round is adjustable and application specific.
After each round the framework gathers all Tweets directed
to the game’s account during the last time slot. Thereupon
these Tweets are analyzed and the resulting game actions are
calculated and performed. How the collective game commands
of a team are merged to one team action depends on the
concrete implementation of each game. The sample application
presented in this paper for example just calculates the mean
value of all commands. But, of course more sophisticated
mappings of user commands to team actions are realizable
as well. For example it could be required that the members of
a team did agree upon a game command in order to perform
an action at all.

After each round, the framework checks whether the game
is over or not. In case the game is over a new instance is
started, otherwise the next round begins. The criterion for the
decision when a game is over is application specific. The game
developers can e.g. define a maximum number of rounds or
any other criterion for the end of a game (e.g. one of the teams
has reached a certain amount of points).



Having presented the basic idea of collaborative Twitter
games the following sections presents the details of the Tweet-
Game framework. Afterwards Section IV describes a sample
application developed based on this framework.

III. THE TWEETGAME FRAMEWORK

This section presents the TweetGame framework a frame-
work developed for the realization of Twitter-based collabora-
tive social online games as described above. This framework
basically consists of two components: a) A Java-based appli-
cation server that hosts the game and represents the back-end
of the architecture. b) A HTML 5 and JavaScript based front-
end displaying the game state on a website. The framework is
built entirely around Twitter in terms of using the microblog-
ging service as central communication channel. Configuration
commands as well as user commands are sent via Twitter.
Moreover the communication between the application’s back-
end and front-end is based on Twitter messages.

Back-End Front-End

UsersAdministrator

Fig. 2. Components of the TweetGame Framework.

Figure 2 shows the components of the TweetGame frame-
work and how they interact. The basic components are the
back-end that realizes the game logic and manages the game

state, the front-end that visualizes the progress of the game as
well as users and administrators that interact with the game
via Twitter messages. Users participate in the game by send-
ing game commands via Tweets. The back-end periodically
(always at the end of a game round) fetches these Tweets
and calculates the resulting game actions. These are thereupon
published by sending a public Tweet describing the game
action from the game’s Twitter account. The front-end gathers
these game action Tweets and visualizes the game actions.

One interesting feature of the framework is the fact, that
administration and configuration of the game can be done
via Twitter as well. For this purpose for each game one or
multiple dedicated administrator Twitter accounts are regis-
tered. Administrators are able to configure a game by sending
private messages containing administration commands from
an administrator account to the game’s Twitter account. The
back-end gathers these Tweets and performs the corresponding
configurations. This feature allows administrators to access
and administrate the server easily every time and everywhere
just by sending a private Twitter message. The security of this
approach is given by the fact that private messages are not
readable for a third party and Tweets are sent over a secure
https channel. Since only registered Twitter accounts from
administrators are authorized to send configuration messages,
the security of the system is inherently given by the security
level provided by Twitter. By this means our framework
automatically profits from Twitter’s security measurements.

An important feature of our framework is the fact that
the application server hosting a game does not necessarily
require a public IP address, because the entire communication
with the application server is based on Twitter messages.
The application server on the one hand gathers Tweets from
administrators as well as users and on the other hand sends
Tweets in order to publish the resulting game actions.

The details of the back-end as well as the front-end of the
TweetGame framework will be highlighted in the subsequent
paragraphs.

a) Back-End: The back-end of our architecture is respon-
sible for managing the game state and for realizing the game
logic. It has to fetch and evaluate the user commands and
triggers the corresponding game actions. For this purpose our
framework provides a Java-based application server that hosts
TweetGames and provides the basic functionality for the devel-
opment of the back-end component. While the implementation
of the actual game logic obviously is part of each concrete
game realization, the framework provides means for handling
the Twitter messages, managing user groups, connecting to
the game’s front-end as well as application configuration. The
application server framework basically provides the following
components to application developers:

• Application Manager: The application manager is a con-
tainer for the execution of TweetGames. The manager is
responsible for hosting the applications (games) running
on a server and provides facilities to execute, start, stop
and pause the applications.

• Applications The application component represents one



dedicated Twitter game, it contains the game logic and
manages the game state. Each TweetGame has a related
Twitter account that is used for the entire communication
with the game. Moreover one or multiple Twitter accounts
are registered as administrator accounts. The administra-
tor accounts can be used by application administrators
to send private configuration commands to the game
account in order to administrate the game. A TweetGame
developer basically has to extend the Application
base class in order to implement its own application. The
base class already provides the fundamental functionality
and common user commands. Game specific behavior and
commands have to be added by the game developers.
More details about game commands will be discussed
below.

• Groups As described above groups and teams respec-
tively are a central concept of the TweetGame frame-
work. The idea behind the collaborative Twitter games
is that users do not act as individual game entities but
rather as groups whose game actions emerge from the
collective behavior of the members. For this purpose the
game framework already provides extensive group and
user management facilities. The group component of the
framework allows to create and remove groups as well as
to handle registered users and their group memberships.

As mentioned above, the entire communication within our
framework is based on Twitter. We distinguish the following
types of commands that can be sent as Tweets: (a) game
commands, (b) admin commands and (c) game actions. These
commands will be described in detail in the following:

• Game Commands: Game commands are directed from
the users towards the back-end in order to interact with
the game. At the end of a game round the application
server gathers these messages and calculates the resulting
game actions. The framework provides two different
game modes in order to support different game concepts.
It is configurable whether game commands have to be
sent via public Tweets or via private Twitter messages.
This is important since some game concepts may require
users to see the commands of their teammates while
it may not be desired for other games. Since game
commands are application specific each game developed
on top of our framework has to define its own game
commands along with the command syntax. A game
command basically exists of a keyword specifying the
game action along with an argument list of arbitrary
length: keyword argument_1 ... argument_n.
An example for a game command is the throw command
defined by the sample application presented in Section
IV. The framework supports the developer in the creation
of new game commands by fetching the game command
Tweets and by providing a parser that extracts the key-
word as well as the argument list and calls a handler
method that has been registered for a given command.
While most game commands are application specific

and hence have to be implemented by the application
developer, the following two commands are common
for all applications. For this reason these are already
implemented by the framework:

– join team_name: Joins a user to the given team
in the game that receives this message. Of course the
command is only executed if the given team exists
in this game.

– chteam team_name: Moves a user that has al-
ready been registered to a game into the given team.
Note, that team memberships persist for at least one
round in order to prevent cheating.

• Admin Commands: Admin commands are sent by a
game administrator in order to configure the games
running on a TweetGame application server. As already
mentioned, admin commands are only accepted from reg-
istered administrator accounts. Since many configuration
commands are required for all games the GameTweet
framework already defines and implements the most
common admin commands. Of course it is possible for
each game to define additional game specific admin
commands. Here two different kinds of administrator
commands need to distinguished: a) commands dedicated
to an application server in order to administrate the entire
server and b) commands dedicated to a specific game
running on an application server. In order to handle
the application server specific administration Tweets an
application server has its own Twitter account. The ap-
plication server specific administration commands already
implemented by the framework are the following:

– aistart game_name: Starts a new instance of
the game with the given name. Note that the ap-
plication with the given name needs to be present
on the application server to execute this command
successfully.

– aipause game_name: Pauses the game with the
given name. This command just disables the game
but does not delete the game instance hence the entire
game state still exists. For this reason it is possible
to continue the game later on using the following
command.

– airesume game_name: Resumes the given game
if it has been paused before.

– airestart: Restarts the instance of the game with
the given name. This commands deletes the old game
state and starts a whole new instance of the game.

– aistop game_name: Stops the game with the
given name. In contrast to the pause command this
command deletes the game instance and with it the
game state. Resuming a game is not possible after
executing this command.

Of course it is possible to extend the framework in order
to add further application server admin commands. Ad-
ditionally the following game specific admin commands
are already implemented by the TweetGame framework:



– aitslot duration: Using this command it is
possible to set the duration of a game round in the
game that receives the message to the given value.

– gradd group_name: Creates a new group with
the given name in the game with that receives the
message.

– grdel game_name group_name: Deletes the
group with the given name from the game that
receives the message.

• Game Actions: At the end of a game round, all game
commands of the users are fetched and the resulting game
actions as well as game state changes are calculated. The
resulting game actions are thereupon publish by sending
a Tweet via the game’s Twitter account. This Tweet
contains the command corresponding to the game action
along with an arbitrary number of command arguments.
Obviously the game action commands are application
specific and have to be implemented by game developers.
The front-end needs to be able to parse these commands
and to visualize them in an appropriate manner. While
the front-end just visualizes the game actions the game
state is managed solely by the back-end.

b) Front-End: In addition to the application server which
represents the back-end of the TweetGame framework, a
front-end visualizing the game state and the game actions
is required. The main task of the front-end is to fetch the
Tweets with the game commands and to visualize the progress
of the game. While the front-end can be realized with ar-
bitrary technologies, the visualization for the Gorillas game
is based on HTML5 and JavaScript. As described above the
back-end publishes game actions by sending public Tweets
from the game’s Twitter account. The front-end gathers these
commands using a JavaScript and visualizes the game actions
on a HTML5 Website.

Our framework provides a weak coupling between game
logic and game visualization which has several advantages.
At first it is easily possible to provide multiple visualizations
for a game by just implementing different websites displaying
the game. This allows for example TweetGame mashups by
seamless integrating games into arbitrary websites. Moreover it
is possible to create front-ends based on different technologies
and for different devices as well as platforms. It is for
example possible to realize a Flash- or a Silverlight-based
game front-end. Mobile devices can be supported natively
by implementing Android or iOS applications visualizing the
game state. It would also be possible to integrate Twitter
into the front-end application in order to improve the user
experience by providing a integrated user interface. The game
front-end could even hide the Twitter communication from
the user by providing intuitive game interaction facilities
and automatically generating and sending the corresponding
Twitter messages. In summary the weak coupling between
back-end and front-end provides extensive opportunities to
customize the front-end as desired.

While the implementation of the front-end is for the most

part application specific our framework provides JavaScript
based facilities to connect to a Twitter account and to gather
the game actions periodically. Handling and visualizing the
game action appropriately is then part of each individual
implementation.

IV. SAMPLE APPLICATION

In order to show the usability of the developed framework
and to prove the viability of the concept of Twitter-based
collaborative social online games, we have developed a sample
application named Gorillas4. This game follows the model
of the traditional Gorillas video game from 1991. Figure 3
show a screenshot of the game’s website. The basic idea of
the game is simple. Two teams each represented by a gorilla
throw bananas onto each other in a round-based game. For
this purpose two parameters need to be determined: The angle
of the throw as well as the power of the throw. The Gorilla
that first hits its opponent three times with the banana wins
the game. While the traditional video game is played by two
individual players, our TweetGame-based version of the game
features two competing teams. The angle and the power of the
actual throws is determined by the mean value of all individual
estimations.

Users that have registered to one of the teams by send-
ing a join command are able to participate in the game
by sending throw messages to the game’s Twitter account
as follows: @PlayGorillas throw power value angle value,
while power value and angle value are the parameters for
the power and the angle of the throw chosen by the user.
At the end of a time slot the framework fetches all Tweets
sent during the last round and calculates the resulting game
actions. The game actions are thereupon published by sending
a Twitter message from the game’s Twitter account similar
to the following one: Kiki on the right throws banana with
power: 209 and with angle: 49. The website-based front-end
gathers these message and displays the throws on the website.
A game is over as soon as one of the teams has three strikes.

V. SCIENTIFIC APPLICATION

This section discusses the usability of the TweetGame
framework in the field of complex social network science.
As mentioned above, the intention of our concept is not just
to provide a novel kind of online games, the framework can
rather be utilized by complex social network researchers in
order to study collective phenomenas and social dynamics.
To utilize our framework for this purpose it supports two
different game modes: a) Game commands are send as public
Tweets which enables users to see the game commands of their
teammates. b) Game commands are sent as private messages
and are not visible for teammates. The availability of these
two modes does not only allow different game scenarios, it
is especially important for the execution of certain empirical
studies, because it allows to execute the same experiments
once with mutual awareness of the teammates actions and

4http://mocca.uni.lu/gorillas



Fig. 3. Screenshot of the Gorillas sample game.

once without in order to compare the results and to measure
the impact of social influence. This is for example interesting
to study the wisdom of crowd effect [7], [21] as it has been
done in [14]. The wisdom of crowds effect refers to the
phenomenon that the average estimation of a group often is
more accurate than the estimations of individuals. But in [14]
it has been shown, that social influence in terms of knowing
the guesses of the other group members, reduces the accuracy
significantly. The reason is that social influence causes humans
to adjust their opinion to those of others [3], [4], [17], [2].
This in turn influences the statistical aggregate and has a
negative effect on the wisdom of the crowd. Utilizing the two
modes provided by the TweetGame framework it is possible to
accomplish such experiments on a large scale. It is in fact our
intention to reproduce this experiment based on the Gorillas
game presented in the previous section. While this is just one
example for the applicability of our framework it is possible
to utilize TweetGames for numerous studies in this field (e.g.:
[24], [20], [9], [8]). The huge user base of a popular service
like Twitter provides the opportunity to conduct such studies
on a large scale with a meaningful number of participants.

VI. RELATED WORK

Gaming in general is a very popular application provided
by social network platforms. Especially Facebook provides
numerous online games from various game genres like Online
Role Playing Games, Strategy Games, Simulations and so on.
Though these games are played on a social network platform

and involve user interaction these can not be compared to
our approach since these games for the most part just realize
traditional online game principles and do not consider the
collective behavior of user groups.

Closer to our approach are games that have been developed
based on the microblogging service Twitter. These games
also utilize the idea of interacting with the game via Twitter
messages, but also feature a traditional online game scheme
where users act as individuals on their own behalf. Most
of these games are quiz games where users have to answer
questions via Tweets, examples are BeatMyTweet5, @Libs6,
Twitbrain7, twivia8 or WhoseTweet9. Other populare Twitter-
based games are Tweetbomb10, Artwiculate11 or Tweetfight12.

While the idea behind our approach is to utilize online
games in order to study the collective behavior and social
dynamics of the users, there are other approaches that utilize
online games in order to have certain task solved by the
collective effort of the game users. One popular example is
described in [13]. Here a online game has been utilized in
order to find the optimal molecular structure of a certain
enzyme, a problem that is hard to solve by computers. Another
example is the ESP Game, a collaborative game that is used
to label images with keywords.

VII. CONCLUSION

This paper presented the concept of collaborative social on-
line games. This idea has been realized as proof of concpet on
top of the microblogging service Twitter. The basic idea is to
provide round-based online games where users can participate
just by sending Twitter messages containing game commands.
The essential difference to traditional online games is the fact
that users do not act as individual game entities, rather the
game events are controlled by the emergent behavior of all
users belonging to the same team. In addition to introducing
this game concept the paper presents the TweetGame frame-
work, a Java-based framework for the development of such
collaborative online games. The framework offers the basic
functionality required for the development of TweetGames,
like providing an application container to host the games,
fetching and processing Tweets, managing Groups and so on.
Utilizing this framework TweetGame developers can focus on
the implementation of the actual game logic. Based on this
framework we developed a sample application, the so-called
Gorillas game as proof of concept.

In addition to defining an interesting new kind of applica-
tions for microblogging services and social network platforms
our concept allows researchers in the field of complex social
network to study emergent behavior and social dynamics in

5http://www.officeevil.com/beat-my-tweet/
6http://atlibs.com/
7http://ajaxorized.com/twitbrain/
8http://www.timdorr.com/twivia/
9http://www.whosetweet.com/
10http://tweetbomb.wordpress.com/
11http://artwiculate.com/
12http://www.tweefight.com/



large social networks. The paper also described a Tweet-based
application configuration mechanism. This approach is not
limited to our scenario but rather may be applicable in other
scenarios as well in order to provide a convenient way of
Twitter-based administration.

As future work it is intended to perform experiments on
collective user behavior and social dynamics based on the
TweetGame framework. As a first step it is planed to reproduce
the results from the studies about the social influence on the
wisdom of crowd effect presented in [14]. As described above,
our framework provides all required means for the execution
of such experiments. While the original study has been done
with a rather small group of just 144 test persons the large
user base of the Twitter network provides the opportunity to
reproduce the study on a larger scale in order to provide more
meaningful results.

REFERENCES

[1] S. D. andf Peyton Young. Social dynamics. Brookings Institution Press
MIT Press, Washington, D.C. Cambridge, Mass, 2001.

[2] S. E. Asch. Opinions and social pressure. Scientific American, 193:31–
35, 1955.

[3] A. V. Banerjee. A Simple Model of Herd Behavior. Quarterly Journal
of Economics, 107(3):797–817, 1992.

[4] S. Bikhchandani, D. Hirshleifer, and I. Welch. A Theory of Fads,
Fashion, Custom, and Cultural Change as Informational Cascades. The
Journal of Political Economy, 100(5):992–1026, 1992.

[5] C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social
dynamics. Reviews of Modern Physics, 81(2):591, 2009.

[6] V. Darley. Emergent Phenomena and Complexity. Physical Review,
1994.

[7] F. Galton. Vox populi. Nature, 75(1949):7, 1907.
[8] R. L. Goldstone and T. M. Gureckis. Collective Behavior. Topics in

Cognitive Science, 1(3):412–438, July 2009.
[9] B. Golub and M. O. Jackson. Naı̈ve Learning in Social Networks and

the Wisdom of Crowds. American Economic Journal: Microeconomics,
2(1):112–149, Feb. 2010.

[10] J. Holyst, K. Kacperski, and F. Schweitzer. Social impact models of
opinion dynamics. In In: Annual Reviews of Computational Physics,
volume 48, pages 253–273. Citeseer, 2001.

[11] I. Kanovsky and O. Yaary. Model of Opinion Spreading in Social
Networks. June 2011.

[12] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, KDD ’03, pages 137–146, New York, NY, USA, 2003. ACM.

[13] F. Khatib, F. DiMaio, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzy-
wda, H. Zabranska, I. Pichova, J. Thompson, Z. Popović, M. Jaskolski,
and D. Baker. Crystal structure of a monomeric retroviral protease solved
by protein folding game players. Nature Structural & Molecular Biology,
advance online publication, Sept. 2011.

[14] J. Lorenz, H. Rauhut, F. Schweitzer, and D. Helbing. How social
influence can undermine the wisdom of crowd effect. Proceedings of
the National Academy of Sciences, May 2011.

[15] Q. Lu. PROPAGATION , CASCADES , AND AGREEMENT DY-
NAMICS IN COMPLEX COMMUNICATION AND. Social Networks,
2009(November 2009), 2009.

[16] M. W. Macy and R. Willer. From Factors to Actors: Computational
Sociology and Agent-Based Modeling. Annual Review of Sociology,
28(1):143–166, Aug. 2002.

[17] A. E. Mannes. Are We Wise About the Wisdom of Crowds? The Use of
Group Judgments in Belief Revision. Management Science, 55(8):1267–
1279, 2009.

[18] Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and a. L. Barabási. Physics of
the rhythmic applause. Physical review. E, Statistical physics, plasmas,
fluids, and related interdisciplinary topics, 61(6 Pt B):6987–92, June
2000.

[19] W. Ren and E. M. Atkins. A survey of consensus problems in
multi-agent coordination. Proceedings of the 2005 American Control
Conference 2005, 3(5):1859–1864, 2005.

[20] M. J. Salganik, P. S. Dodds, and D. J. Watts. Experimental Study of
Inequality and Cultural Market. Science, 311(February):854–856, 2006.

[21] J. Surowiecki. The Wisdom of Crowds: Why the Many Are Smarter
Than the Few and How Collective Wisdom Shapes Business, Economies,
Societies and Nations. Doubleday, May 2004.

[22] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel
type of phase-transition in a system of self-driven particles. Physical
Review Letters, 75:1226–1229, 1995.

[23] T. Vicsek and A. Zafiris. Collective motion. Arxiv preprint
arXiv10105017, 19(8):13, 2010.

[24] I. Yaniv and M. Milyavsky. Using advice from multiple sources to revise
and improve judgmentsâ. Organizational Behavior and Human Decision
Processes, 103(1):104–120, May 2007.


