Ontology-based Policy Anomaly Management
for Autonomic Computing

Hongxin HU, Gail-Joon Ahn, and Ketan Kulkarri
L Arizona State University?Intel Corporation
{hxhu,gahp@asu.edu{ketankulkarni29@gmail.com

Abstract—The advent of emerging computing technologies policies (e.g., firewall policy [15] and IPSec policy [16]),
such as service-oriented architecture and cloud computing and system-level policiege.g., SELinux policy [23] and
has enabled us to perform business services more effi(:ientlyAppArmOr policy [1]).

and effectively. However, we still suffer from unintended Policies i d t tiall Lo
security leakages by unauthorized actions in business séces. oficies In modern systems are exponentially growing in

Moreover, designing and managing different types of poli@s ~Size and complexity. In a typical policy, multiple rules may
collaboratively in such a computing environment are critical overlap, which means one access request may match several

but often error prone due to the complex nature of policies rules. Furthermore, multiple rules within one policy may
as well as the lack of effective analysis mechanisms andconflict, implying that those rules not only overlap each

corresponding tools. In particular, existing mechanisms ad . . . L .
tools for policy management adopt different approaches for other but also yield different decisions. Conflicts in a ppli

different types of policies. In this work, we propose a unifid May lead to both safety problem (e.g. allowing unauthorized
framework to facilitate collaborative policy analysis and access) and availability problem (e.g. denying legitimate
management for different types of policies, focusing on pady access). On the other hand, there might be some rules that
anomaly detection and resolution. Our generic approach ,q requndant, meaning that an access request matching one

captures the common semantics and structure of different le al tch th | ith th ffect. | h
types of access control policies with the notion of policy rulé also matches other rules wi € same efiect. In such a

ontology. We also discuss a proof-of-concept implementain Case, the performance of an access control system might be
of our proposed framework and demonstrate how efficiently degraded since it directly depends on the number of rules to

our approach can discover and resolve anomalies for differ® be evaluated within policies. Consequently, the incregsin
types of policies. . _ complexity of policy-based computing strongly demands
Index Terms—Ontology, policy anomaly analysis, auto- . . . - .
nomic computing. automgted poll_cy angly5|s techniques. Wl_thout ha_/mg such
analysis techniques in place, most benefits of policy-based
techniques may be in vain.

Recently, policy anomaly analysis has received a great
We have witnessed explosive growth of the applicatioreal of attention [9], [10], [19], [18], [20], [26]. Corre-
adopting service oriented architecture (SOA) and clowponding policy analysis tools have been introduced. For

computing on the Internet. SOA technology and Clouégxample, Firewall Policy Advisor [9], FIREMAN [26] and
computing brought the concept of multi-tenancy for servinBAME [19] were designed with the goal of detecting policy
various subscribers through a common pool of resourcesmomalies in firewall. Other tools, such as XAnalyzer [20],
In such an environment, it is necessary to have a monere developed for helping policy administrators to dis-
flexible and collaborative access control mechanism twmver and resolve policy anomalies in XACML policies.
prevent unintended access of shared resources and privéogvever, most of these prior approaches handle policy
user data. Therefore, the use of a policy-based approastalysis and management focusing on a particular type
has received considerable attention to accommodate tfepolicy. As a result, policy administrators have to get
security requirements covering such large, open, digetbu familiar with each of these tools for analyzing and man-
and heterogeneous computing environments. aging different types of policies in their enterprise sysde

A policy, the basic building block of policy-based sysand may get confused with those different policy analysis
tem, is a set of rules that control the behaviors of methods. Therefore, a unified policy management mecha-
system. Policy-based computing handles complex systeism is desirable for seamlessly managing different types
properties by separating policies from system implementaf access control policies, which is especially criticat fo
tion and enables dynamic adaptability of system behaviarsllaborative policy analysis in a heterogeneous computin
by changing policy configurations without reprogrammingnvironment.
the systems. Different types of access control policiesIn this paper, we present a unified anomaly management
have been developed to support policy-based computifiggmework for representing and analyzing different types
including application-level policies(e.g., XACML [25], of access control policies in terms of policy ontology. Our
SAML [24], Ponder [17] and EPAL [11])network-level approach employs a policy-based segmentation technique to

I. INTRODUCTION

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247119

facilitate not only more accurate anomaly detection bug als 1<Pohcv5et PolicySetld="PS," PolicyCombiningAlgld="First-Applicable”>

effective anomaly resolution. Furthermore, we implement a?,
proof-of-concept tool based on our proposed framework. T@
evaluate the practicality of our approach, our experiment§
deal with a set of firewall and XACML policies. 7

The rest of this paper is organized as follows. Section II9
overviews policy anomalies in both firewall and XACML 10
policies. We describe our generic ontology-based anomaﬂf
management framework in Section Ill. In Section IV, wel3
discuss the implementation of our tool and the evaIuauom_;
of our approach. Section V overviews the related work anél6

we conclude this paper in Section VI. 18
19

20

Il. BACKGROUND 21

22

In this section, we overview policy anomalies in two3,
typical kinds of access control policies, firewall policy 25
and XACML policy, which are used to demonstrate ours

approach in this paper. 28
29
30
A. Anomalies in Firewall Policies ;;

Firewalls are a widely deployed security mechanism t@i
ensure the security of private networks in most businesses
and institutions. The effectiveness of security protectio 3
provided by a firewall mainly depends on the quality ofss
policy configured in the firewall. A firewall policy consists ig
of a sequence of rules that define the actions performed
on packets that satisfy certain conditions. The rules arg
specified in the form ofcondition, action). A condition 44
in a rule is composed of a set of fields to identify a certairy,
type of packets matched by this rule. Table | shows arr
example of a firewall policy, which includes five firewall 23
rulesry, r9, r3, 4 andrs. Note that the symbol “*” utilized 50
in firewall rules denotes a domain range. For instance, ;é

<Target/>
<Policy Policyld="P;"

RuleCombiningAlgld="Deny-Overrides">

<Target/>
<Rule Ruleld="r," Effect="Deny">
<Target>
<Subjects><Subject> Designer </Subject>

</Subject></Subjects>
</Resource></Resources>

<Subject> Tester
<Resources><Resource> Codes

<Actions><Action> Change </Action></Actions>
</Target>
</Rule>
<Rule Ruleld="r," Effect="Permit">
<Target>
<Subjects><Subject> Designer </Subject>

<Subject> Developer </Subject></Subjects>
<Resources><Resource> Reports </Resource>
<Resource> Codes </Resource></Resources>
<Actions><Action> Read </Action>
<Action> Change </Action></Actions>
</Target>
<Condition>
</Rule>
<Rule Ruleld="r3" Effect="Deny">
<Target>
<Subjects><Subject> Designer </Subject></Subjects>
<Resources><Resource> Reports </Resource>
<Resource> Codes </Resource></Resources>

8:00 < Time <17:00 </Condition>

<Actions><Action> Change </Action></Actions>
</Target>
<Condition> 12:00 < Time < 13:00 </Condition>
</Rule>
</Policy>
<Policy Policyld="P," RuleCombiningAlgld="Permit-Overrides">
<Target/>
<Rule Ruleld="r,;" Effect="Deny">
<Target>
<Subjects><Subject> Developer </Subject></Subjects>

<Resources><Resource> Reports </Resource></Resources>

<Actions><Action> Change </Action></Actions>
</Target>
</Rule>
<Rule Ruleld="rs" Effect="Permit">
<Target>
<Subjects><Subject> Manager </Subject>
<Subject> Designer </Subject></Subjects>
<Resources><Resource> Reports </Resource>

</Resource></Resources>
</Action></Actions>

<Resource> Codes
<Actions><Action> Change
</Target>
</Rule>
</Policy>

single “*” appearing in the IP address field represents ap</Policyset>

IP address range from 0.0.0.0 to 255.255.255.255.
We articulate firewall policy anomalies based on follow-
ing classification:

« Conflict: One rule is conflicting with other rules, if ag
rule overlaps with others but defines a different action.’

Fig. 1. An example XACML policy.

Anomalies in XACML Policies

In this case, the packets matched by the overlap of XACML has become thée factostandard for describing
those rules may be permitted by one rule, but denie@tcess control policies and offers a large set of built-in

by others. In Table Iy correlates withrs, and all

functions, data types, combining algorithms, and standard

UDP packets coming from any port of 10.1.1.* tqorofiles for defining application-specific features. Figlre

the port 53 of 172.32.1.* match the intersection ofhows an example XACML policy. The root policy set
these rules. Since, is a preceding rule of5, every PS; contains two policiesP; and P, which are combined

packet within the intersection of these rules is deniagsingFirst-Applicablecombining algorithm. The policy,

by r,. However, if their positions are swapped, théas three rulesy;, 7 and r3, and its rule combining

same packets will be allowed.

algorithm is Deny-Overrides The policy P, includes two

« Redundancy. A rule is redundant if there is anotherrulesr, andrs with Deny-Overridesombining algorithm.
same or more general rule available that has the samehis example, there are four subjed#anager Designer
effect. For exampler; is redundant with respect to Developerand Tester two resourcesReportsand Codes
ro in Table |, since all UDP packets coming from anyand two actionsReadand Change Note that both-, and
port of 10.1.2.* to the port 53 of 172.32.1.* matched; define conditions over th&me attribute.

with ;1 can matchry as well with the same action.

An XACML policy may contain both policy components

TABLE |
AN EXAMPLE FIREWALL POLICY.

Order | Rule | Protocol Source IP Source Port Destination I[P Destinatiori P Action
1 1 UDP 10.1.2.* * 172.32.1.* 53 deny
2 To UDP 10.1.*%.* * 172.32.1.* 53 deny
3 r3 TCP 10.1.%* * 192.168.*.* 25 allow
4 T4 TCP 10.1.1.* * 192.168.1.* 25 deny
5 5 * 10.1.1.* * * * allow

and policy set components. Often, a rule anomaly occurs in

a policy component, which consists of a sequence of rules Access Control Policies
On the other hand, a policy set component consists of a § Policy Ontology Extraction QL
Of_pOIICIGS or Othe.r pOIICy gets, thus anomalies may als Access Control Policies Policy Ontology Population
arise among policies or policy sets. |
. 4; :I Policy Parsing |
« Anomalies at Policy Level:A rule is conflicting with 7
other rules, if this rule overlaps with others but define Information Extraction | Ontology Instance |
a different effect. For example, trdenyrule r is in | Policy Domain Concept |

conflict with the permit rule r, in Figure 1 because — JU
. | Generic Policy Structure |

rule o allows the access requests from a design

to change codes in the time interval [8:00, 17:00] |GenericPo|icySemantic

| Policy-based Segmentation |

which are supposed to be denied hy and a rule is JL JL
redundantif there is other same or more general rule JL BT ROy
available that have the same effect. For instance, if W { Ontology Generation J—— Eomirarin Eecl

change the effect af, to Deny, r; becomes redundant
sincer, will also deny a designer to change reports
or codes in the time interval [12:00, 13:00].

« Anomalies at Policy Set Level:Anomalies may also
occur across policies or policy sets in an XACML pol-
icy. For example, considering two policy components
P, and P, of the policy setPS; in Figure 1, P, is
conflicting with P, becauseP; permits the access
requests that a developer changes reports in the timeGeneric access control policy representation enables the
interval [8:00, 17:00], but which are denied B%. policy analysis and management mechanisms to be inde-
On the other handP; denies the requests allowing apendent of different types of access control policies. We
designer to change reports or codes in the time interwatamined a variety of existing access control policies, and
[12:00, 13:00], which are permitted ki,. Supposing observed that following characteristics should be exétct
the effect ofr, is changed tdenyand the condition to capture a generic policy representation for building our
of r5 is removed,; is turned to beredundantwith policy ontology.
respect tory, even thoughr, and r, are placed in
different policiesP; and P,, respectively.

Policy Anomaly Analysis

Fig. 2. Ontology-based policy anomaly management framiewor

A. Policy Ontology Extraction

« Policy Domain Concept$olicy domain concepts can
be considered as the terms that are generally used to

[Il. ONTOLOGY-BASED ANOMALY MANAGEMENT describe the access control policies.

FRAMEWORK « Policy Structure Policy structure depicts how policy

components are arranged within policies.

« Policy SemanticsPolicy semantics represent the rela-
tionships among policy components and also describe
the behaviors of policies.

Our ontology-based policy anomaly management frame-
work is composed of three core functionalitiggolicy
ontology extractionpolicy ontology populatiomnd policy
anomaly analysisas depicted in Figure 2. First, the general
policy domain concepts, policy structure and semantics areln order to achieve a uniform policy analysis and man-
captured from diverse access control policies for the coagement, generic policy representation should succéssful
struction of a policy ontology. Then, the generated poliogapture above characteristics from different types of-poli
ontology can be employed by different types of accesses. Then, the generated policy ontology can be reused
control policies to populate corresponding policy ontglogby different types of policies for policy analysis. However
instances, which are in turn utilized by a unified policghe policy ontology may need further refinement whenever
analysis mechanism adopting a policy-based segmentatairanges are made to the existing policy specifications or
technique to facilitate effective anomaly detection argt rea new type of policy is considered in our generic policy
olution. management.

1) Capturing Policy Domain ConceptsCapturing ac- conflict resolution strategy specified for policy node define
cess control policy domain concepts can be consideredthe behavior of a policy in case of conflict. Multiple related
the first step towards the capturing generic policy repreolicies can be grouped together to generate a composite
sentation. We analyzed the specifications of several typid@licy Group For example, policies related to the same
access control policies and enlisted the terms used for spdepartment or same application may be grouped together
ifying those policies. After that, we classified these ternmfer policy organization and management. A policy group
from different types of policies under common classes thatay also have meta-policies associated with it. Access
can be treated as access control policy domain concemsntrol policy might contairfPolicy as root node or it might
For example, we first enlisted terms such as rule, polidyave a hierarchical structure where root nodePdicy
policy set, access control list, subject, action, resgurd8roup containing other policies or policy groups. Figure 3
effect, combining algorithm, conflict resolution strateagyd depicts a generic structure of access control policy.
so on from different policies. Then, we classified them 3) Capturing Generic Policy Semantic#ccess control
under common concepts, such as Palicy, Policy Group, Ppblicies are defined in terms of the policy attributes. At-
icyRule. To give an example of our classification procesgibutes are named values of known items and are charac-
consider XACML has a notion otombining algorithm teristics of theSubject Resourceand Action, in which the
which indicates the behavior of a policy in case of conflictaccess requests are made. Rules in an access control policy
However, firewall policy utilizes &irst-Match strategyfor are defined based on these attributes. A general semantic of
conflict resolution. Both of them can be classified into on&rule in an access control policy can be describedlzsh
classMeta-Policy subject(s) has access to which resource(s) and with what

2) Capturing Generic Policy StructureWe examined action(s) (permit or deny)Thus, a high-level semantic of
the structures of different access control policies. For eaccess control policies is typically based on the policg rul
ample, XACML policy structure has the notion @Rule>, expressed in terms of attributes®iibject ResourceAction
<Policy> and <PolicySet-. PolicySet is the container for and Effect Moreover, rules may have conditions that need
other policies as well as policy sets. Policy defines the ligh be satisfied for making access decisions.
of rules. Considering other access control policy such asTo capture the high-level semantics mentioned above in
firewall policy, it has the concept oAccess Control List generic policy representation, we need to identify attesu
(ACL), which includes a list of firewall rules. A typical of items, Subject Resource Action and Effect from dif-
firewall policy may contain a number of ACLs. Thus, eackerent types of policies. In addition, we need to identify
ACL in a firewall policy is similar to thepolicy node more attributes considering other items, suctcasdition
containing a group of rules, and a firewall policy can band conflict resolution strategyfor comprehensive policy
also treated as a group pblicy nodes. representation.

For example, considering a rute from the example

L XACML policy in Figure 1, we can easily extract following

¥- @ PolicyGroup

‘Import Policies’ attributes based on identified items:
; 'T;:;P“"“ Subject — Designer, Developer
- @ Meta-Policy Resource— Reports, Codes
v ®RuleList Action — Read, Change
=@ Negative Rules Condition — Time between 8:00 AM to 5:00 PM

“'Positive Rules'

v- ®PolicyGroup? Effect — Permit
- @- Then, regarding a rule, in the example firewall policy

in Table I, we can identify rule attributes as follows:
Subject— 10.1.1.*; *

Based on our observation and examination of different Resource—192.186.1.*: 25
types of policy specifications, we construct a generic acces Action — Access (default action)
control policy structure. An access control policy defines Condition — (Protocol == UDP)
what activities a member of treubjectdomain can perform Effect — Deny
on a set of objects in thResourcelomain. The basic node In addition to the above rule level semantics, a policy
or unit for defining a policy isPolicy Rule These rules may also specify attributes such a&enflict resolution
either permit or deny access to the resource objects astchtegy which defines the behavior of a policy in case
hence can be classified into two typé®sitive Ruleand of conflicts. For example, XACML defines four different
Negative Rulerespectively. Rules that are applicable to theombining algorithmsDeny-Overrides Permit-Overrides
same subject or resource objects can be arranged int&ist-Applicable and Only-One-Applicablewhile firewall
Policy node as aRule List EachPolicy hode may have policy uses a defaulFirst-Match strategy. Those specific
meta-policies associated with it, which specify the policgttributes should be additionally identified and assodiate
behaviors with respect to the rule conflicts. For examplejth proper policy structure components suchPRadicy or

Fig. 3. Generic access control policy structure.

4

AccessControlDomain

< XACML:Subject
_‘“sm“ce-" — _

instance-of- Firewall: src-IP

{ XACML: Resource
I3 ‘nstance""/“ o

./Q# o Resource ' - —
Y , instance-of. Firewall: dest-IP
/ 2

&
/o xX®
/s

instance-of—_ XACML: Action
PolicyRule — has-a—> o een
instance.op.

Firewall: Action

i
.

I

'
0

\ N\,
NN
V._p,’ a5 \\ AN instance-of—_ XACML: Condition
. A SR
~ In:
\\"“"’Co,, D ciass b\\ S(ance'of
N % W”"’% D Individual \
% —> sub-class \ o
%f\\ > Property instance-of——-\ XA(EMLfEt'ed
—— Instance inst,
ance-of
(a) Access control policy ontology. (b) Ontology instance representation.

Fig. 4. Policy ontology and instance.

Policy Groupnode for generic policy representation. cl asses, properti es andi ndi vi dual s.C asses

4) Policy Ontology GenerationA generic representa- represent a collection of objects, usually sharing some
tion of policy requires to identify the domain conceptssommon properties. We created the base classes for do-
policy structure and semantics shared by different typesain concepts such asibjectand action Properti es
of policies. We discussed the process of capturing thespresent the relationships between individual concepts.
characteristics previously. Then, a uniform format or tenFhere are two types of OWL properties used to define the
plate is needed to store the generic information aboutyolicelationships:
domain concepts, structure and semantics effectively andl) Object Properties An object property is a relation-

accurately, so that the identified information is reusabte f ship between two individuals or concepts of ontology
different kinds of policies based on a generic policy analys domain. We defined different object properties to
mechanism. To this end, we adopt a method of modeling capture the generic structure as well as semantic
the policy domain using@ntology information of access control policies. For example,

Ontologyis a f(_)rmal representation qf knowledge as a an object properthasRulebetween concepiccess-
set of concepts within a particular domain and relationship ControlPolicy and PolicyRulecaptures the structure
between those concepts. It provides us the shared vocab- information that a policy node may contain one or
ulary for modeling a domain, which includes the types of more rules.
concepts in the domain, their properties and relationships 2) Data Properties A data property links an individual
Creating access control policy ontology enables us to model concept to its literal value. For example, we use a
the access control policy domain by defining its vocabulary, data propertyhasValueto assign a literal value to a
objects and their relations along with the properties. Pol- concept such aSubject
icy ontology which represents shared domain knowledgepefining policy ontology enables us to capture the gen-
provides us a template which can be instantiated with tey) information of policy domain concepts, policy struetu
information extracted from different types of access aaintr 3¢ policy semantics. Policy ontology can be easily ex-
policies to enable a generic policy representation forqyoli tended to support new characteristics introduced due to the
ana_IyS|s. _ changes in the access control policy specifications. We can
Figure 4(a) shows a generic ontology created for thesily add new data properties or object properties along

access control policy domain. We utilize the policy domaijith the new domain concepts in our policy ontology to
concepts, structure and semantics capetured from a varigfjfect these changes.

of policy specifications to generate this policy ontology. _)

Web Ontology Language (OWL) [4], which represents th8- Policy Ontology Population

family of knowledge representation languages for autlgprin To create a generic representation of a particular type

an ontology, is adopted to represent our policy ontologgf access control policy, we instantiate the policy ontol-

To create the policy ontology using OWL, we use protegegy with the structure and semantic information extracted

tool [5]. from the particular policy. This method of instantiating
OWL allows us to describe the domain in terms othe basic ontology with the specific attributes, properties

and relationships extracted from a specific domain, iSaromic BooLEAN EXPRESSIONS AND CORRESPONDINBOOLEAN

calledOntology PopulationFigure 4(b) shows an ontology
instance representation with respect to XACML and firewall

TABLE Il

VARIABLES FOR EXAMPLE RULES

.. . . Unigue Atomic Boolean Expression| Boolean Variable
poI|C|es_. A nod(_a is _e|ther labeled ywth an ontology co_ncept Subject = “Designer” S
or an information instance obtained from the particular [“Subject = “Tester” 5
policies. A link labeledinstance Offrom an information Subject = “10.1.1.% : %7 S3
instance to an ontology concept represents an instance| fiesource = “Codes B
. . Resource = “192.186.1.x : 25” Ra
generated for the corresponding policy ontology concept. —icon = “Change” A,
We use policy parsers to extract the information required [Protocol = “UDP” C1

for ontology population. A parser understands the semantic
and structure information for a particular policy and aastr
the information, such aSubject ResourceActionandPol-
icyRule required by policy ontology. For example, a parser
for the firewall policy parses owour ce- i p information

in a rule as theSubjectfor that particular rule in terms of
the firewall policy semantics.

The Boolean expression for XACML rule is:
(S1V 52) A R1 A Al

The Boolean expression for firewall rulg is:
S3ANR2AC1

BDDs are acyclic directed graphs which represent
C. Policy-based Segmentation for Anomaly Detection Boolean expressions compactly. Each nonterminal node in

1) BDD-based Policy Representatiofur policy-based a.BDD_ represents a Boolean variabl_e, and has .two edges
segmentation technique introduced in subsequent secti§fd! binary labels, 0 and 1 fononexistentand existent
requires a well-formed representation of policies for pef€SPectively. Terminal nodes represent Boolean value
forming a variety of set operations. Binary Decision Dial!"u€) or F (False). Figures 5(a) and 5(b) give BDD
gram (BDD) [14] is a data structure that has been widel{Presentations of above two rules, respectively.
used for formal verification and simplification of digital
circuits. In this work, we leverage BDD as the underlying X
data structure to represent policy ontology instances and k
facilitate uniform policy analysis.

Given the ontology instance corresponding to a par- ! Y
ticular policy, we can useOALOnt ol ogyVal ker and
OALOnt ol ogyWal ker Vi si t or provided by OWL API AN ':
to walk the asserted structure of the policy ontology to \ :.
obtain the information about required attributes such as :
Subject Resource Action and Effect for each policy rule 1 RN
object in an ontology instance. Once these attributes are
identified, all policy rule instances can be transformed int
Boolean expressions. Each Boolean expression of a rule
is composed of atomic Boolean expressions combined by
logical operatorsv and A. Atomic Boolean expressions
are treated as equality constraints or range constraints ofbnce the BDDs are constructed for policy ontology
attributes. instances, performing set operations, such as uniofs (

Considering the attribute information extracted form aimtersections () and set differences\), required by our
ontology instance of the example XACML policy in Fig-policy-based segmentation is efficient as well as straight-
ure 1 in terms ofitomic Boolean expressionthe Boolean forward.
expression for rule is: 2) Policy-based Segmentation for Anomaly Detection:

(Subject = “Designer” V Subject = “Tester”) A In order to precisely identify policy anomalies and enable
(Resource = “Codes”) A (Action = “Change”) an effective anomaly resolution, we adoptpalicy-based

Similarly, based on the ontology instance of the firewaegmentation techniquimtroduced in [19], [20], which
policy in Table |, the rule; can be represented in Booleanutilizes the above-mentioned BDD-based data structure to
expression as follows: represent policies and perform various set operationstand

(Subject = “10.1.1.x *”) A (Resource = convert a policy into a set of disjoint authorization spaces
“192.186.1.% : 25”) A (Protocol = “UDP”) By adopting the policy-based segmentation technique, an

We encode each of the atomic Boolean expression @stire packet space can be divided into a set of pairwise
a Boolean variable. A list of Boolean encoding for thelisjoint segments. We classify the policy segments as fol-
example rules is shown in Table Il. We then utilize théows: non-overlappingsegment anaverlappingsegment,
Boolean encoding to construct Boolean expressions which is further divided intoconflicting overlappingseg-
terms of Boolean variables for rules. ment andnon-conflicting overlappingegment. Eaclmon-

(a) BDD for an XACML rule (b) BDD for a firewall rule

Fig. 5. Unified BDD-based policy representation.

TABLE IlI
ANOMALY ANALYSIS EVALUATION .

Partitions Conflict Analysis Redundancy Analysis
Policy (#) Policy Group | Time Policy Group | Time
Level(#) | Level(#) (s) Level(#) | Level(#) (s)
XACML Policies
1 (CodeA) 6 1 1 0.095 1 0 0.096
2 (SamplePolicy) 8 0 2 0.106 0 2 0.109
3 (GradeSheet) 18 0 4 0.125 0 2 0.132
4 (SynPolicy-1) 205 8 14 0.364 7 4 0.359
5 (Continue) 439 9 14 0.621 10 7 0.597
6 (SynPaolicy-2) 523 29 15 0.914 14 8 0.903
Firewall Policies
1(A) 15 3 0 0.119 2 0 0.113
2 (B) 36 5 0 0.153 3 0 0.151
3(C) 89 11 0 0.196 5 0 0.189
4 (D) 127 18 0 0.224 6 0 0.213
5 (E) 183 23 5 0.417 13 3 0.431
6 (F) 405 41 11 0.589 16 7 0.603

overlappingsegment associates with one unique rule anACML policies used in [18]; among thenContinueis
eachoverlappingsegment is related to a set of rules, whickesigned for a real-world Web application supporting a
may conflict with each othercOnflicting overlappingseg- conference managemen&radeSheets utilized in [12].
ment) or have the same actiomof-conflicting overlapping It is difficult to get a large volume of real-world policies

segment) indicating possible redundancies. because they are often considered to be highly confidential.
i | luti Thus, we generated two large synthetic poliGgsPolicy-1
D. Policy Anomaly Resolution and SynPolicy-Zor further evaluating the performance and

An intuitive means for resolving policy conflicts by ascalability of our tool. We also useésamplePolicywhich is
policy designer is to remove all conflicts by modifying thehe example XACML policy represented in Figure 1, in our
policies. However, resolving conflicts through changing thexperiments. Similarly, firewall polices used for evalaati
policies is remarkably difficult, even impossible, in piaet were obtained from our campus networks and synthetical
In [20], we introduced a flexible and extensible conflict reggeneration.
olution framework to achieve a fine-grained policy conflict Time required by our tool for policy anomaly analysis
resolution. In addition, we proposed a property assignmeighly depends upon the number of segments generated
mechanism, which performs three property assignment pfgr each policy. The increase of the number of segments
cesses, to effectively identify redundant rules in an examn; proportional to the number of components contained
ined policy. We adopt those anomaly resolution approach@san policy. From Table I, we observe that our tool
in our ontology-based policy anomaly management. performs fast enough to handle larger size of policies, such
as firewall policie€ andF, even for some complex policies
. i] with multiple levels of hierarchies along with hundreds of

We have implemented a policy analysis tool callegjjes, such as the real-life XACML policgontinue and
Generic Policy Analyzer in Java based on ourine synthetic XACML policySynPolicy-2 The time trends

ontology-based policy anomaly management frameworfpserved from Table Il clearly provide the evidence of
We used protege [5] to extract and define the policy efficiency of our tool.

ontology. To create ontology instances for specific paticie

we utilized Java-_based OWL AP_I [7]. To support policy V. RELATED WORK

ontology population, our current implementation supports

the parsers for both XACML and firewall policies based Many research efforts have been devoted to policy anal-

on Sun XACML implementation [6] and FIREMAN [26] ysis. However, most existing research work only focus

implementation, respectively. JavaBDD [3], which is baseoh developing techniques for one specific policy. None

on BuDDy package [2], is employed by our tool to supporf them could design a uniform analysis mechanism to

BDD representation and authorization space operations.accommodate policy analysis requirements for different
We evaluated the efficiency of our tool for policy analysitypes of policies. We only overview some work closely

on both XACML and firewall policies. We performed ourrelated to this paper.

experiments on Intel Core 2 Duo CPU 3.00 GHz with 3.25 In [13], the authors formalized XACML policies using

GB RAM running on Windows XP SP2. Table Ill summaa process algebra known as Communicating Sequential

rizes the policies used for our evaluation. Real-life XACMLProcesses (CSP). This work utilizes a model checker to for-

policies utilized for evaluation were collected from diffet mally verify properties of policies, and to compare access

sources. Two of the policiesCodeA and Continue are control policies with each other. Fisler et al. [18] intragd

IV. IMPLEMENTATION AND EVALUATION

an approach to represent XACML policies with Multi- [7] The OWL API. http://owlapi.sourceforge.net/. _
Terminal Binary Decision Diagrams (MTBDDs). A policy [8 G- Ahn, H. Hu, J. Lee, and Y. Meng. Representing and reagon

analysis tool called Margrave was developed. Margrave
can verify XACML policies against the given properties

about web access control policies. 2910 34th Annual IEEE
Computer Software and Applications Conferenpages 137-146.
IEEE, 2010.

and perform change-impact analysis based on the semanifit E: Al-Shaer and H. Hamed. Discovery of policy anomalies i

differences between the MTBDDs representing the policies.
Ahn et al. [8] presented a formalization of XACML using[10]
answer set programming (ASP), which is a recent form of
declarative programming, and leveraged existing ASP reay
soners to conduct policy verification. Hu et al. [20] desidine
an XACML policy analysis tool called XAnalyzer, which
)) 1
ensures an accurate anomaly detection at both policy Ie{/ezll
and policy set level, and a fine-grained conflict resolution.
Several work also presented policy analysis tools with
the goal of detecting policy anomalies in firewall. AI—Shae[lgL3
et al. [9] designed a tool called Firewall Policy Advisor
which can only detegpairwise anomalies in firewall rules.
Yuan et al. [26] presented a toolkit, FIREMAN, which car§14]
detect anomalies amomgultiplefirewall rules by analyzing [15]
the relationships betweeone rule and the collections of
. : 16]
packet spaces derived from all preceding rules. HowevEr,
the anomaly detection procedures of FIREMAN are still
incomplete [10]. Hu et al. [19] developed a tool, FAME[17]
which could conduct a complete examination of policy
anomaly and provide more accurate anomaly diagnosis]

information for firewall policy analysis.

VI. CONCLUSION

We have designed an innovative framework for managj-9]
ing policy anomalies for different types of access control
policies. This framework presents a unified policy anomaly
analysis approach in terms of policy ontology. We have al$z9]
described a proof-of-concept implementation of our method
and demonstrated how our approach can efficiently discover
and resolve policy anomalies. As part of future work, wigl]
would like to leverage existing automatic ontology extrac-
tion tools for more accurate policy ontology generation. In
addition, we would further evaluate our approach with oth¢22]
types of access control policies. Also, we would explore
how our ontology-based policy analysis approach can be
extended to handle more complicated scenarios in emergiagj
computing environments, such as multiparty access control

in online social networks [21], [22].

ACKNOWLEDGMENTS

This work was partially supported by the grants
from National Science Foundation (NSF-11S-0900970 args]
NSF-CNS-0831360) and Department of Energy (DE-

SC0004308).

REFERENCES

[1] AppArmor. http://de.opensuse.org/AppArmor.

[2] Buddy version 2.4. http://sourceforge.net/projdutsidy.

[3] Java BDD. http://javabdd.sourceforge.net.

[4] OWL Web Ontology Language Reference. http://www.wg/@R/
owl-ref/.

[5] Protege Ontology Editor. http://protege.stanfordi/ed

[6] Sun XACML Implementation. http://sunxacml.sourcefemet.

distributed firewalls. INEEE INFOCOM volume 4, pages 2605—
2616. Citeseer, 2004.

J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens. Cotep@alysis
of configuration rules to guarantee reliable network ségolicies.
International Journal of Information Securijty(2):103—-122, 2008.
P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunte
Enterprise privacy authorization language (epal). Httpuiv.w3.org/
Submission/2003/SUBM-EPAL-20031110/.

A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathyda
L. Iftode. Enforcing authorization policies using trangawcal
memory introspection. IfProceedings of the 15th ACM conference
on Computer and communications secyripages 223-234. ACM
New York, NY, USA, 2008.

] J. Bryans. Reasoning about XACML policies using CSP. In

Proceedings of the 2005 workshop on Secure web senpege 35.
ACM, 2005.

R. Bryant. Graph-based algorithms for boolean funmctinanipula-
tion. IEEE Transactions on computer$00(35):677—691, 1986.

D. Chapman, E. Zwicky, and D. RusseBuilding internet firewalls
O'Reilly & Associates, Inc. Sebastopol, CA, USA, 1995.

M. Condell, C. Lynn, and J. Zao. Security policy specifion
language. Internet Engineering Task Force (IETF) Internet Draft
2000.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder
policy specification languagePolicies for Distributed Systems and
Networks pages 18-38, 2001.

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. Cschantz.
Verification and change-impact analysis of access-comaticies.

In ICSE '05: Proceedings of the 27th international conferemece
Software engineeringpages 196—205, New York, NY, USA, 2005.
ACM.

H. Hu, G. Ahn, and K. Kulkarni. Fame: a firewall anomaly
management environment. Rroceedings of the 3rd ACM workshop
on Assurable and usable security configuratipages 17-26. ACM,
2010.

H. Hu, G. Ahn, and K. Kulkarni. Anomaly discovery and o&stion

in web access control policies. IRroceedings of the 16th ACM
symposium on Access control models and technologeges 165—
174. ACM, 2011.

H. Hu and G.-J. Ahn. Multiparty authorization framewdor data
sharing in online social networks. Proceedings of the 25th annual
IFIP WG 11.3 conference on Data and applications securitgd an
privacy, DBSec'11, pages 29-43. Springer-Verlag, 2011.

H. Hu, G.-J. Ahn, and J. Jorgensen. Detecting and resplprivacy
conflicts for collaborative data sharing in online sociatwaks.

In Proceedings of the 27th Annual Computer Security Appboati
Conference ACSAC’11. ACM, 2011.

P. Loscocco and S. Smalley. Integrating flexible supfmrsecurity
policies into the Linux operating system. Rroc. 2001 USENIX
Annual Technical Conference REENIX Tragages 29-40, 2001.
OASIS. Security Assertion Markup Language. http:/fmw
oasis-open.org/committees/security/.

XACML. OASIS eXtensible Access Control Markup Lan-
guage (XACML) V2.0 Specification Set. http://www.oasis-
open.org/committees/xacml/, 2007.

L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatrad an
C. Davis. Fireman: A toolkit for firewall modeling and anal/s
In 2006 IEEE Symposium on Security and Priyaostge 15, 2006.

