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Abstract—Topology-based access control is today a de-facto
standard for protecting resources in On-line Social Networks
(OSNs) both within the research community and commercial
OSNs. According to this paradigm, authorization constraints
specify the relationships (and possibly their depth and trust
level) that should occur between the requestor and the resource
owner to make the first able to access the required resource.
In this paper, we show how topology-based access control
can be enhanced by exploiting the collaboration among OSN
users, which is the essence of any OSN. The need of user
collaboration during access control enforcement arises by the
fact that, different from traditional settings, in most OSN services
users can reference other users in resources (e.g., a user can be
tagged to a photo), and therefore it is generally not possible for
a user to control the resources published by another user. For
this reason, we introduce collaborative security policies, that is,
access control policies identifying a set of collaborative users that
must be involved during access control enforcement. Moreover,
we discuss how user collaboration can also be exploited for policy
administration and we present an architecture on support of
collaborative policy enforcement.

Index Terms—Social Networks, Collaborative Security Policies,
Collaborative Access Control

I. INTRODUCTION

Online Social Networks are today one of the key com-
ponents of our on-line presence. They are more and more
used not only for recreational purposes, but also as a way to
improve companies business and knowledge sharing. Relevant
examples of this last trend are the Communities of Practice
(CoPs) that today are more and more widespread used by
many institutions and organizations. CoPs are groups of people
in organizations that form to share what they know, to learn
from one another regarding some aspects of their work and
to provide a social context for that work [1]. The market for
this kind of solutions is rapidly growing and has attracted the
vendor interests (e.g., Microsoft, Tomoye).

The rapid widespread of OSN usage in different scenarios
has highlighted the need of tools to protect user privacy and
resource confidentiality. This has resulted in many efforts
ranging from privacy-preserving tools for mining OSN data,
to access control mechanisms [2], just to mention some of
them. As far as access control is concerned, almost all the pro-
posals appeared so far enforce topology-based access control,

according to which access control requirements are expressed
in terms of relationship paths existing in the network and their
depth. For example, using topology-based access control a
user can give access to one of his/her photo only to his/her
friends and the friends of his/her friends, or to all his/her direct
and indirect colleagues, no matter how distant they are in the
network graph. Furthermore, some of the models support a
notion of trust/reputation as a further parameter for access
control decisions.

However, an important aspect that has been so far not
deeply investigated is the collaborative dimension that access
control may have in OSNs. The need of user collaboration
during access control enforcement arises by the consideration
that today OSNs impose to revise the traditional concept of
resource ownership. Indeed, between OSN participants and
resources there can exist several types of relationships, in
addition to simply ownership. Let us consider, for example,
a general purpose social network like Facebook. Users “own”
a photo, but also can be “tagged” to a photo, they can “post”
a comment to a wall, but also they can “reply” to an existing
post. Similar examples hold also for CoPs. It is therefore
necessary that access control is not only demanded to the
resource owner but it involves also the other users that are
somehow related to the requested resource. The importance of
this, is also witnessed by the recent updates in the Facebook
privacy settings. For the first time, Facebook users have the
ability to check the contents they are tagged in before they
appear on their profile. Moreover, Facebook has significantly
expanded its “detagging” tool to help people report abusive
posts, request a photo be removed, or block other users. We
believe that collaboration is also useful at policy specification
time in that, it may be the case that different users, con-
nected to the considered resource, should be involved in the
specification of the related access control policies. For these
reasons, in this paper we introduce a new class of security
policies, called collaborative security policies that basically
extend topology-based access control by denoting a set of
collaborative users. Collaborative users are identified on the
basis of their relationships to the considered resource and
are those whose feedback should be collected during policy
specification or access control enforcement. To make easier the
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identification of collaborative users, we make use of semantic
web technologies. In particular, we assume the existence of
a RDF repository which encodes user-to-user and user-to-
resource relationships and we show how this repository can
be exploited for policy enforcement.

To the best of our knowledge we are not aware of proposals
enforcing collaborative access control and policy administra-
tion in OSNs. However, some related work exist in the field
of collaborative applications. For instance, the work reported
in [3] proposes an XACML-based system to decompose a
global policy into a set of local policies to be deployed to
the collaborating parties. Then, a decision coordinator merges
all the locally taken access control decisions to determine the
answer to an access request. In contrast, our system is tailored
to the OSN environment where it is better not to rely on
a central authority to take access control decision. Rather,
access control decision are taken by the resource owner.
Moreover, [3] does not consider cooperative administration
policies. Other proposals [4], [5] exploit role-based access
control to provide various features in support of collaborative
access control, such as delegation, team-based and task-based
access control. However, they are not specifically tailored to
OSNs and as such they do not support the kind of policies
our system provides. Finally, some access control models have
been already proposed for OSNs [2], but none of them support
collaborative access control and policy administration.

The remainder of this paper is organized as follows. Section
II introduces the reference OSN and access control model we
use throughout the paper. Section III provides an overview
of the architecture on support of collaborative access control,
whereas Section IV introduces collaborative security policies.
Policy enforcement is presented in Section V, whereas Section
VI discusses the complexity of collaborative policy enforce-
ment. Finally, Section VII concludes the paper.

II. BACKGROUND ON OSNS

In what follows, we briefly introduce how we model an
OSN and the reference access control model we use to specify
access control policies. More details can be found in [6].

We model an OSN as a directed labeled graph, where nodes
correspond to users and arcs denote relationships between
users. Given a relationship, the initial node of an arc de-
notes the user that has established the relationship, whereas
the terminal node denotes the user that has accepted that
relationship. Labels associated with arcs denote the type of
the relationship modelled by the arc itself (e.g., “friend of,”
“colleague of”). We say that there exists a direct relationship
of type rt between users A and B, if there is an arc connecting
A and B labelled with rt. In contrast, A and B are in an
indirect relationship of a type rt if there is a path of more
than one arc connecting A and B such that all the arcs in
the path have label rt. Relationships may be characterized by
a trust level, representing how much a given user considers
trustworthy another user w.r.t. the relationship modelled by
the arc. To model trust levels, we assume that each arc has a
further label t ∈ [0, 1].

Each user in the OSN enforces his/her access control
requirements1 on the owned resources, according to the
topology-based access control model described in [6]. Accord-
ing to this model, each resource to be shared in the OSN is pro-
tected by a set of access rules. Each access rule has the form
(rsc,AC), where AC is a set of access conditions that need to
be all satisfied in order to get access to resource rsc. An access
condition is a triple (v, rt, dmax, tmin), where v is the node
with whom the requestor must have a relationship of type rt,
whereas dmax and tmin are, respectively, the maximum depth,
and minimum trust level that the relationship should have in
order to get the access. The depth of a relationship of type
rt between two nodes v and v

′
corresponds to the length of

the shortest path between v and v
′

consisting only of edges
labelled with rt. In the current version of our system, we use
the TidalTrust algorithm [7] to compute the trust of indirect
relationships. However, other algorithms for trust computation
can be easily adopted as well.

Example 2.1: Let us assume that a user, say Alice, wishes
to protect the resource photo1, so that it can be accessed only
by her friends or friends of her friends, but with a minimum
trust value of 0.8. To encode these access control requirements,
the resource has to be protected by the following access rule:
(photo1,{Alice, friend of, 2, 0.8}).

III. COLLABORATIVE ACCESS CONTROL: OVERALL
ARCHITECTURE

In this section, we introduce the overall architecture of the
framework in support of OSN collaborative access control.
We assume that each user is able to locally manage all his/her
resources. This is different w.r.t. the current situation of OSNs,
where users have to upload all their resources to the SN
servers, by delegating to them the full resource management,
included access control enforcement. According to this view,
we design the OSN as a decentralized architecture, where each
user is represented as a peer, by which he/she is able to manage
resources and relationships.

According to this view, we assume that access rules, defined
according to the model introduced in Section II, are enforced
directly by the resource owner [6] and not by a central
reference monitor. When the owner receives an access request
from a given user, he/she verifies whether there exists a
relationship between the requestor and him/her that satisfies
the constraints specified in the access rules associated with
the requested resources. In support of this decentralized access
control enforcement, we assume the presence of a trusted
entity, called Social Manager, who knows the topology of the
social network (i.e., the existing relationships and associated
trust levels). As depicted in Figure 1, to determine whether a
requestor satisfies an access rule associated with the required
resource, the owner inquiries the Social Manager looking for
a relationship satisfying the rule. This topology-based access
control can be enhanced by exploiting the collaboration of
OSN users.

1Here, we do not consider collaborative access control policies that will be
described in Section IV.



Figure 1. Collaborative Access Control: Overall Architecture.

In particular, we see two different roles according to which
collaborative users may participate into the access control
process. These are briefly summarized in what follows.

Collaborative access request evaluation. The first type of
collaboration implies to contact a set of collaborative users
during access request evaluation to collect their opinions on
the resource release. These users can be identified based on
the relationships they hold with the requested object (e.g., they
are tagged into a photo). This implies that, before releasing a
resource according to his/her access rules, the owner asks the
approval of a set of collaborative users. As mentioned in the
introduction, the need of an approval from collaborative users
arises by the consideration that there exist situations where
users, that are somehow related to the considered resource,
should participate into the resource request evaluation, as the
following better example shows.

Example 3.1: Let us assume that Alice owns a photo where
Bob is tagged. Moreover, assume that Carl requires that photo.
According to “traditional” topology-based access control, Al-
ice retrieves the access rules protecting this photo, and asks to
the Social Manager whether Carl has a relationship satisfying
the constraints posed by the rules. However, even if the access
rules are satisfied by Carl, it would be reasonable asking also
for Bob’s approval, in that he is on the photo, and he might
prefer not to release the photo to Carl. This would imply to
see Bob as a collaborative user for this access request, which
entails, as a consequence, that also Bob has to inform Alice
whether he agrees in releasing the photo to Carl.

Collaborative access rule administration. Collaborative users’

feedback could also be relevant during the specification or
update of access rules. Indeed, there are scenarios where
specific collaborative users should have the right to validate
access rules defined on resources owned by other OSN users.
Let us consider for instance the following example.

Example 3.2: Let us consider a CoP, and assume that Alice
creates a new document doc1 about project X. Moreover, let us
assume that project X is lead by Tom. Since doc1 content could
potentially reveal confidential information about the project, it
would be reasonable to ask Tom to collaborate in defining the
access rules regulating access to doc1.

The system we propose supports both collaborative access
request evaluation and collaborative access rule administra-
tion. Both these features require to identify a set of collab-
orative users, whose cooperation is mandatory during access
request evaluation or access rule management. In order to sup-
port this collaborative access control, we therefore introduce a
further type of policies, called collaborative security policies,
by which it is possible to identify collaborative users as well as
the resources for which their cooperation is required. As shown
in Figure 1, collaborative security policies are stored both at
the Social Manager and peer side (see Section IV for further
details). The idea is to identify collaborative users on the basis
of their relationships with the resources. For instance, with
reference to Example 3.1, collaboration to an access request
evaluation is required to those users that are tagged to the
photo, that is, users that are in the tagged relationship with a
resource of type photo. In contrast, in the case of document
doc1 of Example 3.2, collaborative administration of access
rules is required to users that are project managers for project
X.



To catch relationships between users and resources we
exploit semantic web technologies. In particular, we assume
that all resources as well as user relationships with resources
are described by means of RDF files. These RDF descriptions
are stored into a centralized RDF repository managed by the
Social Manager (cfr. Figure 1), which encodes also the existing
relationships among users (e.g., friends, colleagues, parents,
and so on). As such, with a unique RDF repository we model
information on the topology of the OSN as well as information
on resource descriptions and user/resource relationships. This
is slightly against the decentralized view proposed in [6],
in that, by accessing information in the RDF repository, the
Social Manager is able to infer resource descriptions and some
information on user profiles (e.g., Tom is a project manager).
This obviously partially breaks user privacy, but not resources
confidentiality. Indeed, the Social Manager is able to access
information on user relationships and resource descriptions
given by the RDF files, but not resource contents, in that
these are locally stored in the user machine. Note that, in
this paper, we focus on resource confidentiality rather than on
user privacy. As such, having access to resource descriptions
and not to resource contents is similar to what happens in
DBMS access control system, where, even if users could
be aware of table definitions they could be not allowed to
access the corresponding rows. Protection of user privacy
under collaborative access control is a topic we would like
to investigate in the future.

IV. COLLABORATIVE SECURITY POLICIES

To support OSN collaborative access control and policy
administration, we need to define new security policies, i.e.,
collaborative security policies, that will work together with
access rules presented in Section II.

In general, a policy language defines policies according
to three main components: a subject specification, aiming to
specify the active entities to which a policy applies (e.g.,
collaborative users), an object specification, to identify the
resources to which the policy refers to, and an action spec-
ification, specifying the action(s) that subjects can exercise
on objects. As such, defining collaborative security policies
requires formalizing these three components. Note however
that, in case of collaborative security policies, the action that
users identified by the subject specification have to perform is
implicit. Indeed, the action implied by a collaborative access
request evaluation is the evaluation of the access request itself,
whereas in case of collaborative access rule administration the
implied action is the validation of an access rule. As such,
in formalizing collaborative policies we have to focus on the
subject and object specification component only. Regarding the
first component, the specification has to identify collaborative
users according to their relationships with resources (i.e.,
users “tagged” to a photo, “manager” of a project). Moreover,
the object specification should make a user able to identify
resources according to their descriptions (i.e., object of “type”
photo, document “about” an object of “type” project). To
cope with both these requirements and taking into account

that resources are described by means of RDF, we model
subject and object specifications as views on RDF graphs.
More precisely, the subject and the object specification of a
collaborative security policy are defined as SPARQL queries
[8].

As discussed so far, the underling idea of collaborative
access control and policy administration is to involve collab-
orative users during access request evaluation and/or access
rule administration. This basically means to gather feedbacks
from collaborative users and to use them to take a decision
during these two tasks. However, it could be the case of
receiving heterogeneous feedbacks in that, for instance, not
all the collaborative users agree on releasing the resource.
The way these feedbacks have to be combined to take the
final decision greatly depends on the reference scenario. For
instance, consider the scenario of Example 3.1, and assume
that the photo is tagged to 10 different users, which play the
role of collaborative users. Moreover, let us assume that 9 of
them agree in releasing the photo whereas one does not. In this
scenario, it would be reasonable that the photo is released even
if a user disagrees, since the majority agreed on the release
decision. Obviously, the scenario described in Example 3.2
for collaborative rule administration may have different stricter
requirements. Indeed, in this scenario it could be reasonable
that the new rule is validated only if all project leaders, i.e.,
collaborative users, agree on it.

To support a flexible strategy of combining user feedbacks,
a collaborative security policy states also how many users
have at least to give positive feedbacks to grant the access
and/or validate an access rule. This is modeled by adding a
third component to the policy, called Mode. A formalization of
collaborative security policies taking in account all the above
described requirements is given in what follows.

Definition 4.1: (Collaborative security policy). A col-
laborative security policy CollSP is defined as a tuple
(SubV iew,ObjV iew,Mode, Type), where SubV iew is a
SPARQL query identifying collaborative users, ObjV iew is
a SPARQL query identifying the resources to which CollSP
applies, Mode ∈ {All, One,Majority} specifies that all, at
least one, half plus one of the feedbacks of collaborative users
have to be positive in order to enforce the policy. Finally, Type
specifies if CollSP is a collaborative access control policy,
i.e., Type = Access, or a collaborative administration policy,
i.e., Type = Admin.

Example 4.1: Let us consider the RDF document repre-
sented in Figure 2, and assume it represents a simplified
portion of the RDF repository modeling resources and user-
s/resources relationships. For simplicity, the document uses
only a property vocabulary defined by the Social Manager.
However, several other vocabularies (e.g., FOAF) can be
exploited. The document provides the RDF description of eight
resources (i.e., the <rdf:Description> elements):2 a resource
of type document with title doc1 (i.e., a resource with type

2Note that, according to the RDF terminology, all described data are
referred to as resources.



Figure 2. An example of RDF file.

and title properties set to document and doc1, resp.), a project
(i.e., a resource with type project) with title Project X, a photo
(i.e., type=photo) and 5 users, i.e. Alice, Tom, Bob, Dave, and
Carl. As described in the RDF document, these resources are
connected each other. More precisely, doc1 is in relationship
with the resource with URI “http://www.CollOSN/SNid/84/”,
i.e., user Alice, by means of property owner. More-
over, it is connected by means of the aboutProject
property with “http://www.CollOSN/SNid/145”, i.e., resource
Project X. This last resource is in turn connected with
“http://www.CollOSN/SNid/53”, that is, user Tom, by means
of the manager property. The resource photo is connected to
Alice as owner and to Bob and Dave as users tagged to it.

The following example describes some collaborative secu-
rity policies that can be specified on the RDF description in
Figure 2.

Example 4.2: According to Definition 4.1, the components
of the collaborative security policy encoding the requirements
described in Example 3.2 are represented in the first row

of Table I. As required, the collaborate policy applies to all
projects, as such the SPARQL query in the ObjView com-
ponent identifies all resources (i.e., the URIs associated with
them) with the type property set to “project”. Collaborative
users have to be the project managers associated with that
resource. These are retrieved by the SPARQL query in the
SbjView component, which returns both the resources URI as
well as the URI(s) of the corresponding project manager(s). In
contrast, the second row of Table I encodes the collaborative
access control requirements described in Example 3.1. Here,
the SPARQL query in the ObjView identifies URIs of all the
resources with type photo, whereas the query in the SbjView
component retrieves all the URIs of users tagged to resources
with type photo.

V. COLLABORATIVE SECURITY POLICY ENFORCEMENT

In order to describe collaborative security policy enforce-
ment, we have to describe who defines such policies, where
these are stored, and, as a consequence, who enforces them.
With respect to collaborative administration policies, we think
that the most reasonable solution is that they are defined by
some sort of SN administrator. Indeed, these policies have to
been defined according to some high-level guidelines in place
in the SN that should apply to any OSN user. For instance,
with respect to Example 3.2, it is reasonable to assume that the
collaborative administration policy requiring to ask to project
managers before associating a policy to a resource related to
their projects is stated by the organization security adminis-
trator. Therefore, we assume that collaborative administrative
policies are stored at the Social Manager side and evaluated
by the Social Manager against the RDF repository.

This implies that, when a user creates a new resource, say
rsc, he/she has to send the corresponding RDF description,
RDFrsc, to the Social Manager, together with the access
control policy defined for the new resource, say ACPrsc.3

To determine if ACPrsc has to be approved or not, the
Social Manager computes the collaborative users identified
by the collaborative administration policies applying to rsc,
if any, and asks them a feedback. This process is described
by Algorithm 1, which takes as input the set of collaborative
administration policies, RDFrsc and ACPrsc, and returns the
approval/denial message. For simplicity, Algorithm 1 assumes
that there exists at most a unique collaborative administration
policy specified for the resource.

As described in the algorithm, the Social Manager first
uploads the RDF description of the new resource into the
RDF repository. Then, in order to determine the collaborative
administration policy to be enforced, Algorithm 1 considers
each policy p in the policy base by (1) evaluating the SPARQL
query contained into the object specification on the updated
RDF repository,4 and (2) verifying if the URI of the new
resource URIrsc is among the returned resource URIs (lines

3Here, for simplicity, we assume that the resource owner specifies only one
access control policy for each resource.

4In the algorithm and throughout the paper we use the dot notation to
indicate policy components.



SubjView ObjView Mode Type
PREFIX SN: <http://www.CollOSN.com/rdf/> PREFIX SN: <http://www.CollOSN.com/rdf/>
SELECT ?x ?CollUsers SELECT ?obj All Admin
WHERE {?x SN:type “project”. WHERE { ?obj SN:type “project” }

?x SN:Manager ?CollUsers .
?CollUsers SN:name ?Username }

PREFIX SN: <http://www.CollOSN/rdf/> PREFIX SN: <http://www.CollOSN/rdf/>
SELECT ?x ?CollUsers SELECT ?obj Majority Access
WHERE {?x SN:type “photo”. WHERE { ?obj SN:type “photo” }

?x SN:Tagged ?CollUsers .
?CollUsers SN:name ?Username }

Table I
An example of collaborative security policies

input :
(1) CollAdminPB, the policy base of

collaborative administration policies;
(2) REPrdf , the Social Manager RDF repository;
(3) RDFrsc, the RDF description of the new

resource rsc, where URIrsc denotes its URI;
(4) ACPrsc, the access control policy that rsc’s

owner wishes to apply to rsc.
output: Approval or Denial of ACPrsc

1 Update REPrdf with RDFrsc;
2 Set flag=0, Fb = ∅;
3 for p ∈ CollAdminPB do
4 Let URIset be the URIs of those resources that are

returned by the SPARQL query in p.ObjV iew
executed on REPrdf ;

5 if URIrsc ∈ URIset then
6 flag=1;
7 Let CollUsers be the URIs of users returned by

the SPARQL query in p.SbjV iew executed on
REPrdf ;

8 for u ∈ CollUsers do
9 fu=RequestFeedback(u,ACPrsc,RDFrsc);

10 if p.Mode=’One’ ∧fu is positive then
11 Return approval of ACP rsc;
12 exit;
13 Let Fb=Fb

⋃
{fu};

14 Let pos ⊆ Fb be the set of positive feedbacks
received from CollUsers;

15 if p.Mode=’All’ ∧ |pos| = |Fb| then
16 Return approval of ACPrsc;
17 exit;
18 if p.Mode= ’Majority’ ∧|pos| > (|Fb|/2 + 1)

then
19 Return approval of ACPrsc;
20 exit;
21 if flag=0 then
22 Return approval of ACPrsc;
23 else
24 Return denial of ACPrsc ;

4,5). If this is the case, the algorithm computes the set of
collaborative users identified by the policy (line 7). These are
retrieved by evaluating on the RDF repository the SPARQL
query contained into the subject specification. Then, the algo-
rithm requests a feedback to each of the identified collaborative
users. This is done by means of function RequestFeedback()
that (1) sends the policy to be approved as well as the RDF
description of the new resource to each collaborative user u,
(2) waits until a feedback is received from u (line 9). Once the
user feedback has been gathered, the algorithm verifies if the
considered collaborative administration policy requires just a
unique positive feedback (i.e., Mode=“One”). If this is the case
and the feedback is positive, the algorithm returns the approval
message (line 11). Otherwise, it collects all collaborative users
feedbacks and returns the approval message if (1) all feedbacks
are positive and the policy has the mode component set to
“All” (line 16) or (2) half plus one of the collected feedbacks
are positive and mode is “Majority” (line 18). Finally, the
algorithm returns an approval message if no collaborative
administration policies apply to the new resource description
(i.e., the value of the flag attribute has not been modified, see
line 22), or a denial message, if a policy exists but collected
feedbacks are not enough (i.e., flag=1). A similar process is
performed when users wish to modify access control policies
applying to their resources.

Example 5.1: Let us consider again Example 4.1, where
Alice creates a new resource, doc1, about Project X. As
depicted in Figure 3, once the new resource is uploaded, Alice
(i.e., the peer installed at her side) sends the Social Manager
the RDF description of the resource together with the access
control policy ACP Alice wishes to apply to it. As described in
Algorithm 1, the Social Manager updates the RDF repository
with the new RDF description (step 3, Figure 3) and evaluates
on the updated repository the collaborative administration poli-
cies. In particular, under the assumption that the only admin
policy is the one described in Table 1, the algorithm verifies
whether the URI of doc1 (i.e., http://www.collosn/SNid/145,
see Figure 2) is contained among the URIs returned by the
SPARQL query contained in the policy ObjView component
(see the ObjView column of the first row in Table II). Since
this is the case, the Social Manager computes the collaborative
users evaluating the SPARQL query in the corresponding



ObjView Evaluation SbjView Evaluation
1 obj= http://www.CollOSN.com/SNid/145 x= http://www.CollOSN/SNid.com/145 CollUsers= http://www.CollOSN.com/SNid/53
2 obj= http://www.CollOSN.com/SNid/167 x= http://www.CollOSN.com/SNid/167 CollUsers= http://www.CollOSN.com/SNid/9035

x= http://www.CollOSN.com/SNid/167 CollUsers= http://www.CollOSN.com/SNid/2645

Table II
Evaluation of the SPARQL queries in the collaborative administration policy of Example 4.2.

Figure 3. An example of collaborative administration policy enforcement.

SbjView component. The query returns Tom as the unique
collaborative user (see the SbjView column of the first row
in Table II). Thus, the Social Manager requires Tom feedback
(cfr. steps 6,7 in Figure 3), by sending him the RDF description
of doc1 as well as the ACP defined by Alice. Assuming a
positive feedback, it returns to Alice an approval message. As
a result, Alice inserts the new access control policy into her
local policy base.

As far as collaborative access control policies are concerned,
we see two possible design choices. Indeed, it is reasonable to
assume that they are not under the full control of individual
users, since SN admin may pose some guidelines also on
who has to collaborate during access request evaluation. For
example, the OSN admin may specify that in the considered
OSN all users that are tagged to a photo have to collaborate in
the request evaluation. We refer to these collaborative access
control policies as admin-defined collaborative access control
policies. However, it is also reasonable to assume that in
some scenarios the owner of the resource should have the full
control of his/her resources and related access control policies.
This latter case implies that he/she is the only one that can
decide who has to collaborate during access request evaluation,
i.e., the only one who should define the so called user-
defined collaborative access control policies. Admin-defined
collaborative access control policies are stored at the Social

Manager side, whereas in the user-defined ones are stored at
the user side. However, no matter where collaborative access
control policies are stored and by whom they are defined,
both admin and user-defined access control policies imply a
very similar enforcement, in that they both require to query
the RDF repository to retrieve collaborative users and ask
them a feedback. Therefore, in the following, we describe
the enforcement of admin-defined collaborative access control
policies. Then, we describe how this has to be modified
in order to enforce user-defined collaborative access control
policies.

Collaborative access control policy enforcement takes place,
if needed, after the enforcement of traditional access control
policies introduced in Section II. More precisely, once a
user requests a resource, the resource owner verifies whether
the requestor is authorized to access it according to his/her
access control rules (defined in terms of relationship types,
maximum depth and minimum trust). In order to verify
these constraints, the owner has to interact with the Social
Manager to verify whether the required relationships exist. If
the requestor satisfies the owner’s rules, collaborative access
control policies are enforced. Since we are considering admin-
defined collaborative access control policies, these have to be
enforced at Social Manager side. As such, the owner first sends
to the Social Manager the resource URI so as to make it able



to verify if some collaborative access control policies apply
to it. This process is similar to collaborative administration
policy enforcement described in Algorithm 1. Indeed, as a first
step, the Social Manager evaluates the SPARQL queries stored
in the ObjView components of admin-defined collaborative
access control policies against the RDF repository, and checks
whether the received resource URI is among the ones returned
by the queries evaluation. Then, if one or more collaborative
access control policies apply, for each of them the Social
Manager computes the set of collaborative users and contacts
them for their feedbacks. If the gathered feedbacks satisfy the
constraint specified in the Mode component of the considered
admin-defined collaborative access control policy, the policy
is satisfied and the access is granted, it is denied, otherwise.

To implement the enforcement of user-defined collaborative
access control policies, the users should be able to evaluate
SPARQL queries over the RDF repository to identify the trig-
gered collaborative access control policies (i.e., those policies
whose ObjView component applies to the RDF description of
the required resource) and the associated collaborative users.
However, we do not believe assuming an RDF repository and
SPARQL queries capabilities at user side is always applicable.
As such, in case this solution can not be implemented, we
assume that the Social Manager will also enforce user-defined
collaborative access control policies. This means that, once a
user requests a resource, the resource owner verifies whether
he/she is authorized to access it according to his/her access
control rules. If the access is granted, it asks the Social Man-
ager to enforce the collaborative access control policies defined
by him/her. Therefore, the owner sends to the Social Manager
the resource URI as well as his/her collaborative access control
policies. The Social manager enforces these policies in the
same way as it enforces admin-defined collaborative access
control policies.

In the following example we better clarify the enforcement
with user-defined collaborative access control policies.

Example 5.2: Let us consider again Example 3.1, where
Carl asks Alice the access to photo1. As depicted in Figure
4, first Alice verifies wich access control rules apply to this
resource. From the local policy base, the peer verifies that in
order to access the resource Carl has to be friend of Alice
with maximum distance 2 and minimum trust level 0.8. To
verify if such relationship exists, the peer inquiries the Social
Manager (cfr. step 2 in Figure 4). Suppose that the Social
Manager confirms that between Carl and Alice there exists
a friendship relationship of distance 2 with trust level 0.9,
therefore the access rule is satisfied. To enforce collaborative
access control, the peer sends to the Social Manager the
RDF description of the photo as well the set of collaborative
access control policies defined by Alice (cfr. step 7, Figure 4).
The Social Manager performs the collaborative access control
enforcement which implies to (1) retrieve the admin-defined
collaborative access control policies applying to photo1, if any;
(2) compute the collaborative users denoted by user-defined
and admin-defined policies, (3) gather their feedbacks, (4)
take a decision based on the value of the Mode component in

the considered policies. More precisely, considering only the
collaborative access control policy in Table 1, the enforcement
verifies if photo1’s URI (i.e., http://www.collosn/SNid/167,
see Figure 2) is contained among the URIs returned by the
SPARQL query contained in its ObjView component (see the
ObjView column of the second row in Table II). Since this
is the case, it computes the collaborative users by evaluating
the query in the corresponding SbjView component. This
query (see Table II) retrieves Bob and Dave. Thus, the Social
Manager requires their feedbacks (cfr. steps 10-13 in Figure
4), by sending them the RDF description of photo1 as well
as the requestor name, i.e., Carl. Once their feedbacks have
been collected, the Social Manager verifies if the majority
is positive, as required by the policy. As all feedbacks are
positive, it returns Alice a message authorizing the grant to
Carl. As a result, Alice releases photo1 to Carl.

VI. COMPLEXITY

In this section, we provide an analysis of the computational
cost of collaborative access control and collaborative policy
administration. Let us start to consider collaborative access
control enforcement, by recalling that this implies the fol-
lowing tasks: (1) evaluation of topology-based access control
rules, (2) evaluation of collaborative access rules so as to
determine which are the collaborative users to be inquired;
(3) the collection of user feedbacks. For all these tasks,
we can estimate a cost. More precisely, we refer to [6]
for the complexity analysis of topology-based access control
enforcement, where it is highlighted that the most expensive
computation in the enforcement is required by finding the
paths in the OSN satisfying the constraints specified in the
access rule. This task is performed in [6] by a Breath-First-
Search algorithm, whose time complexity is O(|E| + |V |),
where E and V are the set of edges and nodes in the OSN,
respectively. However, since the path search does not consider
all the OSN edges, rather it is limited only to those with a
given relationship type rt (i.e., the type required by the access
condition), the complexity of this task can be estimated as
O(|Ert| + |Vrt|), where Ert, Vrt denote the subgraph of an
OSN where edges Ert are all labelled with rt type and nodes
Vrt are all connected at least by an rt edge. As the experiments
reported in [6] show, this search time requires about 1 second
to explore a subgraph with 6,000 nodes. Note that, assuming an
OSN adopting the FOAF relationship dictionary, which defines
about 32 different relationship types [9], with relationship
types uniformly distributed among the OSN edges, the test
on 6,000 nodes is equivalent to a path search on an OSN of
192,000 nodes.

Task (2): the evaluation of collaborative access control
policies requires to evaluate two sets of SPARQL queries. The
first aims at retrieving the collaborative access control policies
applying to the required resource. This implies to evaluate
the SPARQL query contained into the ObjView component
of each collaborative access control policy to verify whether
the URI of the required resource is included. Whereas the
second set of queries is just to retrieve the collaborative users



Figure 4. An example of collaborative access control enforcement with user-defined collaborative policies.

specified by the policies identified in the previous step, and
therefore it requires to evaluate the SPARQL queries contained
in their SubjView components. Let Spa be the time required
to evaluate a SPARQL query, and Coll PB be the set of
collaborative access control policies, task (2) complexity is
O(Coll PB×Spa).5 As such, the time of task (2) is strictly
bound to the complexity of SPARQL query execution. This
has been deeply investigated in the last fews years and several
optimization techniques have also proposed (see for instance
[10]). Moreover, we expect that queries in the ObjView and
SubjView components of a policy will have a low complexity
as they will mainly pose conditions on resources descriptions
(e.g., the type property in the examples above) and on its
directly connected resources (e.g., persons “tagged”).

The final task in the collaborative access control process
(i.e., task (3)) implies the gathering of feedbacks from collab-
orative users. It is important to note that in the collaborative
process described in this paper, we assume that feedbacks
are explicitly given by collaborative users. As such this task
implies a time based on users reaction, which might greatly
vary. Since the feedbacks are required in parallel to all users,
we can estimate this time as the maximum delay with which
users return feedbacks. We denote this time as MaxDelay.
Therefore, the time required for collaborative access requests
evaluation is O(|Ert|+|Vrt|+Coll PB×Spa+MaxDelay).
A similar analysis can be conducted for collaborative policy
administration, where the main tasks are: (1) evaluation of
collaborative administration policies, so as to determine which
are the collaborative users to be inquired; (2) the collection of
user feedbacks. Since, as discussed in Section V, enforcement

5Note moreover, that the complexity of this task can be reduced by adopting
indexes associating collaborative policies to resources without the need to re-
run task (2) for each access request.

of collaborative administration policies is similar to collabo-
rative access control enforcement, we can conclude that time
complexity is O(Coll PB × Spa + MaxDelay). As this
complexity analysis highlights an important issue we need to
address is the reduction of time needed to gather the feedbacks.
To cope with this requirement we are investigating a mech-
anism in support of automatic generation of user feedbacks
based on user additional access rules and preferences.

VII. CONCLUSIONS

In this paper, we have shown how OSN topology-based ac-
cess control can be enhanced by user collaboration. Collabora-
tion can take place both during access control enforcement and
policy specification and is regulated by proper collaborative
security policies, which denote the set of users to be involved
in the collaboration. Semantic web technologies are employed
to support a rich way of denoting collaborative users based on
the relationships they have with the considered resources.

Currently, we are implementing a prototype to test the
performance of our system for different scenarios and OSNs.
We also plan to investigate techniques to automate feedback
generation and different ways of combining feedbacks as well
as user-defined and admin-defined collaborative access control
policies. Moreover, we plan to extend our system to enforce
protection of user privacy.
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