
Featuring Automatic Adaptivity
through Workflow Enactment and Planning

Andrea Marrella, Massimo Mecella, Alessandro Russo
Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti

SAPIENZA - Università di Roma
Email: {marrella,mecella,arusso}@dis.uniroma1.it

Abstract—Process Management Systems (PMSs, a.k.a. Work-
flow Management Systems - WfMSs) are currently more and
more used as a supporting tool to coordinate the enactment of
processes. In real world scenarios, the environment may change
in unexpected ways so as to prevent a process from being
successfully carried out. In order to cope with these anomalous
situations, a PMS should automatically adapt the process without
completely replacing it. In this paper, we propose a general
approach and a conceptual architecture to automatic adaptation,
based on the concept of declarative modeling of processes and the
use of continuous planning techniques. We show the feasibility
of the proposed approach by discussing its deployment on top of
YAWL, one of the most famous research prototypes of PMSs, in
order to demonstrate the modularity and nice integrability with
existing models and techniques. A running example shows the
practical applicability of the approach.

Index Terms—Process Management Systems, Process Adaptiv-
ity, Continuous Planning, YAWL

I. INTRODUCTION

Process Management Systems (PMSs, a.k.a. Workflow
Management Systems) are applied to support and automate
process enactment, aiming at increasing the efficiency and
effectiveness in its execution. Classical PMSs offer good
process support as long as the processes are structured and
do not require much flexibility. In the last years, the trade-
off between flexibility and support has become an important
issue in workflow technology. On the one hand, there is a
desire to control processes and to avoid incorrect or undesir-
able executions of these processes. On the other hand, users
want flexible processes that do not constrain them in their
actions [18]. To deal with evolving processes, exceptions and
uncertainly, the need for flexible and easy adaptable PMSs
has been recognized as one of the critical success factors for
any PMS [9], [18]. In this range, automatic adaptivity can be
seen as the ability to efficiently deal with process changes
and exceptions that may occur during runtime by dynamically
adapting the process instance under execution. To “adapt” a
process means to deviate from the process schema at instance
level through high-level change operations (e.g., add a new
process fragment in parallel to the existing control flow),
without altering the goals prescribed at design time. A detailed
set of adaptation patterns that constitute solutions for realizing
change in PMSs is proposed in [19].

Nowadays, in classical PMSs processes are mainly defined
through imperative approaches. However, to be only “process

aware” makes it difficult to deal with process change [12].
Most work [7], [17] about resolving exceptions refers to failing
processes or concerns design-time solutions, used to specify
the needed compensation actions in case of exception. The
design-time specification of all possible compensation actions
require an extensive manual effort for the process designer,
that has to anticipate all potential problems and ways to
overcome them in advance. This is particularly true in real
world scenarios, where the process designer often lacks the
needed knowledge to model all the possible contingencies at
design-time, or this knowledge can become obsolete during the
process progressing, by making useless his/her initial effort.

This paper discusses how a modeling approach towards a
declarative specification of process tasks, i.e., comprising the
specification of input/output artefacts and task preconditions
and effects, allows to layer planning techniques on top of
traditional PMSs, in order to enable automatic adaptivity -
without defining explicitly any recovery policy - and to balance
between flexibility and support. Our approach relies on a
domain-independent planner where the process designer just
states what properties have to be satisfied without having to
anticipate how these can be fulfilled. We present the overall
approach and the underlying conceptual architecture, and we
demonstrate its general validity by showing how to integrate
it with YAWL [17], that is among the most well-known PMSs
coming from academia.

The rest of the paper is organized as follows. Section II
covers the state of the art in adaptivity in PMSs and relevant
results in planning. Section III presents the general approach
and the conceptual architecture, by discussing the notions of
preconditions and effects and the use of planning techniques.
Section IV discusses how concretely the approach can be built
on top of YAWL, thus providing a real instantiation of the
conceptual architecture. An example, presented in Section V,
clarifies all the peculiarities of the approach. Finally Section
VI concludes the paper by discussing limitations and future
developments of the approach.

II. RELATED WORKS

There are two ways to handling exceptions: manual and au-
tomatic. In the first case, once exceptions occur, a responsible
person, expert on the process domain, modifies manually
the affected instances. There exist many works that deal
with manual adaptivity [1], [6], [7], [13], [17], [20], [21].

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247096

Among them, interesting approaches are ProCycle [20] and
ADEPT2 [6]. The first uses a case-based reasoning approach
to support adaptivity of workflow specifications to changing
circumstances. Case-based reasoning (CBR) is the way of
solving new problems based on the solutions of similar past
problems: users are supported to adapt processes by taking into
account how previously similar events have been managed.
However, adaptivity remains manual, since users need to
decide how to manage the events though they are provided
with suggestions. ADEPT2 features a check of “semantic”
correctness to evaluate whether events can prevent processes
from completing successfully. But the semantic correctness
relies on some semantic constraints that are defined manually
by designers at design-time and are not inferred, e.g., over
pre- and post-conditions of tasks.

On the contrary, a PMS that supports automatic adaptivity
is able to automatically change the schema of affected in-
stances in a way they can still be completed, according to
the exceptions that have been raised. The process schemas are
designed in order to cope with potential exceptions, i.e., for
each kind of exception that is envisioned to occur, a specific
contingency process (a.k.a. exception handler or compensation
flow) is defined [7], [17], with the challenge that in many
cases such a compensation cannot be performed by simply
undoing actions and doing them again. Such an exception
handler can be compared to the try-catch approach used
in some programming languages such as Java; the catch is
the definition of the possible exception and the specification,
defined at design-time by the process engineer, of how to deal
with it. The novelty proposed in this work is the automatic
construction of exception handlers at run time, i.e., the run-
time automatic synthesis of the catch block.

A. Planning Algorithms

Planning systems are problem-solving algorithms that oper-
ate on explicit representations of states and actions. The stan-
dard representation language of classical planners is known
as the Planning Domain Definition Language [11] (PDDL); it
allows to formulate a problem through the description of the
initial state of the world, the description of the desired goal
and a set of possible actions. An action definition defines the
conditions under which an action can be executed, called pre-
conditions, and its effects on the state of the world, called also
post-conditions. The set of all action definitions represents the
domain of the planning problem. A planner that works on such
inputs generates a sequence of actions (the plan) that leads
from the initial state to a state meeting the goal. Section III
clarifies (with an example) how to define a planning problem
through PDDL.

In the literature, there exists a wide range of different
planning techniques, that are characterized by the specific
assumptions provided to find a plan fulfilling the goal. In
order to demonstrate our approach, we focus on the Partial
Order Planning (POP) algorithm provided by UCPOP [15],
that guarantees to return only consistent plans, i.e., plans in
which there are no cycles and no conflicts in the ordering

constraints. Basically, POP algorithms take as input a planning
problem defined through PDDL and explore the space of plans
without committing to a totally ordered sequence of actions.
They work back from the goal, by adding actions to the plan
to achieve each subgoal. A POP planner produces a set of
partial ordering constraints of the form A ≺ B, which is read
as “A before B” and means that action A must be executed
sometime before action B, but not necessarily immediately
before. Moreover, it returns a set of causal links of the form
C

p−→ D, which is read as “C achieves p for D” and means
that p is an effect of action C and a precondition for action D.
It also asserts that p must remain true from the time of action
C to the time of action D. In other words, the plan may not be
extended by adding a new action that conflicts with the causal
link. The main advantage of the least-commitment philosophy
is based on the fact that decisions about actions ordering is
postponed until a decision is forced, guaranteing flexibility in
the execution of the plan itself. Section V shows the working
of the UCPOP algorithm on a practical example.

In well-known environments planning can be done offline,
and solutions can be found and evaluated prior to execution.
On the contrary, in a dynamic environment, since new world
information is continuously sensed, a planner should adapt
online to it by the refinement of the plan that is under
construction. Continuous Planning [14] refers to the process
of planning in a world under continual change, where the
planning problem is often a matter of adapting to the world
when new information is sensed. A continuous planner is
designed to persist indefinitely in the environment. Thus it
is not a “problem solver” that is given a single goal and
then plans and acts until the goal is achieved; rather, it lives
through a series of ever-changing goal formulation, planning,
and acting phases.

B. Techniques for Workflow Enactment and Planning

The idea of using AI techniques to handle adaptivity is not
strictly new [2]–[5], [8]. In [5] it is presented a concept for
dynamic and automated workflow re-planning that allows to
recover from task failures. To handle the situation of a partially
executed workflow, the paper proposes a multi-step procedure
that includes the termination of failed activities, the sound
suspension of the workflow, the generation of a new process
definition and the adequate process resumption. In [8] the
authors take a much broader view of the problem of adaptive
workflow systems, and show that there is a strong mapping
between the requirements of such systems and capabilities
offered by AI techniques. In particular, the work describes how
planning can be interleaved with process execution and plan
refinement. It also investigates plan patching and plan repair as
a mean to enhance flexibility and responsiveness. The work [3]
proposes a new life cycle for workflow management based on
the continuous interplay between learning and planning. The
approach is based on learning business activities as planning
operators and feeding them to a planner that generates the
process model. A fundamental result obtained is that it is pos-
sible to produce fully accurate process models even though the

Fig. 1. Traditional “plan then execute” cycle (a) and the continuous planning
(b) approach

activities (i.e., the operators) may not be accurately described.
The approach depicted in [2] highlights the improvements
that a legacy workflow application can gain by incorporating
planning techniques into its day-to-day operation. The use
of contingency planning to deal with uncertainty (instead of
replanning) increases the system flexibility, but it does suffer
from a number of problems. Specifically, contingency plan-
ning is often highly time-consuming and does not guarantee
a correct execution under all possible circumstances. The
work [4] proposes a self-healing approach to handle exceptions
in service-based processes and to repair the faulty activities
with a model-based approach. During execution, when an
exception arises, alternative repair plans are generated by
taking into account constraints posed by the process structure,
dependencies among data, and available repair actions defined
in the process model.

The above approaches for interleaving workflow execution
and planning manage the two phases as completely indepen-
dent one from another. When an exception is identified, the
process execution is stopped and the planner is invoked with
a new set of goals and the process state as the initial state.
When the planner finds a process fragment that compensate
the exception, the main process is resumed by including the
compensate actions just computed (cf. Fig. 1.a). This means
that planning is considered an offline process which requires
considerable computational effort and there is a significant
delay from the time the planner is invoked to the time that
the planner produces a new plan. Moreover, if a negative event
occurs (e.g., a plan failure), the response time until a new plan
may be significant. To achieve a higher level of responsiveness
in real-life environments, rather than considering the planner
as an offline process, we make use of a continuous planning
approach, that allows an “online interleaving” of workflow
enactment and planning (cf. Fig. 1.b). When an exception
arises, the planner computes the recovery compensation ac-
tions in concurrency with the execution of the remaining part
of the main process which is not affected by the exception.
In contrast with the above works, our approach provides
some interesting features in dealing with exceptions: (i) it
modifies only those parts of the process that need to be
changed/adapted by keeping other parts stable; (ii) it is a non-
blocking technique; it does not stop directly any task in the
main process during the computation of the recovery process.

III. THE PROPOSED APPROACH

Process adaptivity can be seen as the ability of the PMS
to reduce the gap from the expected reality - the (idealized)
model of reality that is used by the PMS to reason - and

Fig. 2. An example of process definition (a) and the task anatomy (b) in
our approach

the physical reality - the real world with the actual values
of conditions and outcomes. Our approach is based on an
interleaving between workflow execution, monitoring the two
realities and planning, and allows to recover from exceptions
without defining explicitly any recovery policy.

Let us now introduce a conceptual model to formalize
processes. A process model is defined as a set of n task
definitions, where each task ti can be considered as a single
step that consumes input data and produces output data.
Data are represented through some process variables whose
definition depends strictly on the specific process domain of
interest. The model allows to define logical constraints based
on process variables through a set F of predicates fj . Such
predicates can be used to constrain the task assignment (in
terms of task preconditions), to assess the outcome of a task
(in terms of task effects) and as guards into the expressions
at decision points (e.g., for cycles or conditional statements).
Since tasks are described in terms of preconditions and effects,
it is convenient to define the behavior of each task directly in
terms of its PDDL specification, as follows:
(define (domain example)

(:action t1
:precondition (x)
:effect (and (not(x) (z) (k))))
(:action t2
:precondition (z)
:effect (y))
(:action t3
:precondition (v)
:effect (s))
(:action t4
:precondition (k)
:effect (x)))

The meaning is straightforward. For example, the first
action definition states that for executing t1, the predicate x
must hold. Then, it states that a successful execution of t1
guarantees that predicates ¬x, z and k will hold together. In
Fig. 2.a a simple process P0 is depicted, whose task ordering
is imposed by a control flow defined through an UML activity
diagram. The control flow is composed by a subset of the
tasks provided in the PDDL specification (e.g., task t4 is
currently not needed for the process instance built at design
time). Tasks in the control flow are partially ordered in a way
that the effects of preceding activities satisfy the preconditions
of subsequent tasks. Dashed arrows in Fig. 2.a represent causal
links (whose meaning is described in Section II) that imply
an ordering constraint between two tasks. For example, the
ordering constraint from t1 and t2 is derived from the fact
that t1 has the effect z that is needed by t2 as a precondition.
Our dynamic world is modeled as progressing through a

series of states. Each state is the result of various tasks being
performed so far. Predicates may be thought of as “properties”
of the world whose values may vary across states. Let us now
formalize some preliminary concepts.

Definition 1: A physical reality Φs is represented by the set
of predicates FΦs

⊆ F that hold in the state s.
The physical reality Φs reflects the concept of “now”, i.e.,

what is happening in the real environment whilst the process is
under execution. In general, a task can only be performed in a
given physical reality Φs if and only if that reality satisfies the
preconditions Prei of that task. Moreover, each task has also
a set of effects Effi that change the current physical reality
Φs into a new physical reality Φs+1. Note that, as enforced
in Fig. 2.b, the approach treats each task as a “black box”
that consumes input data and produces output data, and no
assumption is made about its internal behavior. A PMS that
takes in input such a process specification should guarantee
that each task is executed correctly, i.e., with an output that
satisfies the process specification itself. In fact, at execution
time, the process can be easily invalidated because of task
failures or since the environment may change due to some
external event. For this purpose, the concept of expected reality
Ψs is given :

Definition 2: An expected reality Ψs is represented by the
set of predicates FΨs

⊆ F that should hold in the state s.
A recovery procedure is needed if the two realities are

different from each other. Let us assume that the task t1
of Fig. 2.a ends its execution without having all anticipated
effects. For example, it has the effect k and ¬x but not the
effect z. It results in a physical reality Φs different from the
expected reality Ψs, in which, instead, predicates p, ¬x and
z hold together. Formally, a state s is known as Relevant -
candidate for adaptation - iff :

Relevant(s) ≡ ¬sameState(Φs,Ψs) (1)

Predicate sameState(Φs,Ψs) holds iff the states denoted by
Φs and Ψs are the same. If a discrepancy between the two
realities is verified, the PMS needs to derive a flow of repairing
actions that turns the physical reality into the expected reality
and modifies the process specification to ensure that, at the
end, the above gap is removed. Our approach allows a PMS
to recover from exceptions without defining explicitly any
recovery policy. In fact, the only needed trigger for adaptation
in a state s is when the predicate Relevant(s) holds, meaning
that something has gone wrong during the process execution.
The PMS never takes care of any exception; instead, it sends
the information about the two realities as well as the task
definitions to an external planner and carries on with the
execution of the process. In this sense we can advocate that
our repairing technique is non-blocking. The idea is that the
planner builds the recovery process Ph in parallel with the
execution of the main process P0, avoiding to stop directly
any task in the main process. The planner takes in input
a concrete planning problem, whose domain is constituted
by the set of task definitions, whereas the initial state and
the goal correspond with physical reality Φs and expected

Fig. 3. An example of recovery process

reality Ψs that have to be aligned. The part of P0 that is
not affected by the exception can proceed with its execution.
At any time, during the plan computation, an incremental
update to the physical reality (that reflects the main process
progressing) may update the current state of the plan. Such
update is the result of an external event (that modifies Φs in
an asynchronous way) or simply of a task just terminated. The
planner is then responsible for maintaining a consistent plan
with the most current information. From the point of view
of the planner, after each task termination (or external event
happening), that results in turning Φs and Ψs into Φs+1 and
Ψs+1, the following occurs:
• the execution of the planner is stopped (together with the

“old plan” built so far);
• changes to the goals and the initial state first posted to the

plan: now, a new planning problem is built, with Φs+1

as initial state, Ψs+1 as the goal;
• effects of these changes are propagated through the old

plan (that include conflict identification);
• plan repair algorithms are invoked to remove conflicts

and make the old plan appropriate for the current state
and goals;

• the planner can resume its execution, starting from that
fragment of the old plan that is consistent (i.e., has no
conflicts) with the new realities.

Now, let’s suppose that the current process is P0 = (P1;P2),
in which P1 is the part of the process already executed and
P2 is the part of the process which remains to be executed.
Once synthesized, Ph will be inserted in parallel with P2 and
will be executed in concurrency with every other task yet to
be executed. This means that the process yet to be executed
by the PMS is P2||Ph.

Let us consider again the above example. Task t1 has ended
its execution having as effects k and ¬x, and it turned Φs into
Φs+1 = {k,¬x}. On the contrary, the expected reality in state
s + 1 is equal to Ψs+1 = {k,¬x, z}, as if the task t1 has
been executed correctly, having all its anticipated effects. Note
also that in state s + 1 the task t2 cannot proceed because its
preconditions are not satisfied (i.e., predicate z in Φs+1 does
not hold). The PDDL planning problem of the example cited
above is:

(define (problem A)
(:domain example)
(:init and((k) (not x)))
(:goal and((k) (not x) (z))))

It can be specified as follows: the initial state is k ∧ ¬x,
the goal is k ∧ ¬x ∧ z and the actions needed for building
the plan are defined in the planning domain provided above.
Fig. 3.a shows a plan found through the partial-order planning
(POP) algorithm of UCPOP (the rounded-edge rectangles
represent the tasks introduced for repairing). The plan found
constitutes exactly the recovery process Ph that has to be
run in concurrency with P2 (cf. Fig. 3.b). The execution
of Ph ends by having as effect z and by “unlocking” the
task t2, previously stopped because its preconditions were not
satisfied.

We focus now on some termination issues about the recov-
ery procedure proposed in the approach.

Definition 3: Given a task ti whose effects are denoted by
Effi, we state that ti affects a predicate fj iff fj ∈ Effi.
We denote it with ti . fj .

Every task defined in the process specification affects a finite
number of predicates. Let us now formalize the concept of
strong consistency for a process P0.

Definition 4: Let P0 a process composed by n tasks
t1, .., tn. P0 is strongly consistent iff ∀j,@(ti, tk)i 6=k s.t.(ti .
fj ∧ tk . fj).

Intuitively, a process P0 is strongly consistent if do not exist
two different tasks in the process that affect the same predicate.

Theorem 1: Let P0 be a strongly consistent process com-
posed by a finite number of tasks t1, ..., tn. If P0 does
not contain while constructs, and the number of external
exceptions is finite, then the planner terminates.

The termination could not be guaranteed if P0 contains loops,
since potentially the two realities could indefinitely change.
The same is true if the number of external exceptions is
unbounded. More technical details about the working of the
algorithm can be also found in [10].

Compared to the other works that involve workflow en-
actment and planning [2]–[5], [8], our approach allows the
planner to continuously sense the environment during the
process execution. Changes in realities during enactment are
reflected directly in the partial plan under construction. In this
last case, the planner first updates the initial state and the
goal with the new values of the two realities, then revises
the partial recovery plan (built until that moment) to the
new realities by deleting possible conflicts, and finally restore
the planning procedure. In this way, it is guaranteed that
the plan under construction is always synchronized with the
realities of the process that is carry on with its execution.
We want to underline that we chose to use a simple PDDL
specification (with deterministic effects) and UCPOP to make
the approach more understandable to the reader. Anyway,
the whole approach works also with more expressive PDDL
variants, that capture non-deterministic effects, and that the
use of UCPOP is not mandatory. The strength of the approach
is in the continuous planning algorithm, that is able to work
on top of a whatever planning technique.

Fig. 4. Conceptual architecture of the approach

A. Conceptual Architecture

Our approach to integration of workflow execution and
planning relies on four main components shown in Fig. 4.
The PMS takes in input a process representation - described
as a list of predicates and tasks with preconditions and effects,
as well as a control flow that drives tasks within the process
- and coordinates the enactment of tasks along a specific
control flow. The PMS provides a proper execution engine
that manages the process routing and decides which tasks are
enabled for execution, by taking into account the control flow,
the value of predicates and preconditions and effects of each
task. Before a process starts its execution, the PMS builds
its physical reality Φs by taking the initial context from the
environment. Once a task is ready for being assigned, the PMS
engine is also in charge of assigning it to a proper service
(which may be a human actor, a robot, a software application,
etc.).

The Monitor component interacts continually with the PMS
and it is in charge to decide whether adaptivity is needed.
At each execution step - i.e., when the ending of a task or
an exception has turned Φs into Φs+1 - the monitor checks
if the new state s + 1 can be classified as relevant (cf.
Equation 1). If this is the case, the monitor collects the physical
reality Φs+1, the expected reality Ψs+1 and sends them to the
synchronization component.

The Synchronization component enforces synchronization
between the PMS, the monitor and the planner. Every time
it receives from the monitor the two realities, it builds a
corresponding planning problem in PDDL, by converting the
physical reality into the initial state and the expected reality
into the goal. Basically, synchronization component can be
seen as a conflict-removal procedure that revises the partial
recovery plan to the new realities.

The Planner is invoked when the synchronization compo-
nent builds a new planning problem. In addition to the initial
state and the goal, it can accept as input also a partial plan,
that represents a fragment of the solution. The domain of the
planning problem (that is, the PDDL specification with tasks
and predicates) is loaded exactly when the PMS starts the
execution of the specific process. When a plan satisfying the
goal is found, it is sent back to the synchronization component
that, in turn, converts it in a readable format for the PMS. The
recovery process just obtained is now ready to be executed by
the PMS.

Selection Service

Exception Service

Worklets
Repository

Rules

Event
Logs

Specification
Store

YAWL
Engine

Worklet
Service

Planning
Service

Planner Sync

User

Rules
Editor

Event
Logs

external
triggers

YAWL
Editor

Process
Repository

 Monitor

AXB

B

X

A Interface A

B Interface B

X Interface X

Fig. 5. The YAWL architecture extended with the Planning Service

IV. DEPLOYING THE APPROACH ON TOP OF YAWL

In the following we briefly focus on the exception handling
approach implemented in the YAWL system, as presented
in [17], and then we discuss how our approach can be
integrated in the YAWL architecture.

A. Exception Handling in YAWL

The exception handling capabilities provided by YAWL1

were designed and implemented starting from the conceptual
framework for workflow exception handling presented in [16].
In order to understand how exceptions are detected and han-
dled in YAWL we refer to the architecture in Fig. 5 (for now,
do not consider the Planning Service, which is introduced later
in the paper2).

For each exception that can be anticipated, it is possible to
define an exception handling process, named exlet, which in-
cludes a number of exception handling primitives (for remov-
ing, suspending, continuing, completing, failing and restarting
a work item/case) and one or more compensatory processes in
the form of worklets (i.e., self-contained YAWL specifications
executed as a replacement for a workitem or as compensatory
processes [17]). Exlets are linked to specifications by defining
specific rules (through the Rules Editor graphical tool), in
the shape of Ripple Down Rules specified as if condition
then conclusion, where the condition defines the exception
triggering condition and the conclusion defines the exlet.

At runtime, exceptions are detected and managed by the Ex-
ception Service, a sub-service of the Worklet Service [17]. The
Exception Service is notified by the engine via Interface X of
exception triggering events (which include timeouts, resource
unavailabilities and notifications fired when a case/workitem
begins/ends in order to check pre/post-execution constraints)
that may result in an exception3. For each event notification,
the service determines whether an exception has occurred and,
if so, it executes the corresponding exlet. Exception handling
primitives are directly executed invoking the corresponding

1In this paper we refer to the final release of YAWL 2.1.
2With the exclusion of the Planning Service and the Monitor component,

the picture refers to the architecture defined in [17].
3Externally triggered exceptions are instead notified by the environment,

specifically by a client involved in process execution.

methods (for removing, suspending, etc. a workitem/case)
provided by the engine-side of Interface X. If the exlet includes
a compensation worklet, the Exception Service first retrieves it
from the repository, then loads it into the engine via Interface
A and finally starts it via Interface B. The worklet is then
executed by the engine as a new separate case, possibly in
parallel with the parent case if it was not suspended by the
exlet.

B. Enabling Planning-based Exception Handling in YAWL

The exception handling approach we propose is not meant
to replace existing consolidated approaches, but it rather aims
to complement them. Therefore, the architectural extension
and integration we designed takes advantage of YAWL’s
exception detection capabilities and leverages the flexibility
of the exlet/worklet-based handling techniques. Specifically,
we identified four main steps towards the integration of
a planning-based exception handling approach in YAWL:
(i) extend process and task specifications in order to enable
the definition of preconditions and effects; (ii) integrate a
Planning Service into the YAWL architecture; (iii) allow
process designers to specify at design time whether an oc-
curring exception should be handled by the Planning Service;
(iv) extend the capabilities of the YAWL Exception Service in
order to enable at runtime exception handling through planning
techniques. As a planning-based exception handling approach
can be considered as data-driven (i.e., case data affect the
evaluation of preconditions, effects and constraints, as well as
the definition of planning goals), we focus on workitem/case
pre/post-execution constraints’ violations.

The specification formalism for preconditions and effects
depends on the planning language and tool being used. Here,
we assume that tasks and processes are annotated with the
PDDL notation and specified over task/process variables that
at runtime define the execution status.

From an architectural perspective, as shown in Fig. 5,
planning capabilities are provided by a Planning Service that
implements the continuous planning logic and algorithm. In
order to define the role of the Planning Service and clarify
how it interacts with existing YAWL architectural components
and services, we follow the process and exception handling
lifecycle, from process design, enactment and monitoring to
exception detection, handling and (possibly) resolution.

Exception definition and detection.: At design time, the
process designer identifies possible exceptions that may occur
and defines through the Rules Editor the triggering conditions
and the corresponding exlets. In order to allow the process
designer to delegate the exception handling to the Planning
Service, we introduce the possibility of mapping a compensa-
tion activity to the Planning Service. By defining this mapping
instead of explicitly selecting a compensation worklet, the
process designer configures the Exception Service so that the
generation of the compensation worklet is delegated to the
Planning Service. Fig. 6 shows an excerpt of the rule file
produced by the Rules Editor and defined for detecting and
handling a workitem-level pre-execution constraint violation.

.........

C

doWork Parent Process

Exlet

Planning
Service

Compensation Plan

suspend
work item

continue
work itemcompensate

if varName!=value
then
suspend workitem;
plan&compensate;
continue workitem

Ripple Down Rule

<condition>varName!=value</condition>
<conclusion>
 <_1>

<action>suspend</action>
<target>workitem</target>

 </_1>
 <_2>

<action>compensate</action>
<target>PlanningService</target>

 </_2>
 <_3>

<action>continue</action>
<target>workitem</target>

 </_3>
</conclusion>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 6. Planning Service activation hierarchy for exception handling

Line 1 defines the exception triggering condition, while lines
2-15 define the exception handling exlet (which consists in
suspending the current work item, performing some com-
pensation activities and then resuming the suspended work
item). In the current YAWL implementation, the <target>
element corresponding to the compensate action (lines
8-9) contains the name of the worklet to be executed as
compensation process. In our extended version, the mapping of
a compensation task to the Planning Service is identified by
a <target> element containing the PlanningService
value (line 9). At runtime, as explained in Section IV-A,
exception triggering events and case data are matched by the
Exception Service against the defined rules to detect an occur-
ring exception and activate the corresponding exlet. However,
the Exception Service has been extended in order to recognize
a compensation activity mapped to the Planning Service and
enact planning capabilities provided by the service. Consider
in Fig. 6 the execution hierarchy that leads to the activation
of the Planning Service when a workitem-level pre-constraint
violation occurs for the doWork task. After suspending the
workitem, the Exception Service recognizes the mapping per-
formed at design time and delegates the generation of the
compensation activities to the Planning Service. Exception
triggering events for workitem/case enablement or completion
(along with the related I/O data values) for which no explicit
rules were defined are managed by the Monitor component we
introduced in the Exception Service. The Monitor is able to
identify violations over preconditions or effects by comparing
current execution state (as given by workitem/case variables)
with expected preconditions or effects defined in task/process
specifications. If a violation is detected, the occurred exception
is managed by executing predefined handling exlets, depending
on the type of exception. For a workitem/case precondition
violation, the recovery activities consist in suspending the
workitem, activating the Planning Service and then resuming
the suspended workitem/case. For a violation caused by a
workitem effect, the default exlet consists in suspending the
running case, activating the Planning Service and then resum-
ing the suspended case, whereas an effect mismatch detected

for a completed case is handled by directly activating planning
procedures.

Planning Service Activation.: When the Exception Service
activates the Planning Service, it provides as input all case
data associated with the running case, along with the detected
violation over constraints, preconditions or effects. Based
on this information, the Synchronization component of the
Planning Service is able to define a planning problem (as
explained in Section III-A) and submit it to the Planner
module in charge of synthesizing a recovery plan. In order
to produce a compensation plan and determine the set of
executable tasks, the Planner has to access the specifications
of available processes and tasks, stored in the Process and
Worklets Repositories and in the Specification Store (con-
taining specifications currently loaded into the engine and
accessible via Interface B). If the running case was not
suspended, while building the plan the Planning Service needs
to monitor running workitems that may produce data values
and effects which require to update planning goals and/or the
plan built up to that moment. In order to enable a continuous
planning approach, the Synchronization component listens for
data change notifications produced by the Exception Service
when it receives a notification from the engine for a completed
workitem. By handling these events, the Synchronization com-
ponent is able to identify status changes and, if required, to
update the planning goal and/or the plan being synthesized. If
the Planner is able to successfully synthesize a compensation
plan, it stores it as an executable specification (i.e., a worklet)
in the Worklets Repository and notifies the Exception Service.
The Exception Service is then able to enact the execution of
the compensation worklet as if it was manually selected at
design time, by loading the specification into the engine and
launching it as a separate case in parallel with the parent case.
When the execution completes, output data produced by the
worklet are mapped back to the parent case and subsequent
actions in the exlet are executed. Following the exlet defined
in Fig. 6, as the compensation worklet synthesized by the
Planner is supposed to recover from the constraint violation,
the suspended work item can then be resumed and executed.

Receive
replacement

request

Check and
validate request

New SIM

Send
new SIM

Charge
service fees

[request
approved] Receive

switch-off
request

Activate
new SIM

Disable
old SIM

New SIM
completed

Notify rejection
decision

[request not
approved]

Notify
shipment

routing
task

effects
RequestReceived

preconditions
RequestReceived

preconditions
ValidRequest
effects
SIMsent

preconditions
SIMsent
effects
NotificationSent

preconditions
SIMsent &&
NotificationSent
effects
SwitchOffReqReceived

preconditions
credit>=10
effects
credit=credit-10

preconditions
credit>=5
effects
SIMenabled

Fig. 7. The SIM card replacement process in YAWL

If no valid plan can be found by the Planner, a notification
alert is sent to an administrator, who is charge of handling the
unsolved exception, e.g., manually building a compensation
worklet or just canceling the process case.

V. A PRACTICAL EXAMPLE

Mobile telecommunication companies acting as SIM card
providers often need to deal with customers asking for a
SIM card replacement. For instance, a customer may wish
to replace his/her old card with a micro-SIM or with a new
card with extra memory capacity. In the following example
we consider the SIM card replacement process defined by a
mobile telco to deal with replacement requests.

The high-level process model represented as a YAWL net
is shown in Fig. 7. The SIM card replacement process starts
when a customer submits a SIM replacement request. Upon
receiving an application (Receive replacement request task),
the request is handled by a company employee who gathers
customer data and then performs specific checks to validate
the request and verify customer payment and billing history
according to the contract (Check and validate request task).
If for some reason the request is rejected, the telco company
notifies the customer of the rejection decision (Notify rejection
decision task) and the replacement process ends. Otherwise,
if the application is successfully validated and accepted, the
company issues a new SIM card and sends it to the customer
(Send new SIM task) who is then notified of the shipment
(Notify SIM shipment task). In parallel, the customer is charged
10e as shipping and handling fees, withdrawn from his/her
prepaid account (Charge service fees task). The telco company
then waits for receiving from the customer a switch-off request
for the old SIM and, upon receiving the card switch-off request
(Receive switch-off request), the company disables the old SIM
(Disable old SIM task) and in parallel activates the new card
(Activate new SIM task). According to an internal business
policy, a new SIM can be activated only if the customer has
at least 5e credit left.

Task definitions in the specification in Fig. 7 include sim-
ple annotations defining basic preconditions and effects. The
requirement for the activation of a new SIM can be captured
by defining a precondition over the Activate new SIM task
(credit>=5) or by the process designer, who may recognize
that an exception can occur and explicitly define a triggering
rule in the form of workitem pre-execution constraint. Suppose
now that a customer with 10e credit left asks for replacing
his/her card. In the corresponding case, when s/he is charged
for the service (Charge service fees task), there is no credit left
and this results in an exception triggered when the workitem
for the Activate new SIM task is enabled. The exception,
detected and handled in YAWL by the Exception Service, leads
to the activation of the corresponding exlet, explicitly defined
by the designer or activated as a result of a precondition
violation. Assuming the execution of an exlet as defined in
Fig. 6, the affected workitem is suspended and the Planning
Service is activated.

The planning procedure is activated with a planning domain
constituted by the set of task definitions taken by the process
specification (with the list of preconditions and effects for each
task) and with a planning problem, which includes a goal (i.e.,
an expected reality) defined as credit>=5, and an initial
state (i.e., a physical reality) with credit=0. The following
hold in both initial state and goal: NotificationSent,
SIMsent, SwitchOffReqReceived, ValidRequest
and RequestReceived. The planner should guarantee that
the recovery procedure, after being executed, does not change
any other predicate than credit. Fig. 8.a depicts the plan
found by a generic partial-order planner like UCPOP [15]. Let
us now detail how the plan has been effectively built. Start and
Finish are “dummy” tasks which mark the beginning and end
of the plan, with the ordering constraint Start ≺ Finish.
Start has no preconditions and its effect is composed by all
the predicates that hold in the initial state of the planning
problem. Finish has no effects and has as its preconditions the
goal predicates of the planning problem. Before the beginning

Fig. 8. The recovery plan for the SIM card replacement process in YAWL

of the planning procedure, all the preconditions in Finish
can be seen as open preconditions, i.e., as preconditions that
are not yet achieved by any task in the plan. The planner
will work to reduce the set of open preconditions to the
empty set, without introducing any conflict. It starts by an-
alyzing all the open preconditions in Finish; each predicate
(except than credit>=5) has already been satisfied by the
effects of the action Start. Since credit>=5 is currently
the only open precondition, the planner checks if within the
list of task definitions there exists a task that satisfies such
a predicate, i.e., if one of its effects achieves credit>=5.
As shown in Fig. 8.a, the planner chooses the Receive SIM
Recharge(x) task (with x=5), whose effect is to increase the
credit of 5e, and whose precondition corresponds to the
holding of the predicate RechargeNotification(5).
Moreover, the planner adds the ordering constraints Start ≺
ReceiveSIMRecharge(5) and ReceiveSIMRecharge(5)
≺ Finish. Now there is one new open precondition, that
is RechargeNotification(5). Since no effect in the
Start task satisfies this precondition, the planner checks again
within the list of task definitions and finds that the Ask for
SIM Recharge(x) task (again, with x=5) achieves the predicate
RechargeNotification(5). A set of new ordering con-
straint are stated : Start ≺ AskforSIMRecharge(5), and
AskforSIMRecharge(5) ≺ ReceiveSIMRecharge(5).
Since the preconditions of the Receive SIM Recharge(5)
task are both already satisfied by the effects of the task
Start, the planner first certifies that there are no more open
preconditions and then verifies whether the plan found is a
solution to the original planning problem. The plan is returned
as a list of ordering constraints between the tasks of the
recovery plan; in our example, such list is composed by the
following constraints : Start ≺ AskforSIMRecharge(5),
AskforSIMRecharge(5) ≺ ReceiveSIMRecharge(5)
and ReceiveSIMRecharge(5) ≺ Finish. Fig. 8.b shows
the resulting plan executed as a worklet.

VI. CONCLUSIONS

In this paper we have presented a general approach and a
conceptual architecture for featuring automatic adaptivity in
PMSs, based on a kind of declarative specification of tasks,
including pre-conditions and effects, and the use of planning
techniques. We have shown the feasibility of the approach by
discussing its deployment on top of YAWL. The strength of the
approach lies in the ability to incorporate execution feedback
directly into the plan, without blocking directly the execution
of the main process. This can result in a reduction of the
overall response time. In fact, during the plan synthesis, if a
positive event occurs (such as an external event or a task whose
effects are to “adjust” the compromised situation), the system
is able to take advantage of such opportunity without a new
plan. However, even though our intent is to make the planning
process very responsive, there still remains a synchronization
process between planning and execution, which can require a
significant response time.

Future works include an extensive validation of real pro-
cesses, by considering not only classical business ones but
also more collaborative processes in which the exchange of
meaningful artefacts is the real drive in the process enactment.
Such tests will provide useful insights on the cases in which
an automatic approach is convenient wrt. more traditional
exception handlers defined at design-time.

ACKNOWLEDGMENTS

This work has been partly supported by SAPIENZA Univer-
sità di Roma through the grants FARI 2010 and TESTMED.
The authors want to thank Arthur H.M. ter Hofstede for useful
insights and discussions.

REFERENCES

[1] D. Chiu, Q. Li, and K. Karlapalem, “A Logical Framework for Exception
Handling in ADOME Workflow Management System,” in Proceedings
of the 12th International Conference of Advanced Information Systems
Engineering (CAiSE), 2000.

[2] R.-M. M. Dolores, B. Daniel, C. Amedeo, and O. Angelo, “Integrating
Planning and Scheduling in Workflow Domains,” Expert Syst. Appl.,
vol. 33, no. 2, 2007.

[3] H. Ferreira and D. Ferreira, “An Integrated Life Cycle for Workflow
Management Based on Learning and Planning,” Int. J. Cooperative
Information Systems, vol. 15, pp. 485–505, 2006.

[4] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni, “Exception
Handling for Repair in Service-Based Processes,” IEEE Transactions on
Software Engineering, vol. 36, pp. 198–215, 2010.

[5] M. Gajewski, H. Meyer, M. Momotko, H. Schuschel, and M. Weske,
“Dynamic Failure Recovery of Generated Workflows,” in Proceedings
of the 16th International Workshop on Database and Expert Systems
Applications (DEXA). IEEE Computer Society Press, 2005, pp. 982–
986.

[6] K. Goser, M. Jurisch, H. Acker, U. Kreher, M. Lauer, S. Rinderle-
Ma, M. Reichert, and P. Dadam, “Next-generation Process Management
with ADEPT2,” in Demonstration Program of the 5th International
Conference on Business Process Management (BPM), 2007.

[7] C. Hagen and G. Alonso, “Exception Handling in Workflow Manage-
ment Systems,” IEEE Trans. Software Engineering, vol. 26, pp. 943–958,
2000.

[8] P. Jarvis, J. Moore, J. Stader, A. Macintosh, A. C. du Mont, and
P. Chung, “Exploiting AI Technologies to Realise Adaptive Workflow
Systems,” Proceedings of the AAAI Workshop on Agent-Based Systems
in the Business Context, 1999.

[9] R. Lenz and M. Reichert, “IT Support for Healthcare Processes -
Premises, Challenges, Perspectives,” Data Knowl. Eng., vol. 61, pp. 39–
58, 2007.

[10] A. Marrella and M. Mecella, “Continuous Planning for Solving Business
Process Adaptivity,” in Proceedings of the 12th International Working
Conference on Business Process Modeling, Development and Support
(BPMDS), 2011, pp. 118–132.

[11] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL - The Planning Domain Definition
Language,” Yale Center for Computational Vision and Control, Tech.
Rep., 1998.

[12] M. Mecella, “Adaptive Process Management. Issues and (Some) Solu-
tions,” 2008. [Online]. Available: http://www.dis.uniroma1.it/∼mecella/
publications/PMS/MECELLA@PROGILITY2008.ppt

[13] R. Müller, U. Greiner, and E. Rahm, “AGENTWORK: a Workflow Sys-
tem Supporting Rule-based Workflow Adaptation,” Data & Knowledge
Engineering, vol. 51, pp. 223–256, 2004.

[14] K. Myers, “CPEF: A Continuous Planning and Execution Framework,”
AI Magazine, vol. 20, pp. 63–69, 1999.

[15] S. Penberthy and D. Weld, “UCPOP: A Sound, Complete, Partial Order
Planner for ADL,” in Proceedings of the 8th International Conference
on Principles of Knowledge Representation and Reasoning (KR), 1992,
pp. 103–114.

[16] N. Russell, W. van der Aalst, and A. ter Hofstede, “Workflow Exception
Patterns,” in Proceedings of the 18th International Conference of Ad-
vanced Information Systems Engineering (CAiSE), 2006, pp. 288–302.

[17] A. ter Hofstede, W. van der Aalst, M. Adams, and N. Russell, Modern
Business Process Automation: YAWL and its Support Environment.
Springer, 2009.

[18] W. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative Work-
flows: Balancing between Flexibility and Support,” Computer Science -
Research and Development, vol. 23, no. 2, pp. 99–115, 2009.

[19] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change Patterns and
Change Support Features - Enhancing Flexibility in Process-aware
Information Systems,” Data Knowl. Eng., vol. 66, pp. 438–466, 2008.

[20] B. Weber, M. Reichert, S. Rinderle-Ma, and W. Wild, “Providing
Integrated Life Cycle Support in Process-aware Information Systems,”
Cooperative Information Systems, vol. 18, pp. 115–165, 2009.

[21] M. Weske, “Formal Foundation and Conceptual Design of Dynamic
Adaptations in a Workflow Management System,” in Proceedings of
the 34th Annual Hawaii International Conference on System Sciences
(HICSS), 2001.

