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Abstract—In this paper, we consider the collaborative data
publishing problem for anonymizing horizontally partitioned
data at multiple data providers. We consider a new type of
“insider attack” by colluding data providers who may use their
own data records (a subset of the overall data) in addition to
the external background knowledge to infer the data records
contributed by other data providers. The paper addresses this
new threat and makes several contributions. First, we introduce
the notion of m-privacy, which guarantees that the anonymized
data satisfies a given privacy constraint against any group of
up to m colluding data providers. Second, we present heuristic
algorithms exploiting the equivalence group monotonicity of pri-
vacy constraints and adaptive ordering techniques for efficiently
checking m-privacy given a set of records. Finally, we present a
data provider-aware anonymization algorithm with adaptive m-
privacy checking strategies to ensure high utility and m-privacy
of anonymized data with efficiency. Experiments on real-life
datasets suggest that our approach achieves better or comparable
utility and efficiency than existing and baseline algorithms while
providing m-privacy guarantee.

Index Terms—Data anonymization, distributed data anonymi-
zation, data privacy, collaborative data publishing.

I. INTRODUCTION

There is an increasing need for sharing data that contain
personal information from distributed databases. For example,
in the healthcare domain, a national agenda is to develop the
Nationwide Health Information Network (NHIN)1 to share
information among hospitals and other providers, and support
appropriate use of health information beyond direct patient
care with privacy protection.

Privacy preserving data analysis and data publishing [1],
[2], [3] have received considerable attention in recent years as
promising approaches for sharing data while preserving indi-
vidual privacy. When the data are distributed among multiple
data providers or data owners, two main settings are used for
anonymization [2], [4]. One approach is for each provider to
anonymize the data independently (anonymize-and-aggregate,
Figure 1A), which results in potential loss of integrated
data utility. A more desirable approach is collaborative data
publishing [5], [6], [2], [4], which anonymizes data from all
providers as if they would come from one source (aggregate-
and-anonymize, Figure 1B), using either a trusted third-party
(TTP) or Secure Multi-party Computation (SMC) protocols to
do computations [7], [8].
Problem Settings. We consider the collaborative data pub-
lishing setting (Figure 1B) with horizontally partitioned data
across multiple data providers, each contributing a subset of

1http://www.hhs.gov/healthit/healthnetwork/background/

Fig. 1. Distributed data publishing settings.

records Ti. As a special case, a data provider could be the data
owner itself who is contributing its own records. This is a very
common scenario in social networking and recommendation
systems. Our goal is to publish an anonymized view of the
integrated data such that a data recipient including the data
providers will not be able to compromise the privacy of
the individual records provided by other parties. Considering
different types of malicious users and information they can
use in attacks, we identify three main categories of attack
scenarios. While the first two are addressed in existing work,
the last one receives little attention and will be the focus of
this paper.

Attacks by External Data Recipient Using Anonymized
Data. A data recipient, e.g. P0, could be an attacker and
attempts to infer additional information about the records
using the published data (T ∗) and some background knowl-
edge (BK) such as publicly available external data. Most
literature on privacy preserving data publishing in a single
provider setting considers only such attacks [2]. Many of
them adopt a weak or relaxed adversarial or Bayes-optimal
privacy notion [9] to protect against specific types of attacks
by assuming limited background knowledge. For example,
k-anonymity [10], [11] prevents identity disclosure attacks
by requiring each equivalence group, records with the same
quasi-identifier values, to contain at least k records. Repre-
sentative constraints that prevent attribute disclosure attacks
include l-diversity, which requires each equivalence group to
contain at least l “well-represented” sensitive values [9], and
t-closeness [12], which requires the distribution of a sensitive
attribute in any equivalence group to be close to its distribution
in the whole population. In contrast, differential privacy [1],
[3] publishes statistical data or computational results of data
and gives unconditional privacy guarantees independent of
attackers background knowledge.

Attacks by Data Providers Using Intermediate Results and
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Their Own Data. We assume the data providers are semi-
honest [7], [8], commonly used in distributed computation
setting. They can attempt to infer additional information about
data coming from other providers by analyzing the data
received during the anonymization. A trusted third party (TTP)
or Secure Multi-Party Computation (SMC) protocols (e.g. [5])
can be used to guarantee there is no disclosure of intermediate
information during the anonymization. However, either TTP or
SMC do not protect against data providers to infer additional
information about other records using the anonymized data
and their own data (discussed below). Since the problem is
orthogonal to whether a TTP or SMC is used for implementing
the algorithm, without loss of generality, we have assumed that
all providers use a TTP for anonymization and note that an
SMC variant can be implemented.

Attacks by Data Providers Using Anonymized Data and
Their Own Data. Each data provider, such as P1 in Figure 1,
can also use anonymized data T ∗ and his own data (T1) to infer
additional information about other records. Compared to the
attack by the external recipient in the first attack scenario,
each provider has additional data knowledge of their own
records, which can help with the attack. This issue can be
further worsened when multiple data providers collude with
each other. In the social network or recommendation setting,
a user (having an account herself) may attempt to infer private
information about other users using the anonymized data or
recommendations assisted by some background knowledge
and her own account information. Malicious users may collude
or even create artificial accounts as in a shilling attack [13].

We define and address this new type of “insider attack”
by data providers in this paper. In general, we define an m-
adversary as a coalition of m colluding data providers or data
owners, who have access to their own data records as well as
publicly available background knowledge BK and attempts
to infer data records contributed by other data providers.
Note that 0-adversary can be used to model the external data
recipient, who has only access to the external background
knowledge. Since each provider holds a subset of the overall
data, this inherent data knowledge has to be explicitly modeled
and checked when the data are anonymized using a weak
privacy constraint and assuming no instance level knowledge.

We illustrate the m-adversary threats with an example
shown in Table I. Assume that hospitals P1, P2, P3, and
P4 wish to collaboratively anonymize their respective patient
databases T1, T2, T3, and T4. In each database, Name is an
identifier, {Age, Zip} is a quasi-identifier (QI), and Disease
is a sensitive attribute. T ∗

a is one possible QI-group-based
anonymization using existing approaches that guarantees k-
anonymity and l-diversity (k = 3, l = 2). Note that l-
diversity holds if each equivalence group contains records
with at least l different sensitive values. However, an attacker
from the hospital P1, who has access to T1, may remove all
records from T ∗

a that are also in T1 and find out that there is
only one patient between 20 and 30 years old. Combining
this information with background knowledge BK, P1 can

identify Sara’s record (highlighted in the table) and her disease
Epilepsy. In general, multiple providers may collude with each
other, hence having access to the union of their data, or a
user may have access to multiple databases, e.g. a physician
switching to another hospital, and use the increased data
knowledge to infer data at other nodes.

T1

Name Age Zip Disease
Alice 24 98745 Cancer
Bob 35 12367 Asthma
Emily 22 98712 Asthma

T2

Name Age Zip Disease
Dorothy 38 98701 Cancer
Mark 37 12389 Flu
John 31 12399 Flu

T3

Name Age Zip Disease
Sara 20 12300 Epilepsy
Cecilia 39 98708 Flu

T4

Name Age Zip Disease
Olga 32 12337 Cancer
Frank 33 12388 Asthma

T∗
a

Provider Name Age Zip Disease
P1 Alice [20-30] ***** Cancer
P1 Emily [20-30] ***** Asthma
P3 Sara [20-30] ***** Epilepsy
P1 Bob [31-35] ***** Asthma
P2 John [31-35] ***** Flu
P4 Olga [31-35] ***** Cancer
P4 Frank [31-35] ***** Asthma

P2 Dorothy [36-40] ***** Cancer
P2 Mark [36-40] ***** Flu
P3 Cecilia [36-40] ***** Flu

T∗
b

Provider Name Age Zip Disease
P1 Alice [20-40] ***** Cancer
P2 Mark [20-40] ***** Flu
P3 Sara [20-40] ***** Epilepsy

P1 Emily [20-40] 987** Asthma
P2 Dorothy [20-40] 987** Cancer
P3 Cecilia [20-40] 987** Flu

P1 Bob [20-40] 123** Asthma
P4 Olga [20-40] 123** Cancer
P4 Frank [20-40] 123** Asthma
P2 John [20-40] 123** Flu

TABLE I
m-ADVERSARY AND m-PRIVACY EXAMPLE.

Contributions. In this paper, we address the new threat by
m-adversaries and make several important contributions. First,
we introduce the notion of m-privacy that explicitly models
the inherent data knowledge of an m-adversary and protects
anonymized data against such adversaries with respect to
a given privacy constraint. For example, an anonymization
satisfies m-privacy with respect to l-diversity if the records in
each equivalence group excluding ones from any m-adversary
still satisfy l-diversity. In our example in Table I, T ∗

b is an
anonymization that satisfies m-privacy (m = 1) with respect
to k-anonymity and l-diversity (k = 3, l = 2).

Second, to address the challenges of checking a combina-
torial number of potential m-adversaries, we present heuristic
algorithms for efficiently verifying m-privacy given a set of
records. Our approach utilizes effective pruning strategies
exploiting the equivalence group monotonicity property of
privacy constraints and adaptive ordering techniques based
on a novel notion of privacy fitness. Finally, we present a
data provider-aware anonymization algorithm with adaptive
strategies of checking m-privacy to ensure high utility and m-
privacy of sanitized data with efficiency. We experimentally



show the feasibility and benefits of our approach using real-
world dataset.

II. m-PRIVACY DEFINITION

We first formally describe our problem setting. Then we
present our m-privacy definition with respect to a given
privacy constraint to prevent inference attacks by m-adversary,
followed by its properties.

Let T = {t1, t2, . . .} be a set of records horizontally
distributed among n data providers P = {P1, P2, . . . , Pn},
such that Ti ⊆ T is a set of records provided by Pi.
We assume AS is a sensitive attribute with domain DS . If
the records contain multiple sensitive attributes then a new
sensitive attribute AS can be defined as a Cartesian product
of all sensitive attributes. Our goal is to publish an anonymized
table T ∗ while preventing any m-adversary from inferring AS

for any single record.
A. m-Privacy

To protect data from external recipients with certain back-
ground knowledge BK, we assume a given privacy require-
ment C, defined by a conjunction of privacy constraints:
C1 ∧ C2 ∧ . . . ∧ Cw. If a set of records T ∗ satisfies C, we
say C(T ∗) = true. Any of the existing privacy principles can
be used as a component constraint.

In our example (Table I), the privacy constraint C is defined
as C = C1 ∧ C2, where C1 is k-anonymity with k = 3, and
C2 is l-diversity with l = 2. Both anonymized tables, T ∗

a and
T ∗
b satisfies C, although as we have shown earlier, T ∗

a may be
compromised by an m-adversary such as P1.

We now formally define a notion of m-privacy with respect
to a privacy constraint C, to protect the anonymized data
against m-adversaries in addition to the external data recipi-
ents. The notion explicitly models the inherent data knowledge
of an m-adversary, the data records they jointly contribute, and
requires that each equivalence group, excluding any of those
records owned by an m-adversary, still satisfies C.

Definition 2.1: (m-PRIVACY) Given n data providers, a
set of records T , and an anonymization mechanism A, an
m-adversary I (m 6 n − 1) is a coalition of m providers,
which jointly contributes a set of records TI . Sanitized records
T ∗ = A(T ) satisfy m-privacy, i.e. are m-private, with respect
to a privacy constraint C, if and only if,
∀I ⊂ P, |I| = m,∀T ′ ⊆ T : T ′ ⊇ T \ TI , C(A(T ′)) = true

Observation 2.1: For all m 6 n − 1, if T ∗ is m-private,
then it is also (m− 1)-private. If T ∗ is not m-private, then it
is also not (m+ 1)-private.
Note that this observation describes monotonicity of m-privacy
with respect to number of adversaries, which is independent
from the privacy constraint C and records. In the next section
we investigate monotonicity of m-privacy with respect to
records with given value of m.

m-Privacy and Weak Privacy Constraints. Given a weak
privacy constraint C that does not consider instance level
background knowledge, such as k-anonymity, l-diversity, and

t-closeness, a T ∗ satisfying C will only guarantee 0-privacy
w.r.t. C, i.e. C is not guaranteed to hold for each equivalence
group after excluding records belonging to any malicious data
provider. Thus, each data provider may be able to breach
privacy of records provided by others. In our example from
Table I, T ∗

a satisfies only 0-privacy w.r.t. C, while T ∗
b satisfies

1-privacy w.r.t. the same C.
m-Privacy is defined w.r.t. a privacy constraint C, and hence

will inherit strengths and weaknesses of C. For example, if C
is defined by k-anonymity, then ensuring m-privacy w.r.t. C
will not protect against homogeneity attack [9] or deFinetti
attack [14]. However, m-privacy w.r.t. C will protect against
a privacy attack issued by any m-adversary, if and only if, C
protects against the same privacy attack by any external data
recipient. m-Privacy constraint is orthogonal to the privacy
constraint C being used.
m-Privacy and Differential Privacy. Differential privacy [1],
[3], [15] does not assume specific background knowledge
and guarantees privacy even if an attacker knows all records
except the victim record. Thus, any statistical data (or records
synthesized from the statistical data) satisfying differential
privacy also satisfies (n − 1)-privacy, i.e. maximum level of
m-privacy, when any (n− 1) providers can collude.

While m-privacy w.r.t. any weak privacy notion does not
guarantee unconditional privacy, it offers a practical tradeoff
between preventing m-adversary attacks with bounded power
m and the ability to publish generalized but truthful data
records. In the rest of the paper, we will focus on checking
and achieving m-privacy w.r.t. weak privacy constraints.
B. Monotonicity of Privacy Constraints

Generalization based monotonicity has been defined for pri-
vacy constraints in the literature (Definition 2.2) [9], [12] and
has been used for designing efficient generalization algorithms
to satisfy a privacy constraint ([11], [16], [9], [12]). In this
paper we will refer to it as generalization monotonicity.

Definition 2.2: (GENERALIZATION MONOTONICITY OF A
PRIVACY CONSTRAINT [9], [12]) A privacy constraint C
is generalization monotonic if and only if for any set of
anonymized records T ∗ satisfying C, all its further general-
izations satisfy C as well.

Generalization monotonicity assumes that original records
T have been already anonymized and uses them for further
generalizations. In this paper, we also introduce more general,
record-based definition of monotonicity in order to facilitate
the analysis and design of efficient algorithms for checking
m-privacy.

Definition 2.3: (EQUIVALENCE GROUP MONOTONICITY
OF A PRIVACY CONSTRAINT, EG MONOTONICITY) A pri-
vacy constraint C is EG monotonic if and only if any set of
anonymized records T ∗ satisfies C, then all supersets of T ∗

with the same QI attribute satisfy C as well,
C(T ∗)holds ⇔ ∀T̃ ∗ ⊃ T ∗ : QI(T ∗) = QI(T̃ ∗), C(T̃ ∗)holds

EG monotonicity is more restrictive than generalization
monotonicity. If a constraint is EG monotonic, it is also



generalization monotonic. But vice versa does not always hold.
k-Anonymity and l-diversity that requires l distinct values
of sensitive attribute in an equivalence group are examples
of EG monotonic constraints, which are also generalization
monotonic. Entropy l-diversity [9] and t-closeness [12] are
examples of generalization monotonic constraints that are not
EG monotonic at the same time. For example, consider a
subset of two anonymized records with 2 different sensitive
values satisfying entropy l-diversity (l = 2), i.e. distribution
of sensitive attribute values in the group is uniform. Entropy
l-diversity is not EG monotonic because it will not hold if
we add a record that will change the distribution of sensitive
values (and entropy) significantly. However, it is generalization
monotonic because it will still hold if any other subgroup
satisfying entropy l-diversity (l = 2) is added (generalized)
into the first subgroup.

Observation 2.2: If all constraints in a conjunction C =
C1 ∧C2 ∧ . . . ∧Cw are EG monotonic, then the constraint C
is EG monotonic.

Similar observation holds for generalization monotonicity.
In our example, C is defined as a conjunction of k-anonymity
and l-diversity. Since both of them are EG monotonic [9], C
is EG monotonic.

Theorem 2.1: m-Privacy with respect to a constraint C is
EG monotonic if and only if C is EG monotonic.
Due to limited space, the proof of this theorem has been moved
to our technical report [17]. This theorem and its proof holds
also when applied for generalization monotonicity. Note that
monotonicity in this theorem is defined with respect to records
and not m.

Observation 2.3: If a constraint C is EG monotonic, then
the definition of m-privacy w.r.t. C (Definition 2.1) may be
simplified. T ∗ = A(T ) satisfies m-privacy w.r.t. C, if and
only if,
∀I ⊂ P, |I| = m,C is monotonic, C (A (T\TI)) = true

Indeed, for an EG monotonic C, if a coalition I cannot breach
privacy, then any sub-coalition with fewer records cannot
do so either (Definition 2.3). Unfortunately, generalization
monotonicity of C is not sufficient for the simplification
presented in this observation.

III. VERIFICATION OF m-PRIVACY

Checking whether a set of records satisfies m-privacy cre-
ates a potential computational challenge due to the combina-
torial number of m-adversaries that need to be checked. In
this section, we first analyze the problem by modeling the
checking space. Then we present heuristic algorithms with
effective pruning strategies and adaptive ordering techniques
for efficiently checking m-privacy for a set of records w.r.t.
an EG monotonic privacy constraint C.
A. Adversary Space Enumeration

Given a set of nG data providers, the entire space of m-
adversaries (m varying from 0 to nG − 1) can be represented
using a lattice shown in Figure 2. Each node at layer m
represents an m-adversary of a particular combination of m

providers. The number of all possible m-adversaries is equal
to

(
nG

m

)
. Each node has parents (children) representing their

direct super- (sub-) coalitions. For simplicity the space is also
represented as a diamond, where a horizontal line corresponds
to all m-adversaries with the same m value, the bottom node
corresponds to 0-adversary (external data recipient), and the
top line to (nG − 1)-adversaries.

Fig. 2. m-Adversary space.

In order to verify m-privacy w.r.t. a constraint C for a set
of records, we need to check C for the records excluding
any subset of records owned by any m-adversary. When C
is EG monotonic, we only need to check C for the records
excluding all records from any m-adversary (Observation 2.3).
For example, in Figure 2, given m = 2, all coalitions
that need to be checked are represented by question marks.
If C is EG monotonic, then it is sufficient to check only
the question marks on the horizontal line. Given an EG
monotonic constraint, a direct algorithm can sequentially gen-
erate all possible

(
nG

m

)
m-adversaries and then check privacy

of the corresponding remaining records. The complexity is
then determined by

(
nG

m

)
. In the worst-case scenario, when

m = nG/2, the number of checks is equal to the central
binomial coefficient

(
nG

nG/2

)
. In the remainder of this section,

we will focus on the EG monotonic case and present heuristic
algorithms for efficiently checking m-privacy.
B. Heuristic Algorithms

The key idea of our heuristic algorithms is to efficiently
search through the adversary space with effective pruning
such that not all m-adversaries need to be checked. This is
achieved by two different pruning strategies, an adversary
ordering technique, and a set of search strategies that enable
fast pruning.
Pruning Strategies. The pruning strategies are possible thanks
to the EG monotonicity of m-privacy (Observations 2.1, 2.3).
If a coalition is not able to breach privacy, then all its sub-
coalitions will not be able to do so and hence do not need
to be checked (downward pruning). On the other hand, if a
coalition is able to breach privacy, then all its super-coalitions
will be able to do so and hence do not need to be checked
(upward pruning). In fact, if a sub-coalition of an m-adversary
is able to breach privacy, then the upward pruning allows the
algorithm to terminate immediately as the m-adversary will be
able to breach privacy (early stop). Figure 3 illustrates the two
pruning strategies where + represents a case when a coalition
does not breach privacy and − otherwise.
Adaptive Ordering of Adversaries. In order to facilitate
the above pruning in both directions, we adaptively order
the coalitions based on their attack powers (Figure 4). This
is motivated by the following observations. For downward



Fig. 3. Pruning strategies for m-privacy check.

pruning, super-coalitions of m-adversaries with limited attack
powers are preferred to check first as they are less likely to
breach privacy and hence increase the chance of downward
pruning. In contrast, sub-coalitions of m-adversaries with
significant attack powers are preferred to check first as they are
more likely to breach privacy and hence increase the chance
of upward pruning (early-stop).

Fig. 4. Adaptive ordering for efficient pruning and the worst-case scenario
without any pruning possible.

To quantify privacy fulfillment by a set of records, which is
used to measure the attack power of a coalition and privacy of
remaning records (used to facilitate the anonymization, which
we will discuss in next section), we introduce the privacy
fitness score w.r.t. C for a set of records.

Definition 3.1: (PRIVACY FITNESS SCORE) Privacy fitness
FC for a set of records T ∗ is a level of the fulfillment of the
privacy constraint C. A privacy fitness score is a function f
of privacy fitness with values greater or equal to 1 only if
C(T ∗) = true,

scoreFC(T∗) = f (FC1(T
∗), FC2(T

∗), . . . , FCw(T
∗))

In our setting, C is defined as k-anonymity ∧ l-diversity.
The privacy fitness score can be defined as a weighted average
of the two fitness scores with α ∈ (0, 1). When C(T ∗) =
false, scoreFC(T∗) = max(1− ϵ, FC(T

∗)), where ϵ is small.
In our example scoreFC

is defined as follow:

scoreFC1∧C2
(T ∗) = (1−α)· |T

∗|
k

+α· |{t[AS ] : t ∈ T ∗}|
l

(1)

The attack power of a coalition can be then measured by
the privacy fitness score of the records jointly contributed
by its members, as the higher the privacy fitness score, the
more likely they will be able to breach the privacy for the
remaining records in a group after removing their own records.
In order to maximize the benefit of both pruning strategies,
the super-coalitions of m-adversaries are generated in the
order of ascending fitness scores (ascending attack powers),
and the sub-coalitions of m-adversaries are generated in the

order of descending fitness scores (descending attack powers)
(Figure 4).

Now we present several heuristic algorithms that use differ-
ent search strategies, and hence utilize different pruning. All
of them use the adaptive ordering of adversaries to enable fast
pruning.

The Top-Down Algorithm. The top-down algorithm checks
the coalitions in a top-down fashion using downward pruning,
starting from (nG − 1)-adversaries and moving down until a
violation by an m-adversary is detected or all m-adversaries
are pruned or checked.

The Bottom-Up Algorithm. The bottom-up algorithm checks
coalitions in a bottom up fashion using upward pruning,
starting from 0-adversary and moving up until a violation by
any adversary is detected (early-stop) or all m-adversaries are
checked.

The Binary Algorithm. The binary algorithm, inspired by the
binary search algorithm, checks coalitions between (nG − 1)-
adversaries and m-adversaries and takes advantage of both
upward and downward prunings (Figure 5, Algorithm 1). The
goal of each iteration is to search for a pair Isub and Isuper,
such that Isub is a direct sub-coalition of Isuper and Isuper
breaches privacy while Isub does not. Then Isub and all its
sub-coalitions are pruned (downward pruning), Isuper and all
its super-coalitions are pruned (upward pruning) as well.

Algorithm 1: The binary verification algorithm

Data: A set of records T provided by P1, . . . , PnG
, a monotonic privacy

constraint C, a privacy fitness scoring function scoreF and the m value
Result: true if T∗ is m-private, false otherwise

1 begin
2 sites = sort_sites(P , increasing order, scoreF )
3 use_adaptive_order_generator(sites, m)
4 while is_m-privacy_verified(T∗, m) = false do
5 Isuper = next_coalition_of_size(n − 1)
6 if privacy_is_breached_by(Isuper) then
7 continue

8 Isub = next_sub-coalition_of(Isuper,m)
9 if privacy_is_breached_by(Isub) then

10 return false //early stop

11 while is_coalition_between(Isub, Isuper) do
12 I = next_coalition_between(Isub, Isuper)
13 if privacy_is_breached_by(I) then
14 Isuper = I
15 else
16 Isub = I

17 prune_all_sub-coalitions(Isub)
18 prune_all_super-coalitions(Isuper)

19 return true

The search works as follows. First, it starts with (nG − 1)-
adversaries and finds the first one that violates privacy and
assigns it to Isuper (lines from 5 to 7). Then, it finds an m-
adversary that is a sub-coalition of Isuper and assigns it to Isub
(line 8). At each step, a new coalition I : Isub ⊂ I ⊂ Isuper
(such that |I| = |Isuper|+|Isub|

2 ; line 12) is checked (line 13).
If I violates privacy, then Isuper is updated to I (line 14).
Otherwise, Isub is updated to I (line 16). The loop continues
until the direct parent-child pair Isuper and Isub is found (line
11). Then both upward and downward prunings are performed



(lines 17 and 18) and the algorithm starts the next iteration.
The algorithm stops with the same criteria as the top down
algorithm (line 4).

Fig. 5. The binary verification algorithm.

Adaptive Selection of Algorithms. Each of the above algo-
rithms focuses on different search strategy, and hence utilizes
different pruning. Which algorithm to use is largely dependent
on the characteristics of a given group of providers. Intuitively,
the privacy fitness score (Equation 1), which quantifies the
level of privacy fulfillment of records, may be used to select
the most suitable verification algorithm. The higher the fitness
score of attacked records, the more likely m-privacy will be
satisfied, and hence a top-down algorithm with downward
pruning will significantly reduce the number of adversary
checks. We utilize such an adaptive strategy in the anony-
mization algorithm (discussed in the next section) and will
experimentally compare and evaluate different algorithms.

C. Time Complexity

In this section, we derive the time complexity for the m-
privacy verification algorithms. Since the algorithms involve
multiple checks of privacy constraint C used to define m-
privacy for various combinations of records, we assume that
each check of C takes a constant time. Formally, it can be
modeled by an oracle, which performs the check for given
records in O(1) time.

All the above verification algorithms have the same worst-
case scenario (Figure 4), in which all super-coalitions of m-
adversaries violate privacy, while all sub-coalitions of m-ad-
versaries do not. Hence neither adaptive ordering nor pruning
strategies are useful. The direct algorithm will check exactly(
nG

m

)
m-adversaries before confirming m-privacy, where nG

is the number of data providers contributing to the group.
This is the minimal number of privacy verifications for this
scenario and any other algorithm will execute at least that
many privacy checks. The bottom-up algorithm will check
0-adversary (external data recipient) up to all m-adversaries,
which requires

∑m
i=0

(
nG

i

)
= O (nm

G ) checks. The top-down
algorithm will check all (nG − 1)-adversaries to all m-
adversaries, which requires

∑nG−1
i=m

(
nG

i

)
= O

(
nnG−1−m
G

)
checks. The binary algorithm will run

(
nG

m

)
iterations and

within each O(log (nG −m)) privacy checks. Thus, the total
time complexity is O (nm

G log (nG −m)).
The average time complexity analysis is more involved. The

average time complexity is strongly correlated with value of
m for all algorithms. For each of them the lower bound of the
average time complexity is O(nG). The upper bound of the
average time complexity is different for each algorithm, that

is O ((3/2)nG) for top-down, O
(
2nGn

−1/2
G

)
for both bottom-

up and direct, and O
(
2nG log2 nG

nG

)
for binary. Thus, adapting

m-privacy verification strategy to domain settings is crucial to
achieve, on average, a low runtime. The analysis details are
omitted in this paper due to space restrictions. Please refer to
our technical report [17] for how we derived the bounds.

IV. ANONYMIZATION FOR m-PRIVACY

After defining the m-privacy verification algorithm, we can
use it in anonymization of a horizontally distributed dataset to
achieve m-privacy. In this section, we will present a baseline
algorithm, and then our approach that utilizes a data provider-
aware algorithm with adaptive m-privacy checking strategies
to ensure high utility and m-privacy for anonymized data.

Since we have shown that m-privacy with respect to a gen-
eralization monotonic constraint is generalization monotonic
(Theorem 2.1), most existing generalization-based anonymi-
zation algorithms can be modified to achieve m-privacy –
every time a set of records is tested for a privacy constraint
C, we check m-privacy w.r.t. C instead. As a baseline algo-
rithm to achieve m-privacy, we adapted the multidimensional
Mondrian algorithm [16] designed for k-anonymity. A main
limitation of such a simple adaptation is that groups of records
are formed oblivious of the data providers, which may result
in over-generalization in order to satisfy m-privacy.

We introduce a simple and general algorithm based on the
Binary Space Partitioning (BSP) (Algorithm 2). Similar to
the Mondrian algorithm, which is also a BSP algorithm, it
recursively chooses an attribute to split data points in the
multidimensional domain space until the data cannot be split
any further while satisfying m-privacy w.r.t. C. However, the
algorithm has three novel features: 1) it takes into account
the data provider as an additional dimension for splitting;
2) it uses the privacy fitness score as a general scoring
metric for selecting the split point; 3) it adapts its m-privacy
verification strategy for efficient verification. The pseudo code
for our provider-aware anonymization algorithm is presented
in Algorithm 2. We describe the algorithm details below.

Algorithm 2: The provider-aware algorithm.

Data: A set of records T =
∪n

j=1 Tj provided by {P1, P2, . . . , Pn}, a set of
QI attributes Ai (i = 1, . . . , q), m, a privacy constraint C

Result: Anonymized T∗ that satisfies m-privacy w.r.t. C
1 begin
2 π = get_splitting_points_for_attributes(Ai)
3 π = π∪ get_splitting_point_for_providers(A0)
4 π′ = {ai ∈ π, i ∈ {0, 1, . . . , q} :

are_both_split_subpartitions_m-private(T, ai)}
5 if π′ is ∅ then
6 T∗ = T∗∪ generalize_all_QIs (T )
7 return T∗

8 Aj = choose_splitting_attribute(T , C, π′)
9 (T ′

r, T
′
l ) = split(T , Aj)

10 Run recursively for T ′
l and T ′

r

Provider-Aware Partitioning. The algorithm first generates
all possible splitting points, π, for QI attributes and data
providers (line 2 and 3 of Algorithm 2). In addition to the
multidimensional QI domain space, we consider the data



provider or data source of each record as an additional attribute
of each record, denoted as A0. For instance, each data record
t contributed by data provider P1 in our example (Table I)
will have t[A0] = P1. Introducing this additional attribute
in our multi-dimensional space adds a new dimension for
partitioning. Using A0 to split data points decreases number of
providers in each partition and hence increases the chances that
more sub-partitions will be m-private and feasible for further
splits. This leads to more splits resulting a more precise view
of the data and have a direct impact on the anonymized data
utility. To find the potential split point along this dimension,
we can impose a total order on the providers, e.g. sorting the
providers alphabetically or based on the number of records
they provide, and find the splitting point that partitions the
records into two approximately equal groups.
Adaptive m-privacy verification. m-Privacy is then verified
for all possible splitting points and only those satisfying m-
privacy are added to a candidate set π′ (line 4). In order to
minimize the time, our algorithm adaptively selects an m-
privacy verification strategy using the fitness score of the
partitions. Intuitively, in the early stage of the anonymization
algorithm, the partitions are large and likely m-private. A
top-down algorithm, which takes advantage of the downward
pruning, may be used for fast verification. However, as the
algorithm continues, the partitions become smaller, the down-
ward pruning is less likely and the top-down algorithm will
be less efficient. A binary algorithm or others may be used
instead to allow upward pruning. We experimentally determine
the threshold of privacy fitness score for selecting the best
verification algorithm and verify the benefit of this strategy.
Privacy Fitness Score Based Splitting Point Selection.
Given a non-empty candidate set π′ (Algorithm 2), we use the
privacy fitness score (Definition 3.1) to find the best splitting
point (line 8). Intuitively, if the resulting partitions have higher
fitness scores, they are more likely to satisfy m-privacy with
respect to the privacy constraint and allow for more further
splitting. We note that the fitness score does not have to be
exactly the same function used for adaptive ordering in m-
privacy check. For example, if we use Equation 1, the weight
parameter used to balance fitness values of privacy constraints,
should have, most likely, different value. The algorithm then
splits the partition and runs recursively on each sub-partition
(lines 9 and 10).

V. EXPERIMENTAL RESULTS

We present two sets of experiment results with the following
goals: 1) to compare and evaluate the different m-privacy
verification algorithms given a set of records, and 2) to
evaluate and compare the proposed anonymization algorithm
for a given dataset with the baseline algorithm in terms of both
utility and efficiency.
A. Experiment Setup

We used combined training and test sets of the Adult
dataset2. Records with missing attribute values have been

2The Adult dataset has been prepared using the Census database from 1994,
http://archive.ics.uci.edu/ml/datasets/Adult

removed. All remaining 45,222 records have been used in all
experiments. The Occupation has been chosen as a sensitive
attribute AS . This attribute has 14 distinct values. Data are
distributed among n data providers P1, P2, . . . , Pn such that
their distribution follows a uniform or exponential distribution.
We observe similar results for both of them and only report
those for the exponential distribution in the paper.

The privacy constraint C is defined by k-anonymity [11]
and l-diversity [9]. C is EG monotonic (Definition 2.3). We
note again m-privacy is orthogonal to the privacy constraint
being used in its definition. Both m-privacy verification and
anonymization use privacy fitness scores, but with different
values of the weight parameter α. Values of α can be defined
in a way that reflects restrictiveness of privacy constraints.
The impact of the weight parameter to overall performance
was experimentally investigated and values of α for the most
efficient runs have been chosen as defaults. All experiment
and algorithm parameters, and their default values are listed
in Table II.

Name Description Verification Anonymization
α Weight paramter 0.3 0.8
m Power of m-privacy 5 3
n Total number of data providers – 10
nG Number of data providers

contributing to a group
15 –

|T | Total number of records – 45,222
|TG| Number of records in a group {150, 750} –
k Parameter of k-anonymity 50 30
l Parameter of l-diversity 4 4

TABLE II
EXPERIMENT PARAMETERS AND DEFAULT VALUES.

All experiments have been performed on Sun Microsystems
SunFire V880 with 8 CPUs, 16 GB of RAM, and running
Solaris 5.10.
B. m-Privacy Verification

The objective of the first set of experiments is to evaluate
the efficiency of different algorithms for m-privacy verification
given a set of records TG with respect to the previously defined
privacy constraint C.
Attack Power. In this experiment, we compared the different
m-privacy verification heuristics against different attack pow-
ers. We used two different groups of records with relatively
small and large average number of records per data provider,
respectively. Figure 6 shows the runtime with varying m for
different heuristics for the two groups.

Fig. 6. Runtime (logarithmic scale) vs. m.

The first group counts 150 records and has a small average
fitness score per provider (equal to 0.867), which reflects a
high probability of privacy breach by a large m-adversary.
For almost all values of m the binary algorithm achieves the

http://archive.ics.uci.edu/ml/datasets/Adult


best performance due to its efficient upward and downward
pruning. However, the top-down algorithm is comparable with
binary for m > nG/2.

The second group counts 750 records and has a larger
average fitness score per provider (equal to 2.307). Therefore
intuitively, it is very unlikely that a coalition of adversaries
will be able to breach privacy and the downward pruning can
be applied often. This intuition is confirmed by results, which
show that the top-down algorithm is significantly better than
other heuristics. Since the remaining algorithms do not rely
so much on the downward pruning, they have to perform an
exponential number of checks. We can also observe a clear
impact of m when m ≈ nG/2 incurs the highest cost.
Number of Contributing Data Providers. In this experiment,
we analyzed the impact of contributing data providers (nG)
on the different algorithms for the small and large group
respectively. Figure 7 shows the runtime of different heuristics
with varying number of contributing data providers nG.

Fig. 7. Runtime (logarithmic scale) vs. number of data providers.

We observe that increasing the number of contributing data
providers has different impacts on different algorithms in the
two group settings. In the first group, where the average
number of records per provider is small, the execution time
for each algorithm grows exponentially. In this case the set of
records has a low privacy fitness score and is very vulnerable
to attacks from m-adversaries. Adding more providers will
exponentially increase the domain of possible m-adversaries.

Similar trend is found for the large group with higher
number of records per provider and for binary, direct, and
bottom-up algorithms. However, for the top-down algorithm
runtime stays low despite the number of providers. This is due
to its effective use of downward pruning. In our experiment
the top-down algorithm runtime was very short and a no trend
is recognized.
The Average Number of Records Per Provider. In this
experiment, we systematically evaluated the impact of average
number of records per provider (|TG|/nG) on the efficiency of
the algorithms. Figure 8 shows runtime with varying |TG|/nG

(nG is constant while |TG| is being changed) for different
heuristics. We observe that for groups with small average
number of records per provider, both direct and bottom-up
algorithms are very efficient as the group is likely to violate
m-privacy. For groups with larger average number of records
per provider, i.e. when |TG|/nG > 15, the top-down algorithm
outperforms others.

Figure 8 also presents the runtime with varying average
fitness score of contributing providers. It yields an almost
identical trend as the result for average number of records per
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Fig. 8. Runtime vs. |TG|/nG and average fitness score of providers.

provider. In fact, they are linearly correlated (squared correla-
tion coefficient R2 = 0.97, scoreF = 0.04 · |TG|/nG + 0.33)
due to the definition of our privacy fitness score.

When a set of records is large, i.e. values of |TG| and
|TG|/nG are high, then its privacy fitness will be high as well.
Greater values of the fitness score for a set of records indicates
that its adversaries are less likely to breach privacy and the
downward pruning is more likely to happen for a big set of
adversaries. Applying pruning as early as possible significantly
reduces computation time (Figure 8).
Adaptive Strategy. Based on the above results, we used
the following parameters for the adaptive m-privacy checking
strategy used in our anonymization experiments. If the average
fitness score of contributing providers in a group is less than
0.85 (|TG|/nG < 15), we used the binary algorithm, while
for other cases the top-down was our choice.
C. Anonymization for m-Privacy

This set of experiments compares our provider-aware algo-
rithm with the baseline algorithm and evaluates the benefit
of provider-aware partitioning as well as the adaptive m-
privacy verification on utility of the data as well as efficiency.
To evaluate the utility of the anonymized data, we used the
query error metric similar to prior work (e.g. [18], [19]). 2,500
queries have been randomly generated and each query had qd
predicates pi, defining a range of a randomly chosen quasi-
identifier, where qd ∈

[
2, q

2

]
and q is the number of quasi-

identifier attributes.

SELECT t FROM T ∗ WHERE p1 AND . . . AND pqd;

Query error is defined as the difference in the results coming
from anonymized and original data.
Attack Power. We first evaluated and compared the two
algorithms with varying attack power m. Figure 9 shows the
runtime with varying m for the two algorithms respectively.
We observe that the provider-aware algorithm significantly
outperforms the baseline algorithm. This fact may look counter
intuitive at the first glance – our algorithm considers one more
candidate splitting point at each iteration, thus the execution
time should be higher. However, in each iteration of the
provider-aware algorithm, the additional splitting point along
data providers, if chosen, reduces the number of provid-
ers represented in a subgroup and hence reduces m-privacy
verification time significantly (as observed in Figure 7). In
contrast, the baseline algorithm preserves the average number
of providers in each subgroup, which incurs a high cost for
m-privacy verification. As expected, both algorithms show a
peak cost when m ≈ n/2.
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Fig. 9. Runtime (logarithmic scale) and the query error for different powers
of m-privacy.

Figure 9 shows also the query error of the two algorithms
with varying m. Intuitively, a higher attack power m should
increase the query error as the data need to be generalized
further to satisfy m-privacy. Our intuition is confirmed by
the result of the baseline algorithm, but is disproved for the
provider-aware algorithm. The constant values of the query
error looks counter intuitive, but can be explained. The base-
line algorithm, oblivious of the provider information, results
in more generalized anonymized groups with increasing m.
In contrast, the provider-aware algorithm, taking into account
the data providers, will result in groups with smaller number
of contributing providers (on average 1 for k = 15), hence
can maintain a more precise view of the data and significantly
outperforms the baseline algorithm. Thus, the query error may
increase with m eventually, but it will not be as significant
growth as for the baseline algorithm.
Number of Data Records. This set of experiments evaluates
the impact of total number of records in the dataset. Figure 10
shows the runtime and query error with varying number of
records for both anonymization algorithms. As expected, the
runtime for both algorithms grows with the number of records.
However, the baseline algorithm has a higher growth rate
than the provider-aware algorithm. This difference is due to
the significantly reduced m-privacy verification time in our
algorithm, which splits the data providers and thus reduces
the number of providers represented in a group. In addition,
the query error is at the same rate for both algorithms.
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Fig. 10. Runtime and the query error vs. |T |.

Adaptive m-Privacy Verification. In this experiment, we
evaluated the benefit of the adaptive selection of m-privacy
verification algorithms. Figure 11 compares the runtime of
adaptive anonymization algorithm with two other m-privacy
checking strategies with varying |T | and constant nG. For
small values of |T |, the algorithm using adaptive verification
strategy follows the binary and then the top-down algorithms,
as we expected. However, for values of |T | > 300, our
algorithm outperforms the non-adaptive strategies. The reason
is that anonymization of a large number of records requires
verification of m-privacy for many subgroups of different

sizes. Adapting to such variety of groups is crucial for achiev-
ing high efficiency.
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Fig. 11. Runtime of adaptive and non-adaptive m-privacy verifications vs.
|T | (log-log scale).

Impact of Privacy Constraints. We also performed a set of
experiments evaluating the impact of the privacy constraints
on the utility of data using anonymization algorithms for m-
privacy. In our experiments, the constraint is defined as a
conjunction of k-anonymity and l-diversity. Figure 12 shows
runtime and query errors with varying privacy constraint
restrictiveness (varying k and l). Query error values are relative
and dependent from selectiveness of queries. Query error
values are different for different queries, but our algorithm
will always have the same or lower error comparing to the
baseline.
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Fig. 12. Runtime and the query error vs. k in k-anonymity and l in l-diversity
used in m-privacy.

As expected, increasing k causes more records in each
equivalence group and higher query error. Varying l changes
quality of anonymization results in an non-monotonic way that
depends on the distribution of sensitive values in the dataset.
However, execution times are shorter for decreasing k or l
values because less partitions are created.

VI. RELATED WORK

Privacy preserving data analysis and publishing has received
considerable attention in recent years [1], [2], [3]. Most work
has focused on a single data provider setting and considered
the data recipient as an attacker. A large body of literature [2]
assumes limited background knowledge of the attacker and de-
fines privacy using relaxed adversarial notion [9] by consider-
ing specific types of attacks. Representative principles include
k-anonymity [10], [11], l-diversity [9], and t-closeness [12].
Few recent works have modeled the instance level background



knowledge as corruption and studied perturbation techniques
under these weak privacy notions [20]. In the distributed set-
ting we studied, since each data holder knows its own records,
the corruption of records is an inherent element in our attack
model and is further complicated by the collusive power of
the data providers. On the other hand, differential privacy [1],
[3] is an unconditional privacy guarantee for statistical data
release or data computations. While providing a desirable
unconditional privacy guarantee, non-interactive data release
with differential privacy remains an open problem. Many
different anonymization algorithms have been introduced so
far including Datafly [21], Incognito [22], and Mondrian [16].
In our research we considered the Mondrian algorithm as a
baseline because its efficiency and extensibility.

There are some work focused on anonymization of dis-
tributed data. [5], [6], [23] studied distributed anonymization
for vertically partitioned data using k-anonymity. Zhong et
al. [24] studied classification on data collected from individual
data owners (each record is contributed by one data owner)
while maintaining k-anonymity. Jurczyk et al. [25] proposed
a notion called l′-site-diversity to ensure anonymity for data
providers in addition to privacy of the data subjects. Mironov
et al. [26] studied SMC techniques to achieve differential
privacy. Mohammed et al. [4] proposed SMC techniques
for anonymizing distributed data using the notion of LKC-
privacy to address high dimensional data. Our work is the
first that considers data providers as potential attackers in the
collaborative data publishing setting and explicitly models the
inherent instance knowledge of the data providers as well as
potential collusion between them for any weak privacy.

VII. CONCLUSIONS

In this paper, we considered a new type of potential at-
tackers in collaborative data publishing – a coalition of data
providers, called m-adversary. To prevent privacy disclosure
by any m-adversary we showed that guaranteeing m-privacy
is enough. We presented heuristic algorithms exploiting equiv-
alence group monotonicity of privacy constraints and adaptive
ordering techniques for efficiently checking m-privacy. We
introduced also a provider-aware anonymization algorithm
with adaptive m-privacy checking strategies to ensure high
utility and m-privacy of anonymized data. Our experiments
confirmed that our approach achieves better or comparable
utility than existing algorithms while ensuring m-privacy
efficiently.

There are many remaining research questions. Defining a
proper privacy fitness score for different privacy constraints is
one of them. It also remains a question to address and model
the data knowledge of data providers when data are distributed
in a vertical or ad-hoc fashion. It would be also interesting to
verify if our methods can be adapted to other kinds of data
such as set-valued data.
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