
A Scalable Cooperative Semantic Caching
(CoopSC) Approach to Improve Range Queries

Andrei Vancea∗, Laurent d’Orazio†, Burkhard Stiller∗
∗ Department of Informatics (IFI), University of Zürich, Zürich, Switzerland

† Blaise Pascal University - LIMOS, France
Email: {vancea, stiller}@ifi.uzh.ch, laurent.dorazio@isima.fr

Abstract—Semantic caching is a technique used for optimizing
the evaluation of database queries by caching results of old
queries and using them when answering new queries. CoopSC
is a cooperative database caching approach, which extends the
classic semantic caching approach by allowing clients to share
their local caches in a cooperative matter. Cache entries of all
clients are indexed in a distributed data structure constructed
on top of a Peer-to-Peer (P2P) overlay network. This distributed
index is used for determining those cache entries that can be used
for answering a specific query. Thus, this approach decreases the
response time of database queries and the amount of data sent
by database server, because the server only answers those parts
of queries that are not available in the cooperative cache. The
approach has been validated and experiments show that CoopSC
improves the performance of range queries.

Index Terms—Cooperation in P2P, Semantic Caching, Data
Base, P2P Application, Implementation.

I. INTRODUCTION

A way of achieving scalability in database management sys-
tems is to effectively utilize resources (storage, CPU) of client
machines. Client side caching is a commonly used technique
for reducing the response time of database queries [5]. Seman-
tic caching [8] is a database caching approach, in which results
of old queries are cached and used for answering new queries.
A new query will be split in a part that retrieves the portion of
the result that is available in a local cache (probe query) and
a query that retrieves missing tuples from the database server
(remainder query). This approach is especially suited for low-
bandwidth environments or when the database server is under
heavy load. Semantic caching was successfully applied for
optimizing the execution of queries on mobile clients or over
loosely-coupled wide-area networks [16]. Semantic caching
requires more resources on clients. Storage is needed for
storing cache entries. Clients’ CPU usage will also increase,
because they, locally, execute the probe sub-query.

In most applications, database servers are queried by multi-
ple clients. When using the classic semantic caching approach,
clients store and manage their own local caches independently.
If the number of clients is high, the amount of data sent
by database server and queries response times can rapidly
increase even when caching is used. The performance can
be further improved by allowing clients to share their entries
in a cooperative way. Another limitation of existing semantic
caching solutions is that they do not handle update queries.

Modification performed in the database are not propagated to
cache entries stored by clients.

Peer-to-peer (P2P) networks have been applied successfully
for enhancing beyond the traditional client-server communi-
cation, thus, they are applicable to the distribution problem
outlined. E.g., the CoopNet [15], uses a cooperative network
caching architecture for solving Web flash crowd scalability
problems. These results show that a cooperative P2P-based
caching approach significantly increase the performance of
client-server architectures under heavy load.

Like for most existing database cache architectures [8], the
major aim of CoopSC is the enhancement of the performance
of read-intensive query workloads. Such types of workloads
are frequently used in many type of applications, including
decision-support systems. Select-project queries, where the
predicate is a n-dimensional range condition, are commonly
used when queries dimensional data (e.g., geographic informa-
tion). Thus, again, the real-life case is considered with a high
priority. Furthermore, with the emergence of cloud computing
infrastructures, using a cooperative database caching approach
can have economic advantages, because cloud providers usu-
ally bill data transferred between cloud environment and the
outside world. Thus, the minimization of amount of data sent
by database server can achieve such a cost reduction.

CoopSC decreases the response time of database queries,
because servers only handle the portions of queries that can
not be answered using the cooperative cache. Also, the amount
of data sent by database servers can be significantly reduced.

The following examples do illustrate suitable applications of
the approach. In the context of an international seismological
research project, consider a central database that stores data
about earthquakes. For each earthquake, the database keeps
the location (latitude, longitude), the time of the event, the
magnitude and other relevant information. The database is
accessed by clients which are located in different research
centers across the world. The research centers need data about
the events that happened in a particular area, in specified
interval of time and of a certain magnitude. This type of
interrogations can be easily expressed as a n-dimensional
range query. Because such a database is usually very large,
the database server has to send a large amount of data. A
cooperative caching approach can significantly reduce this
amount of data. Consider the following example: client C1

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247093

asks for the events the happened in the area between (20, 20)
and (40, 40) (Q1: select * from earthquakes where 20 < lat
and lat < 40 and 20 < long and long < 40). The server
returns the result set, and the client stores it in the local cache.
Client C2 asks for the earthquakes that happened in the area
between (30, 30) and (50, 50) (Q2: select * from earthquakes
where 30 < lat and lat < 50 and 30 < long and long < 50).
As it can be clearly seen, the two areas overlap. Thus, Q2

will be split in a remote probe, which will be sent to C1, that
returns the events that happened between (30, 30) and (40,
40) (select * from earthquakes where 30 < lat and lat < 40
and 30 < long and long < 40) and a remainder that returns
the missing tuples from the server (select * from earthquakes
where 39 < lat and lat < 50 and 30 < long and long < 50
or 30 < lat and lat < 40 and 39 < long and long < 50).

Using the CoopSC approach within a cloud-computing in-
frastructure presents economic advantages because most cloud
providers (e.g., Amazon EC2, Rackspace) bill data transferred
between cloud environment and outside world. Two scenarios
are considered (Figure 1): a) an operational database is running
within a cloud environment while clients are running outside.
b) several nodes run inside a cloud environment in order to
performed specific tasks which use data that originate from a
database which is running outside the cloud. In both scenarios,
using the CoopSC approach reduces the amount of data sent
by database server and thus, reduces the amount of money that
has to be paid for data transfer.

 a) b)

Fig. 1. Cloud Computing Scenarios

Therefore, the Cooperative Semantic Caching (CoopSC)
approach extends the general semantic caching mechanism
by using a P2P approach in order to enable clients to share
their local semantic caches in a cooperative manner. When
executing a query, the content of both the local semantic cache
and entries stored in caches of other clients can be used.
Solutions must be provided for allowing clients to efficiently
discover and use cache entries stored by other peers. Handing
update statements is another important issue that CoopSC must
tackle.

This paper is organized as follows: While Section II dis-
cusses related work, Section III outlines the design of CoopSC
approach. The evaluation of the approach is presented in
Section IV. Section V discusses some issues related to ad-
ministration of CoopSC deployments and types of workloads
that benefit from using it. Finally, some concluding remarks
are given in Section VI.

II. RELATED WORK

Client side caching is a commonly used technique for
reducing the response time of database queries [5]. Classic
client-side caching approaches include page and tuple caching.
When using page caching, clients cache pages of fixed size.
Queries are processed on client side down to the level of page
access. If a particular page is not found in local page, a request
is sent to database server and the missing page is transferred.
The page caching system is implemented using mechanisms
which are similar with the one used in the implementation
of page-based database buffer managers. When tuple caching
is used, clients cache individual tuples (or objects). This
approach offers maximum flexibility, but it can suffer from
performance problems caused by sending a large number of
small messages.

The semantic caching approach which, was introduced in [8]
as the basic concept, caches results of old queries and allows
these results to be used for answering new queries. This
paper describes semantic caching concepts and compares the
approach with page and tuple caching. The cache is organized
into disjoint semantic regions. Each semantic region contains
a set of tuples and a constraint formula, which describes the
common property of the tuples. Simulations were performed
for single and double attribute selection queries. These simu-
lations show that semantic caching outperforms both tuple and
page caching. [12] runs an extensive performance study of a
semantic caching prototype implementation for range queries
up to four attributes. Experiments were performed using the
Wisconsin benchmark [4] data set, show that semantic caching
decreases both the response time and the amount of data
sent by database server for one and two-dimensions selection
queries, while for queries with higher dimensions the decrease
is only significant in regards to the amount of data sent by
server. However, the classic semantic caching approach - as
referred to in [8] and [12] - does not handle update queries.

The predicate caching approach, presented in [13], caches
locally results of old queries together with predicates that
describe cache’s content. A subsequent query may be answered
from local cache if it can be determine that its results are
totally contained in the local cache. The approach supports
select-project-join queries. Because storing and processing
exact cache predicate descriptions might be computational
expensive, the predicate caching solutions keeps only a con-
servative approximative cache description, which guarantees
that data thought to be in the cache is present in it. Further-
more, compared with semantic caching [8], predicate caching
approach stores cache entries that do not necessary have to
be disjoint. On one hand, duplicate data could be stored
in different cache entries, which might negatively influence
the performance of the caching system. On the other hand,
making sure the all cache entries are disjoint might be time-
wise expensive, especially when more complex select-project-
join queries types are supported. Predicate caching also sup-
ports update statements. Modifications are initially performed
locally and only sent to database server when new local

queries can not be computed locally and are sent to servers.
When conflicts occur, the approach provides mechanism for
canceling transactions.

XCache [6] determines a semantic caching architecture
developed for XML (eXtended Markup Language) queries.
The system implements algorithms for checking the query
containment for XQueries and algorithms that perform query
rewriting. However, update queries are also not handled in [6].

Furthermore, these three approaches described in [8], [13]
and [6] do not allow clients to share their caches in a
cooperative way. Thus, only local cache entries can be used
for answering queries.

The Wigan system [7] caches old results of database queries
in order to answer new queries and to allow for the cached
entries to be shared between clients. Wigan supports only
queries that can be expressed as conjunctions of single at-
tribute range conditions. A cached query Q1 can be used for
answering a query Q2 only, if Q2 is strictly subsumed by
Q1. In real world applications, the number of cases, in which
this happens, is limited. Another drawback of this approach
is that is uses a centralized tracker in order to determine,
which cached entries can be used when answering a new query.
A centralized approach will show in certain cases scalability
and reliability problems, since the tracker represents a single
point of failure. This can be avoided in a fully decentralized
approach. Furthermore, Wigan does not handle update queries,
too.

[14] describes a cooperative caching architecture for an-
swering XPath queries with no predicates. The approach works
with the XML data model and supports simple XPath queries
that have no selection predicates. XPath queries assume a hier-
archical XML structure and return a sub-tree of this structure.
When answering a query, the XPath approach searches for a
cache entry that strictly subsumes the given query. Thus, in
consequence, partial hits are not supported. Another problem
with this approach is that is does not handle update queries as
well.

The Dual Cache approach [10] is a caching service built on
top of the Gedeon data management system [9]. The system
performs a separation between query and object caches. It also
allows cache entries of clients to be shared in a cooperative
matter. The cooperation is done using a flooding approach,
but the system allows new types of cache resolution to be
added. In order to overcome the scalability issues of flooding,
client are divided into communities. Thus, only clients that are
in the same community can cooperate. Dual Cache handles
non-range predicates only (e.g.: lat = 20 and long = 50) and
supports only strict hits between query entries. Update queries
are also not handled.

Therefore and in summary, Table I illustrates the key dif-
ferences between the cooperative semantic caching approaches
investigated as related work as well as outlining already for
comparing dimensions the new CoopSC approach, which will
be developed within this project.

Other research projects aim at the provisioning of coopera-

TABLE I
COOPERATIVE SEMANTIC CACHING APPROACHES

Approach Data
Model

Query
Types

Hit
Types

Resolution Update

Wigan [7] Relational Simple
range
selections

Strict Centralized
tracker

No

XPath
Index-
Cache [14]

XML XPath (no
predicates)

Strict Distributed
Index

No

Dual
Cache [10]

Gedeon Non-range
queries

Strict Flooding No

CoopSC [20] Relational Range
select-
project
queries

Strict,
Partial

Distributed
Index

Yes

tive caching facilities in Web environments. For example, [15]
presents CoopNet, a cooperative network architecture, where
clients cooperate in order to improve the overall network
performance. It is described how CoopNet is used for solving
Web flash crowd scalability problems. In this approach, clients
that have already downloaded Web content, start serving the
content to other clients, relieving the server of this task. The
redirection of requests from the server to other clients is
handled by a centralized component running at the server side.
Thus, this approach does not integrate the distribution aspect.

Squirrel [11] is a decentralized, P2P Web caching system. It
enables Web browsers to share their local caches in a scalable
matter. All Web clients are a part of a P2P overlay based on the
Pastry [17] system. Each URL (Uniform Resource Locator) is
associated with a node from the P2P overlay, which is called
the home node. This association is done by applying a hash
function on the URL and choosing the node with the closest
ID to the hash value. Two approaches are implemented: Home-
Store and Directory. When the Home-Store approach is used,
Squirrel stores objects both at client caches and at its home
node. In the Directory approach, home nodes only store the
IDs of other existing nodes the have the relevant content.

Thus, existing cooperative semantic caching systems lack
the support of complex query types. There are no approaches
in place, which handle generic n-dimensional range selections.
Another limitation of existing solutions is the way in which
cache entries are used for answering a new query: existing
approaches only look for an entry that strictly subsumes the
query. Thus, combining multiple entries in order to answer a
given query is not supported. Furthermore, most approaches
do not provide a scalable way of finding which entries are
suitable for answering new queries. Another challenge being
faced with is the design of an efficient mechanism for han-
dling update queries that will be applied to both classic and
cooperative semantic caching approaches. Compared with the
classic materialized views solutions, query rewriting and han-
dling update statements is the context of cooperative semantic
caching presents many aditional scalability challenges which
the CoopSC project solve. The CoopSC projects solves these
challenges in a distributed environment as mentioned above,
while the CoopSC’s very basic idea has been published in [20].

III. DESIGN OF THE COOPSC APPROACH

The Cooperative Semantic Caching (CoopSC) approach
extends the general semantic caching mechanism by enabling
clients to share their local semantic caches in a cooperative
manner. When executing a query, the content of both the local
semantic cache and entries stored in caches of other clients can
be used. A new query will be split into probe, remote probe,
and remainder sub-queries using a query rewriting process.
The probe retrieves the part of the answer, which is available in
the local cache. Remote probes retrieve those parts of the query
which are available in caches of other clients. The remainder
retrieves the missing tuples from the server.

In order to execute the query rewriting, cache entries of
all clients will be indexed in a distributed data structure
built on top of a Peer-to-peer (P2P) overlay that is formed
by all clients which are interrogating a particular database
server. Additionally, CoopSC designs a suitable and efficient
mechanism for handling update queries. When the content
of the database is changed, modifications are reflected in the
cooperative cache.

CoopSC handles the execution of n-dimensional select-
project queries. Similarly with the approach presented in [8],
the local cache is organized into disjoint semantic regions. A
semantic region is defined as a set of tuples and a constrained
formula which determines the common property of the tuples.
Clients interrogating a specific database server form the P2P
overlay network, which is used for indexing the semantic
regions.

Semantic regions are stored, in-memory, by the Cache
Manager [20]. The Cache Manager also implements a replace-
ment policy which is orthogonal to this proposal. Each client
manages its local cache entries independently. As a result,
popular entries will be automatically replicated to multiple
clients and thus the scalability of this approach is increased.

Figure 2 describes the main structures which are
used for representing semantic regions and queries. The
SemanticRegion structure contains an unique identifier, the
name of the table, the set of fields, the predicate which
describes it, and the set of tuples which determines the content
of region. A query is defined by the name of table, the set of
fields and the predicate.

Based of structures presented in Figure 2, is what follows
the concepts of intersection and subsumption between queries
and regions will be clearly defined. These concepts will be
used in the later parts of this section.

Definition 1: Let r be a semantic region and q a query. r
and q are said to vertically intersect if r.table = q.table and
r.fields ∩ q.fields 6= ∅.

Example 1: Let:
r1 = (10, wisconsin, {unique1, unique2, two}, unique1 <

10,{. . . })
r2 = (11, wisconsin, {unique2, four}, unique1 < 10, {. . . })
two semantic regions and
q = (wisconsin, {unique1, two}, unique1 < 40)
a query.

STRUCTURES

struct SemanticRegion
id : int
table : string
fields : FieldsSet
pred : Predicate
ntuples : NTuples

struct Query
table : string
fields : FieldsSet
pred : Predicate

Fig. 2. CoopSC Structures

r1 and q vertically intersect, while r2 and q do not because
their fields do not intersect.

Definition 2: Let r be a semantic region and q a query. r
and q are said to horizontally intersect if r.table = q.table
and the predicate q.pred ∧ r.pred is satisfiable.

Example 2: Let:
r1 = (10, wisconsin, {unique1, unique2}, unique1 < 10,

{. . . })
r2 = (11, wisconsin, {unique2, unique2}, unique1 > 100,

{. . . })
two semantic regions and
q = (wisconsin, {unique1, two}, unique1 < 40)
a query.
r1 and q horizontally intersect, while r2 and q do not

because the predicate (unique1 > 100) ∧ (unique1 < 40)
is not satisfiable.

Definition 3: Let r be a semantic region and q a query.
r and q are said to intersect if they vertically intersect and
horizontally intersect.

If a semantic region R intersects a given query Q, it can
be used for partially answering Q. Query will be split in a
sub-query that can be answered using R and sub-queries for
which R does not provide relevant tuples.

Definition 4: Let r1 and r2 be two semantic regions. r1
and r2 are said to be disjoint if r1.table 6= r2.table or
r1.fields ∩ r2.fields = ∅ or the predicate r1.pred ∧ r2.pred
is not satisfiable.

Example 3: Let:
r1 = (10, wisconsin, {unique1, unique2, two, four},

unique1 < 10, {. . . })
r2 = (11, wisconsin, {unique1, unique2, two}, unique1 >

100, {. . . }
r3 = (12, wisconsin, {unique2, four}, unique1 > 0, {. . . }
three semantic regions.
r1 and r2 are disjoint, while r1 and r3 are not because

(unique1 < 10) ∧ (unique1 > 0) is satisfiable.
Definition 5: Let r be a semantic region and q a query. It

is said that r vertically subsumes q if r.table = q.table and
r.fields ⊇ q.fields.

Example 4: Let:

r1 = (10, wisconsin, {unique1, unique2, two, four},
unique1 < 10, {. . . })
r2 = (11, wisconsin, {unique1, unique2, two}, unique1 <

10, {. . . }
two semantic regions and
q = (wisconsin, {unique1, four}, unique1 < 40)
a query.
r1 vertically subsumes q, while r2 does not because

r2.fields 6⊇ q.fields.
Definition 6: Let r be a semantic region and q a query. It

is said that r horizontally subsumes q if r.table = q.table and
q.pred⇒ r.pred.

Example 5: Let:
r1 = (10, wisconsin, {unique1, unique2}, unique1 < 100,

{. . . })
r2 = (11, wisconsin, {unique2, unique2}, unique1 < 50,

{. . . })
two semantic regions and
q = (wisconsin, {unique1, two}, unique1 < 70)
a query.
r1 horizontally subsumes q, while r2 does not because

(unique1 < 70) 6⇒ (unique1 < 50).
Definition 7: Let r be a semantic region and q a query. It

is said that r subsumes q if r vertically subsumes q and r
horizontally subsumes q.

If region R subsumes query Q, Q can be answered com-
pletely using the content of R. Thus, subsumption is a much
stronger condition than intersection.

A. Query Rewriting

The query rewriting process (illustrated in Figure 3) de-
termines parts of a given query that can be answered using
local cache (probe), caches of other clients (remote probe)
or database server (remainder) and the way in which they
are combined in order to return the final query result. This
process is executed by a component, running on client side,
called Query Rewriter. The result of query rewriting process is
a query plan tree, which describes how query is to be executed.
Initially, the query rewriting checks entries stored in local
cache (Local Rewriting). Afterwards, the distributed index is
interrogated in order to determine remote cache entries which
can be used for answering given query (Distributed Rewriting).

This section will, first, describe the structure of query plan
trees. Afterwards, the local and distributed rewriting process
will be presented.

1) Query Plan Tree: As mentioned, the result of query
rewriting process is a query plan tree (exemplified in Figures
5 and 6). Its leafs refer semantic regions (stored locally or
remotely) or sub-query which are to be executed by database
server.

A query plan tree contains types of nodes for executing
union and join operations, selecting tuples from local cache
entries (SelectProject), returning the content of specified re-
gion (Region), executing given query on server(Remainder)
and returning result of a query plan tree executed on a different
CoopSC client (Remote).

Local Rewriting

Distributed
Rewriting

. . .
Probe

Query

Local Cache

Distributed
Index

RemainderRemote
Probe

Remote
Probe

Fig. 3. Query Rewriting

2) Local Rewriting: The Local Rewriting process scans
local cache and determines which semantic regions can be
used for answering a given query. The result of local rewriting
is an initial query plan tree which only contains references to
local cache or database server (exemplified in Figure 5).

Each region is compared with given query. Figure 4 illus-
trates the possible relations between given query and current
semantic region:

a) region and query do not intersect; current region is not
used for answering query.

b) region subsumes query; query can be completely an-
swered using current semantic region.

c) region vertically subsumes query and horizontally inter-
sects it; query is split into two sub-queries; one can be
answered using current region, while for the other the
local rewriting will continue using the following regions.

d) region horizontally subsumes query and vertically inter-
sects it; query is split into two sub-queries; one can be
answered using current region, while for the other the
local rewriting will continue using the following regions.

e) region both horizontally and vertically intersects query;
query is split into three sub-queries; one can be answered
using current region, while for the other two the local
rewriting will continue using the following regions.

 a) b) c) d) e)

Query

Region

Region

Query

Region

Query
Region

Query

Region

Query

Fig. 4. Region/Query Overlapping

3) Distributed Rewriting: As illustrated in Figure 3, dis-
tributed rewriting uses the distributed index in order to
determine which remote semantic regions can be used for
answering given query. The query plan tree, generated during
local rewriting is modifying by replacing Remainder nodes

Fig. 5. Local Query Plan Tree

with results of interrogations sent to distributed index. These
results can refers semantic regions stored by other clients.
Figure 6 illustrates a possible result of distributed rewriting.

Fig. 6. Distributed Query Plan Tree

B. Distributed Index

This section describes the distributed structure that is used
for indexing semantic regions. Only double attribute selections
are considered, but, afterwards, the way in which this approach
can be generalized for multi-attribute selections is presented.
As mentioned in the beginning of the section, semantic regions
are defined by a set of tuples and a predicate. Under the
given assumptions, the predicate is a double attribute selection
(Example: 10 < lat and lat < 20 and 20 < long and
long < 30). Queries are also double attribute selections (Ex-
ample: select * from earthquakes where 10 < lat and lat < 20
and 20 < long and long < 30). Double attribute selection
predicates can be represented as sets of non-overlapping axis-
aligned rectangles (Example: {(10, 10, 20, 30), (40, 50, 80,
90)}). Rectangles are represented with the coordinates of their
top-left and bottom-right corners. This representation will be
used for both semantic regions and queries.

The distributed index must be able to index semantic
regions. Removing regions from index shall also be supported.
Furthermore, given a query Q, the distributed index must
return a query plan tree that contains references to semantic
regions stored in different CoopSC clients and minimizes the
part of query which is answered by database server.

1) P2P-based Distributed Index: The distributed index is
based on the P2P index described in [19], which adapts the

classic MX-CIF quad trees [18] in order to be stored on top of
a P2P overlay. CoopSC tailors and implements this approach
for efficiently supporting distributed query rewriting.

The two-dimensional square-based area is, recursively, di-
vided into four equal-sized square blocks until a given fun-
damental maximum level, fmax is reached. Each square is
associated with a node from the P2P overlay. The association
between squares and peers is done by applying a hash function
on coordinates of squares’ center points and selecting, for each
square, the peer that has the closest ID to the hash value. Each
semantic region is indexed in the square of minimum size (thus,
maximum level) that contains given region.

Figure 7 exemplifies the quad tree space division and the
way in which four give semantic regions are indexed. Regions
R1 and R4 are indexed in the root node, since they are not
contain in any child square. R2 is totally contained in the top-
right level 2 sub-square, thus is indexed in the corresponding
level 2 node. R3 is indexed in a level 3 node.

R2

R1, R4

R3

R1

R2

R3

R4
R2

R1, R4

R3

Fig. 7. MX-CIF Quad Tree Example

As described in [19], for performance and reliability rea-
sons, the root node is not stored in the P2P overlay. Only
nodes at a level higher or equal to a given fundamental
minimum level, fmin are considered. Thus, when implemented
distributively on top of a P2P overlay MX-CIF quad trees are
transformed into forests. It is assumed that fmin is chosen
in such a way that every semantic regions is contained in a
square associated with a node of level fmin.

Figure 8 and 9 present the pseudo-codes for adding and
removing semantic region to/from distributed index. As men-
tioned, each region is added to the quad node of maxi-
mum level that contains it. Methods sendAddRegion and
sendRemoveRegion route request through the P2P overlay
until the node associated with the specified Quad is reached.

Figure 10 contains the pseudo-code for the algorithm that
handles rewriting requests within distributed index. An initial
query rewriting, similar with local rewriting, is performed
using indexed semantic regions. Afterwards, the rewriting
process continues with children quad nodes.

The distributed index can be adapted to n-dimensional
selections by dividing the n-dimensional space into 2n equal
size quads. For single attribute selections, quads are reduced
to intervals.

C. Updates

When the content of the database is changed, modifications
must be reflected in the cooperative cache. Handling updating

ADD-REGION(QN : QuadNode,R : Region)

for child : QN.children()
do if child.contains(R)

then sendAddRegion(child,R)
return

QN.regions.add(R)

Fig. 8. Distributed Index: Add Region

REMOVE-REGION(QN : QuadNode,R : Region)

for child : QN.children()
do if !child.empty() ∧ child.contains(R)

then sendRemoveRegion(child,R)
return

QN.regions.remove(R)

Fig. 9. Distributed Index: Remove Region

efficiently presents the following challenging issues: a) not
all modifications are generated directly by clients; database
server can have active components which perform changes as
result of different events; b) the update mechanism must avoid
combining region that pertain to different database snapshots.

The following example illustrates a scenario when com-
bining regions that originate from different snapshots causes
inconsistencies: client A executes Q1: “select * from persons
where 20 < age and age < 40” and caches its result in region
R1. Afterwards, client B updates the age of a person from 25
to 50. Finally, A execute Q2: “select * from persons where
20 < age and age < 60” which is split in a probe which
returns region R1 and a remainder which executes “select *
from persons where 39 < age and age < 60” on server-side
and returns result. The updated person will be present both in
region R1 and also in the remainder, because the modification
was performed after the execution of Q1 and thus, the final
result will be inconsistent.

CoopSC handles updates with a cooperation from the
database server. An active database server component was de-
veloped in order to handle the execution of update, insert, and
delete SQL statements using triggers. This component uses the
same quad space division as the distributed index which was
presented in the previous section. For each quad from a given
fundamental update level, fupdate (fmin ≤ fupdate ≤ fmax),
database server stores a virtual timestamp which is initialized
with 0. These timestamps are incremented when modifica-
tion are performed to tuples pertaining to particular quads.
Semantic regions are augmented with virtual timestamps of
quads they intersect at the moment of retrieval from database.
Referring to the example from figure 7 and assuming that
tupdate = 2, R1 will store four timestamps values, R2 one
timestamp, R3 also one, and R4 two timestamps.

Before rewriting a new query, client asks database server
for the virtual timestamps of the quads that intersect given
query. The rewriting process will not use entries for which

REWRITE(QN : QuadNode,Q : Query)

n← rewrite(Q,QN.regions)
for r : n.remainders()

do result← ∅
for c : QN.children()

do if c.intersects(r.query)
then

m← sendRewrite(c, r.query)
results.add(m)

r ← Union(results)
return n

Fig. 10. Distributed Index: Rewrite

some virtual timestamps are older than the ones returned by
server. If such entries are found, they are also discarded in
order to save storage space. These timestamps are also used
during distributed rewriting in order to only consider up-to-
date remote semantic regions and to discard old ones.

On one hand, an advantage of this approach is that queries
results are always up-to-date. On the other hand, this solution
can discard entries that are still valid. A modification per-
formed on a single tuple, which pertain to a particular quad
causes invalidation of all entries which intersect that quad.
Increasing the fundamental update level can reduce the number
of valid entries which are discarded, but, in the same it also
enlarges the number of virtual timestamps stored in distributed
index and regions.

Figure 11 contains the pseudo-code of the update mecha-
nism within the general query execution algorithm. Initially,
quads of level fupdate which intersect given query are deter-
mined. The timestamps of these squares are then returned from
database server. The query rewriting process is then executed
and a query plan tree returned. The query plan tree is executed
and a result returned. Afterwards, the timestamps values of
query’s squares are determined again and compare with the
original values. If differences are noticed, the result that uses
the cache is discarded, because at least a modification occurred
during query rewriting or query plan execution and system can
not guarantee that result contains only tuples from a single
database snapshot.

EXECUTE(Q : Query)

quads← query.getIntersectedSquares(fupdate)
before← database.getT imestamps(quads)
plan← rewrite(Q, before)
result← plan.execute()
after ← database.getT imestamps(quads)
if before 6= after

then return database.execute(Q)
else return result;

Fig. 11. Update Handling

IV. EVALUATION

The CoopSC approach was implemented and evaluated
using a PostgreSQL database server and a number of clients
that execute, in parallel, single and double indexed attribute
selection queries. Updates statements were also evaluated. The
EmanicsLab research testing network was used for this evalu-
ation. Clients are running in 10 nodes located across Europe,
while the database server runs on a more powerful machine
located in Zurich. During the evaluation, three scenarios were
used: cooperative semantic caching approach, classic semantic
caching and no caching approach.

The evaluation was done using the Wisconsin benchmark [4]
relation of 10 million tuples, where each tuple contains 208
bytes of data. Each query is a range selection on either the
unique1 attribute (Example: select * from wisconsin where
4813305 < unique1 and unique1 < 4823306) or on unique1 and
unique2 (Example: select * from wisconsin where 4813305
< unique1 and unique1 < 4823306 and 23000 < unique1 and
unique1 < 33000). Similarly with the evaluation of other cache
architectures [5], [6], queries executed by each client have a
semantic locality. For each client, the centerpoints of queries
were randomly chosen to follow a normal distribution curve
with a particular standard deviation. For each experiment,
clients first execute warm-up queries until cache is filled.
The response time, for each client, is calculated by averaging
the response time of 10 testing sessions of 50 queries each.
The error bar is calculated using these 10 values. For each
scenario, the total amount of data sent by database server
is also measured. Furthermore, for the cooperative caching
scenario, in each session, numbers of tuples that originated
from the local cache, remote caches and the database server
are determined. Local and peers hit rates are computed for
the cooperative caching scenario. The local hit rate is defined
as the percent of tuples from result sets that originated from
the local cache, while peers hit rate refers to tuples that were
returned from caches of the other clients.

Thus, in each experiment, four measurements are made: the
first two compare the cooperative semantic caching approach
with classic semantic caching and no caching scenario, in the
relation to (a) query response time and (b) amount of data sent
by database server. The other two measurements refer only to
the cooperative caching approach and determine (c) tuples’
origin (d) and hit rates.

For single attribute selections experiments, the distributed
index was configured with the following parameters fmin =
10, fmax = 18, fupdate = 15. For the double attributes
workload these paramenters were fmin = 15, fmax =
20, fupdate = 18.

The first experiment measures how the variation of the
size of clients’ caches influences the performance of the
two caching approaches for single-attribute selections. The
size of clients’ caches are varied from 0 to 192 MB. This
experiment uses 10 clients. These workloads have standard
deviations of 500,000. The means of the gaussian curves are
distributed uniformly over the range of the unique1 attribute.

The difference between the means of two consecutive clients
is 300,000. Key results of this experiment are presented in
Figure 12. Analyzing the response time (Figure 12a), for small
cache sizes, the difference between the two approaches is
reduced, because hit rates are small in both scenarios and
the database server has to handle executions of most queries.
While the cache sizes increase, the benefits of the cooperative
caching approach become more visible. For large cache sizes,
the difference becomes again reduced, because a large part
of queries can be answered completely by accessing only
the local cache and, thus, in many situation the cooperative
cache is not needed. In the semantic caching approach, the
number of tuples sent by the database server is reduced,
because the database server only sends parts of queries which
are missing from the local cache. The cooperative approach
further decreases the number of tuples sent because clients
can also transfer tuples from caches of other peers. Graph
12c illustrates the origin of tuples for the cooperative caching
approach. For small cache size, most tuples are returned
from the database server. As cache size increases, both the
number of tuples returned from the local cache and caches of
other clients increase. For larger cache size, number of tuples
returned from caches of other peers decreases because most
queries can be answered using entries from the local cache and
thus, cooperation is reduced. Hit rates have a similar behavior
(Figure 12d). For small cache size both the local and peers hit
rate are reduced. Increasing cache size causes the increase of
both hit rates. The peers hit rate reaches a maximum, and then
starts to decrease because the need of cooperation decreases.

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180

R
es

po
ns

e
tim

e
(s

)

Cache Size (MB)

Semantic Caching
Cooperative Semantic Caching

(a) Response Time

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160 180

N
o.

 o
f t

up
le

s
(in

 m
ill

io
n

s)

Cache Size (MB)

Semantic Caching
Cooperative Semantic Caching

(b) Server Tuples

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180

N
o.

 o
f t

up
le

s
(in

 th
ou

sa
nd

s)

Cache Size (MB)

Local
Peers

Server

(c) Tuples’ origin

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180

H
it

R
at

e
(%

)

Cache Size (MB)

Local
Peers

(d) Hit rate

Fig. 12. Cache Size 1D

A similar experiment was executed for two dimensional se-
lections. The workloads have standard deviations of 1,000,000
on both attributes. Queries are rectangles with sidelengths
of 300,000 and return around 9,000 tuples. The results are
illustrated in Figure 13. Except response time (Figure 13a),
the other measurements are similar with the one from the
single attribute selection. For two dimensional selections, the
time-wise cost of query rewriting and accessing the distributed

indexed is increased. For small cache size, due to the low
peers hit rate, this cost overcomes the benefits of cooperation
and thus, the cooperative caching approach performs worst
than semantic caching. With the increase of cache size, the
cooperative approach starts to outperform semantic caching
because the hit rates increase which compensates for the cost
of query rewriting.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 50 100 150 200 250

R
es

po
ns

e
tim

e
(s

)

Cache Size (MB)

Semantic Caching
Cooperative Semantic Caching

(a) Response Time

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

N
o.

 o
f t

up
le

s
(in

 m
ill

io
n

s)

Cache Size (MB)

Semantic Caching
Cooperative Semantic Caching

(b) Server Tuples

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

N
o.

 o
f t

up
le

s
(in

 th
ou

sa
nd

s)

Cache Size (MB)

Local
Peers

Server

(c) Tuples’ origin

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50 100 150 200 250

H
it

R
at

e
(%

)

Cache Size (MB)

Local
Peers

(d) Hit rate

Fig. 13. Cache Size 2D

The third experiment investigates how update statements
influence the performance of the two caching approaches. The
size of clients’ cache is 64 MB. The workload consists of a
sequence of alternative selection and update sessions. Selec-
tion sessions are generated similarly with the first experiment.
Update sessions contain a number of updates statements which
modify a single tuple chosen randomly based on the normal
distribution used for the selection sessions. The number of
update statements per session is varied from 0 to 150. Figure
14 illustrates the results of this experiment. While the number
of update statements per session increases, the performance of
both caching systems starts to decrease because update state-
ments invalidate an increasing number of cache entries. Thus,
both the query response time (Figure 14a) and the number of
tuples sent by database server (Figure 14b) increase. For the
cooperative caching approach, increasing the number of update
statements causes an increase of tuples that originate from
the database server and decreases amount of data returned
from either the local or remote caches (Figure 14c). Both the
local and peers hit rate decrease with the increase of update
statements due to the invalidation of cache entries (Figure
14d).

The last experiment measures how varying queries’ locality
influences the performance of both caching approaches. The
size of clients’ cache is 64 MB. The experiment uses 10
clients. The workloads’ standard deviations are varied from
100,000 to 1,000,000. Figure 15 illustrates the results of
this experiment. Increasing standard deviation of workloads
decreases access locality and thus, the performance of both
caching systems decreases (Figure 15a b). In the cooperative

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140

R
es

po
ns

e
tim

e
(s

)

Updates

No Caching
Semantic Caching

Cooperative Semantic Caching

(a) Response Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 20 40 60 80 100 120 140

N
o.

 o
f t

up
le

s
(in

 m
ill

io
n

s)

Updates

No Caching
Semantic Caching

Cooperative Semantic Caching

(b) Server Tuples

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100 120 140

N
o.

 o
f t

up
le

s
(in

 th
ou

sa
nd

s)

Updates

Local
Peers

Server

(c) Tuples’ origin

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 20 40 60 80 100 120 140

H
it

R
at

e
(%

)

Updates

Local
Peers

(d) Hit rate

Fig. 14. Updates

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
tim

e
(s

)

Deviation (x1000)

No Caching
Semantic Caching

Cooperative Semantic Caching

(a) Response Time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100 200 300 400 500 600 700 800 900 1000

N
o.

 o
f t

up
le

s
(in

 m
ill

io
n

s)

Deviation (x1000)

No Caching
Semantic Caching

Cooperative Semantic Caching

(b) Server Tuples

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

N
o.

 o
f t

up
le

s
(in

 th
ou

sa
nd

s)

Deviation (x1000)

Local
Peers

Server

(c) Tuples’ origin

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800 900 1000

H
it

R
at

e
(%

)

Deviation (x1000)

Local
Peers

(d) Hit rate

Fig. 15. Deviation

caching approach, increasing the standard deviation causes the
number of tuples returned from the local cache to decrease,
while the number of tuples returned from the server increases.
The number of tuples returned from remote peers initially in-
creases, because lowering access locality increases the need to
cooperate. A further increase of standard deviation decreases
also the amount of data returned from remote peers because
with a general low access locality, relevant entries will not be
found in other peers (Figure 15c). The local hit rate decreases
with the increase of the standard deviation while peers hit rate
initially increases and then decreases (Figure 15d).

V. DISCUSSION

As presented in the Section III, the distributed index must be
initially configured by specifying the fmin and fmax param-
eters. For this, it is assumed that system administrator has a
priori knowledge about the type of workloads clients execute.
These values must makes sure that the distributed tree structure
has limited depth, in order to lower the communication costs,
and, in the same time, it must determine a good distribution

of indexed cache entries between nodes.
Assuring consistency represents an important issue when

designing the updates mechanism of the CoopSC approach,
because query results are determined by combining cache
entries stored by clients and tuples returned from database
server. As described in Section III-C, if these components
pertain to different database snapshots, query results might be
inconsistent. In order to overcome this problem, CoopSC sends
update statements directly for execution to database server and
stores, in a separate table, virtual timestamps. Thus, before
every query execution, clients request virtual timestamps that
intersect given query from database. Because the number of
returned timestamps is much smaller than size of query result
set, performance costs of returning these values is minimal.
Each tuple modification increments the corresponding virtual
timestamp and so, a write-intensive workload can be negatively
influence by the caching approach. Thus, CoopSC, similarly
with other caching architecture, is suited for application in
which queries return a large number of tuples and modification
are infrequent. Another advantage of this approach is that it
also works in scenarios when not all updates originate from
clients that use CoopSC.

While Section IV presents only the evaluation for single
and double-attributes selections, the CoopSC approach and its
implementation support generic n-dimensional queries. The
performance of higher dimensions queries for the classic
semantic caching approach is described in [12]. Due to in-
creased time-wise cost of query rewriting, the performance
benefits are only significant in regards to amount of data
sent by database server while query response time can even
increase. The rewriting process of the CoopSC approach is
more complex, because it accesses the distributed index, and
thus, the expected benefits of CoopSC for multi-dimensional
workloads are limited.

Since CoopSC uses relation model, it can be easily adapted
to be used with SQL-based cloud providers, such as Microsoft
SQL Azure [3], Amazon RDS [1] or Hive [2]. Investigating
the performance of CoopSC on top of these providers remains
an interesting future work direction.

VI. CONCLUSIONS

The CoopSC approach determines a cooperative semantic
caching architecture, that optimizes the execution of database
queries by caching old query results in order to answer new
queries, allowing clients to share their cache entries in a coop-
erative matter. CoopSC supports n-dimensional range select-
project queries. Update queries are also handled. The design
of the CoopSC approach was described and major details
outlined. The proposed approach was evaluated and compared
with the classic semantic caching approach. These evaluation
results show that CoopSC, especially by applying distributed
principles and the P2P overlay techniques in particular, reduces
the response time of range selection queries and the amount of
data sent by database server for read-intensive workloads. The
benefits for workloads with a significant number of updates

statements are limited due to the increased invalidation of
cache entries.

Thus, the CoopSC approach shows that using a cooperative
semantic caching approach can increase the performance of
database systems by reducing queries’ response time and the
amount of data sent by a database server. Further experiments
will investigate how cloud based solutions can benefit from
using cooperative semantic caching approaches.

ACKNOWLEDGEMENT

This work was supported by the CoopSC project funded by
the Swiss National Science Foundations, Contract No. 200021-
134679/1.

REFERENCES

[1] Amazon rds. http://aws.amazon.com/rds.
[2] The hive project. http://wiki.apache.org/hadoop/Hive.
[3] Microsoft sql azure. http://www.microsoft.com/en-

us/sqlazure/default.aspx.
[4] Dina Bitton and Carolyn Turbyfill. A retrospective on the wisconsin

benchmark. Readings in database systems, 1988.
[5] Michael J. Carey, Michael J. Franklin, Miron Livny, and Eugene J.

Shekita. Data caching tradeoffs in client-server dbms architectures.
SIGMOD Record, 20(2), 1991.

[6] Li Chen, Elke A. Rundensteiner, and Song Wang. Xcache: a semantic
caching system for xml queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2002.

[7] Nicholas Coleman, Rajesh Raman, Miron Livny, and Marvin Solomon.
A peer-to-peer database server based on bittorrent. Technical Report
10891, School of Computing Science, Newcastle University, 2008.

[8] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh Srivastava,
and Michael Tan. Semantic data caching and replacement. In Proceed-
ings of the VLDB, 1996.

[9] Yves Denneulin, Cyril Labbé, Laurent d’Orazio, and Claudia Roncancio.
Merging file systems and data bases to fit the grid. In Data Management
in Grid and Peer-to-Peer Systmes, 2010.

[10] Laurent d’Orazio and Mamadou Kaba Traoré. Semantic caching for per-
vasive grids. In Proceedings of the International Database Engineering
and Applications Symposium (IDEAS), 2009.

[11] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: a
decentralized peer-to-peer web cache. In Proceedings of the Annual
Symposium on Principles of Distributed Computing (PODC), 2002.

[12] Björn Þór Jónsson, María Arinbjarnar, Bjarnsteinn Þórsson, Michael J.
Franklin, and Divesh Srivastava. Performance and overhead of semantic
cache management. ACM Transactions on Internet Technology, 6(3),
2006.

[13] Arthur M. Keller and Julie Basu. A predicate-based caching scheme for
client-server database architectures. The VLDB Journal, 5, 1996.

[14] Kostas Lillis and Evaggelia Pitoura. Cooperative xpath caching. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, 2008.

[15] Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. The case for
cooperative networking. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[16] Qun Ren and Margaret H. Dunham. Using semantic caching to manage
location dependent data in mobile computing. In Proceedings of the
MobiCom, 2000.

[17] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems. In
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 2001.

[18] Hanan Samet. The quadtree and related hierarchical data structures.
ACM Computing Surveys, 16, 1984.

[19] Egemen Tanin, Aaron Harwood, and Hanan Samet. Using a distributed
quadtree index in peer-to-peer networks. The VLDB Journal, 16, 2007.

[20] Andrei Vancea and Burkhard Stiller. Coopsc: A cooperative database
caching architecture. In Proceedings of the WETICE, 2010.

