
Constant-Time Operation Transformation and
Integration for Collaborative Editing

Weihai Yu
University of Tromsø, Norway

Email: weihai@cs.uit.no

Abstract—Operational transformation (OT) is the concurrency
control mechanism for collaborative editors, due to its high
responsiveness to local editing operations. However, collaborative
editing is still not widely practiced. One of the reasons is that
operation transformation and integration are computation inten-
sive and time consuming. The state-of-the-art time complexity is
currently O(|H|), where |H| is the length of operation histories,
which can be large and grow indefinitely. Moreover, most of the
published work is limited with character operations, leading to
long operation histories and impractically large number of small
messages over the network. This paper presents an approach that
supports string operations and constant-time operation transfor-
mation and integration. The approach is based on admissibility
preservation, a correctness criterion with which the correctness
of the approach can be formally proven.

Keywords: group editor, operational transformation, con-
currency control, performance, admissibility preservation

I. INTRODUCTION

A collaborative editor allows multiple users to simultane-
ously edit the same document from different places. It is
known that concurrency control mechanisms based on mutual
exclusion do not provide suitable responsiveness for collabo-
rative editing. Over the years, operational transformation (OT)
has been well established as a concurrency control mechanism
commonly regarded as appropriate for collaborative editors
[1]–[12].

Since the initial work of Ellis and Gibbs two decades ago
[1], OT has been an active research subject and significant
progress has been made. However, collaborative editing is still
not widely practiced. There are several reasons for this.

• Correctness. Although the concept of OT is intuitive at
its appearance, designing correct operation transforma-
tion functions is non-trivial. Counterexamples have been
found for many published transformation functions. It
was as late as last year that a correctness criterion was
introduced that can be practically used to formally prove
the correctness of OT systems [5].

• Performance. Although OT provides high responsiveness
for local editing operations, the time for transforming
and integrating remote operations is often dependent on
|H|, the length of the history of editing operations. Most
of the earlier work has time complexity O(|H|2). The
state-of-the-art is O(|H|) [9], [10]. |H| is typically large
and even grows indefinitely. Operation transformation
and integration are therefore prohibitively computation
intensive and time consuming.

• Operation granularity. In most work, transformation func-
tions are designed for insertion and deletion of single
characters. This leads to excessively large amount of
small messages over the network and long operation
histories. [8] and [12] are the only published work with
support for string operations, of which a counterexample
of [12] was found in [4].

This paper reports a novel approach that supports string
operations and the algorithm for operation transformation and
integration has time complexity O(1) with respect to |H|.
It is based on admissibility preservation [5], so correctness
can be formally proven. Furthermore, it has some additional
desirable features: the data model can be suppressed to reduce
data complexity; remote operations can be partially rendered
to accomodate to system load and to reduce interference with
user’s current editing activities.

The paper is organized as follows. Section II presents
background and related work. Section III presents the approach
in detail. Sections IV and V discuss its correctness and
performance. Section VI concludes.

II. BACKGROUND AND RELATED WORK

OT was first introduced by Ellis and Gibbs in [1]. The basic
idea is as the following. A shared document is replicated at
different peers. An editing operation is first executed at a local
peer and then propagated to remote peers. Suppose two peers
start with “012”. Peer 1 inserts “a” between “0” and “1” with
ins(1, “a”) and Peer 2 deletes “2” with del(2). The states after
local executions at the two peers are “0a12” and “01”. Now if
the two peers execute the remote operations as is, the states at
these peers become “0a2” and “0a1”, which are inconsistent.
With OT, the remote operations are transformed to include the
executed concurrent operations, into ins(1, “a”) and del(3)
respectively. The two peers are in consistent state “0a1” after
executing the transformed operations.

There are some challenges with this basic approach. First,
a remote operation can only be transformed to include a
concurrent operation that is compatible, i.e., the two operations
operated on exactly the same state. To achieve this, a peer
usually has to first transpose the history of operations to make
the operations compatible, and then include the effects of
compatible operations. The transposition process involves the
transformation of both the remote operation and operations
in the local history. This whole process is usually called op-
eration integration. Operation transformation and integration

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247090

c(3)

x(2)

b(2)

y(2)

a(3)

Fig. 1. A global effects-relation graph

algorithms usually have time complexities dependent on the
length of the operation history.

Another challenge is that transformation functions are diffi-
cult to be made correct. Counterexamples were found for many
of the published transformation functions. For instance, [2]–
[4], [6], [11] reported counterexamples of earlier work. [5]–
[11] are among the few that have no counterexample reported.
According to [6], all these counterexamples are due to the
same basic problem. Given three peers starting with “012”.
Peers 1, 2 and 3 issue concurrent operations ins(2, “x”),
del(1) and ins(1, “a”) respectively. Because “x” is inserted
to the right of “1” and “a” to the left of “1”, the final states
at all peers must be “0ax2”. The deleted character “1”, called
a landmark character in [3], determines the ordering between
“a” and “x”. However, because “1” is deleted at Peer 2, the
two inserted characters thus tie at Peer 2. The counterexamples
are due to failure to break the tie of this type in different
combinations of concurrent operations.

One of the reasons that identifying counterexamples was
non-trivial was that there lacked general correctness criteria
with which the correctness of transformation functions can be
formally proven.

Li and Li in [5] introduced a correctness criterion
called admissibility preservation, with which correctness of
admissibility-based transformation (ABT) functions can be
formally proven. Key to this correctness criterion is the effects
relation among characters and a global effects-relation graph
that is only for correctness analysis purposes and need not be
implemented. Fig. 1 shows an example effects-relation graph.
Two characters are effects related, if there exists a path from
one node to the other in the graph. In a node, the number in the
parenthesis next to the character indicates the number of peers
currently “see” the character. Suppose there are three peers.
In the figure, characters “a” and “c” are visible at all peers
whereas characters “y”, “b” and “x” are only visible at two
peers. A character is only visible at some of the peers when
an operation is not yet integrated at all peers. Eventually, a
character is visible either at all peers or at none.

The correctness criterion admissibility preservation states
that the execution of any operation does not violate the effects
relation that has been established in the global effects-relation
graph.

[5] states that the effects relation established in the global
effects-relation graph is not a total order among characters.
This avoids unnecessary introduction of “artificial” ordering
among characters. For example, in Fig. 1, when “x” is inserted
at a peer where “b” has been deleted, no effects relation is
established between “x” and “b”. On the suface, it seems that
only a total order on visible characters need be established.

In fact, a total order among all characters will eventually be
established anyway. Because deleted characters are landmarks,
their effects relations are established either explicitly in the
model in [6], [7], or implicitly in the integration algorithm in
[5], [8]–[11]. In fact, by explicitly exploring the total effects-
relation order, [10] improved the time complexity of operation
transformation and integration from O(|H|2) to O(|H|).

With ABT [5], landmark characters are brought into place
by operation transformations. A peer maintains the operation
history in the form of Hi · Hd where Hi and Hd consist
only of insertion and deletion operations respectively. When a
local operation is executed, it is first transformed to exclude
the deletions in Hd. This essentially brings the landmark
characters in effect. This transformation has time complexity
O(|Hd|). This transformed operation is then sent to remote
peers to be transformed and integrated, with time complexity
O(|Hi|2 + |Hd|). ABTS [8] extends ABT to support string
operations. ABTU [10] arranges the operation history in total
effects-relation order and improves the time complexity to
O(|H|). With all of ABT, ABTS and ABTU, |H| grows
indefinitely.

In [7], a peer keeps a view and a model. A view consists
of the characters the end user currently sees. Characters in the
model include landmark characters and are uniquely identi-
fied. Positions in model operations are relative to characters’
identifiers and can be transformed and integrated without an
operation history. [7] uses intention preservation as its correct-
ness criterion. Intension preservation, as originally presented
in [12], is not formally defined. [7] reifies it as the effects
relation established at insertions, which essentially is the same
as admissibility preservation.

Our approach is built on the ideas from [5], [7] and [10]. A
peer consists of a view and a model. The model is an effects-
relation graph, like the global effects-relation graph in [5], but
the nodes in the graph follow a total effects-relation order,
like a model in [7] and a history in [10]. The nodes, however,
represent strings rather than characters. Effects of insertion
and deletion operations are encapsulated in the graph. Our
model can thus be regarded as capturing both the model in [7]
and the history in [10]. Most importantly, the transformation
and integration of a string operation is a single graph update,
which has constant-time complexity O(1) when nodes are
hash indexed. Some other desirable features of the approach
include: the model graph can be suppressed so that its size
(in terms of number of nodes) can be reduced; the effects of
remote operations can be partially rendered to the view, thus
reducing both the system load and the interference with the
user’s current editing efforts.

III. APPROACH

Sub-section III-A first gives an overview of the approach.
Sub-section III-B then presents the main components of a peer.
The following sub-sections present in more detail the specific
algorithms and procedures.

move ins, del

View
. . . 01234a

�
789. . .

Model

suppress
Local queue

move
integrateL

render

Remote queue

receive

integrateR

789. . .56

dcba

. . . 01234

Fig. 2. View, model and operations

A. Overview
A document is collaboratively edited by a number of peers

at different sites. Every peer consists of a view, a model and
two queues (Fig. 2). A view is a string of characters together
with a current position in the string. A user at a peer can move
the current position, and insert or delete sub-strings at the
current position. The user’s operations take immediate effect
in the view and are enqueued in the local operation queue to
be integrated later in the model.

A model is a graph where the nodes are sub-strings and the
links of different types maintain a total-ordered effects relation
on the nodes as well as the insertion and deletion operations.
Initially a model has a single node with the initial string in
the view. When operations are integrated, the existing nodes
are subsequently split at operation boundaries, and either new
nodes are inserted or existing nodes are marked as deleted. The
graph thus grows while the document is being edited. Later
on, the graph can be suppressed when it gets too large and
complex. Fig. 3 illustrates a model graphs in different states.

Periodically, a peer runs procedure integrate. The oper-
ations in the local queue may be re-arranged before they
are integrated in the model, such that the operations are of
appropriate granularity and that the operations are integrated
in some particular order, for instance from left to right, to
reduce the total overhead of integration.

Procedure integrate()
1 messages ← []
2 while op ← localq.dequeueOp do
3 if op = move(δ) then model.move(curr, pos, δ, 0)
4 else messages.push(model.integrateL(op))

5 broadcast(messages)
6 while op ← remoteq.dequeueReadyOp do
7 model.integrateR(op)

8 model.render(curr, pos, δ0, 0)

A remote operation in a message is represented as a graph

Initial state:
0123456789

I0

“abcd” inserted:

56789

abcd
I1

01234
I0

“c” deleted:

56789

dc
D0

ab
I1

01234
I0

“bd56” deleted:

78956

dc
D0

ba
I1

01234
I0 D1

Suppressed up to D0:

78956

db

01234a
I2 D1

Fig. 3. Model graphs

update. Operation transformation and integration are actually
the realization of graph updates. When the nodes in the graph
are hash indexed, an update has constant-time complexity. It is
crucial that the integration preserves the effects-relation order
established at the peer originating the operation.

When a peer renders a model, the updates of remote peers
that have been integrated in the model are shown in the view. A
rendering can be partial. A partial rendering is centered around
the current position, so the concurrent remote operations that
are most relevant to the current local editing activities are
immediately visible in the view. With partial rendering, the
user is not overwhelmingly distracted by the less relevant
concurrent remote operations. Furthermore, the overhead of
rendering can be restricted.

B. Peer, view and model
Consider a document edited by N peers. A peer is a 6-

tuple (id, v, view,model, localq, remoteq) consisting of an
identifier, a state vector of N elements, a view, a model and
two queues. The value of the i-th element of v, v[i], indicates
the operations of peer i that have been integrated into the
peer’s model. peer.tick[i] increments peer.v[i] by 1.

A view is a pair (str, pos) where str is the character string
currently visible to the user and pos is the current position
between two characters. For example, with view (“0123”, 0),
the current string is “0123” and the current position is left to
character “0”; with view (“0123”, 2), the current position is
between characters “1” and “2”.

A user may run the following operations in the view:
• move(δ) moves the current position |δ| characters. If δ

is positive, the current position is moved to the right;

otherwise, it is moved to the left.
• ins(str) inserts string str at the current position and

the new current position is placed at the right end
of str. ins(“xyz”) changes view from (“0123”, 2) to
(“01xyz23”, 5).

• del(len) deletes len characters right to the current posi-
tion. del(2) changes view from (“0123”, 1) to (“03”, 1).

A model is a triple (nodes, curr, pos), where nodes is the
set of nodes of the model graph, curr is the current node and
pos is a position in curr. curr and pos together refer to the
current position in the model.

A node of the model graph is a 10-tuple
(pid, v, offset, str, dels, rendered, l, r, il, ir):

• pid and v, the peer identifier and state vector of the ins
operation that created this node.

• offset, the distance from its leftmost position to the
leftmost position of the original inserted string. When
a node is first inserted after an ins operation, offset is
0. Splitting the node at position pos leads to two nodes,
with offsets 0 and pos respectively.

• str, the character string of the node. We refer to the
length of a node as node.len = node.str.len.

• dels, a set of del elements related to deletions.
• rendered, true if the node has been rendered to the view.
• l, r, the left and right nodes in effects relation. In the

figures, the effects-relation links are illustrated with solid
lines () connecting nodes.

• il, ir, the left and right nodes of the same ins operation.
In the figures, the links between the nodes of the same
ins operation are illustrated with dotted lines ().

An insertion consists of the nodes chained with the il and
ir links. A deletion consists of the nodes containing the del
elements of the same del operation. node.dels may contain
multiple del elements. When this is the case, node.str has
been deleted concurrently by different peers.

A del element is a quadruple (pid, v, l, r):
• pid and v, the peer identifier and state vector of the del

operation.
• l and r, the left and right nodes of the same del operation.
In the figures, a del element is depicted with a dot on the

bottom edge of the node (). The links between the nodes
of the same del operation are illustrated with lines connecting
the dots (). A del element of a node can be obtained
by its state vector with node.del(v). Thus node.del(v).l gives
the left node of the same deletion.

Definition (visible node). A node is visible if its dels is empty.

Function node.visible returns true if node is visible.
Function node.visibleLeft (or node.visibleRight) returns
the next visible node to the left (or right) of node in effects-
relation order. In Fig. 3, after “bd56” was deleted, calling
visibleRight on node “a” returns node “789”.

Locally in a peer, a node can be directly referred to via its
reference. So the links l, r, il and ir in nodes, and l and r in
del elements refer to other nodes with their references.

7893456012

xy
ab

7895634012

xy
ab split

Fig. 4. Splitting node “3456”

Node references, however, are meaningless across peer
boundaries. Fortunately, a node can be uniquely identified by
the state vector of the ins(str) operation that inserted the
string str, together with the offset of the node’s leftmost
position in str. In Fig. 3, suppose the state vector value of
I0 = ins(“0123456789”) is (0, 0, 0). The node with string
“56” can be uniquely identified with ((0, 0, 0), 5). In our
implementation, every node is hash-indexed in model.nodes
with (v, offset). Therefore given (v, offset), a node can be
obtained in constant time at any peer.

Many model updates involve splitting of nodes. Pro-
cedure node.split(pos), where node.offset < pos <
node.offset + node.len, splits node at pos and returns a
pair of the new left and right nodes. Fig. 4 shows the effect
of splitting a node. The procedure takes care that the new
nodes are hash-indexed in model.nodes and that the links are
updated properly so that the insertions and deletions of the
model remain unchanged.

C. Integrating a local insertion
Procedure integrateL integrates a view operation at the

current position of the model and returns a representation
of the update to be sent to remote peers. We describe the
integration of insertion and deletion operations separately.
First, the integration of an insertion operation.

Procedure integrateL(Ins)
1 peer.tick(peer.id)
2 nd ← newNode(pid : peer.id, v : peer.v, str : Ins.str)
3 nodes[(nd.v, 0)] ← nd
4 if curr.offset < pos < curr.offset+ curr.len then
5 (ndl, ndr) ← curr.split(pos)
6 else if pos = curr.offset then
7 ndl ← curr.visibleLeft; ndr ← ndl.r
8 else // pos = curr.offset+ curr.len
9 ndl, ndr ← curr, curr.r

10 ndl.r, ndr.l, nd.l, nd.r ← nd, nd, ndl, ndr
11 curr, pos ← nd, nd.offset+ nd.len
12 return encode(INS, peer.id, peer.v, nd, [ndl, ndr])

The peer advances its state vector (Line 1), creates a new
node for the insertion (Line 2), and hash-indexes the node in

nodes (Line 3).
The new node will be inserted between two nodes ndl and

ndr (Line 10). To determine ndl and ndr, there are three cases
to consider: the current position pos is in the middle of the
current node curr (Line 4); pos is at the left end of curr
(Line 6); or pos is at the right end of curr (Line 8). In the
first case, curr is split at pos (Line 5) and the new node is
inserted in between.

In the other two cases, the new node is inserted between
two existing nodes. When there are invisible nodes involved,
Policy DI is applied.

Policy (DI). When a new node is inserted between two visible
nodes in the model graph, all existing invisible nodes between
the two nodes are placed to the right of the new node.

With all peers agreeing on the same Policy DI, conflicts
among concurrent insertions at the same view position are not
“accidentally” resolved by the deleted characters.

Other work introduced a similar policy that is enforced
before a local operation is sent to remote peers. For example,
in [5], [8]–[11], this is fulfilled when a transformation excludes
a deletion; in [6] and [7], this is fulfilled when an insertion is
integrated in the model.

When pos is at the left end of curr, the new node is inserted
between curr.visibleLeft and its right neighbor (Line 7).
When pos is at the right end of curr, the new node is inserted
between curr and its right neighbor (Line 9).

The new current position is now set to the right end of the
new node (Line 11).

The procedure finally returns the encoded representation of
the graph update, which includes the identifier and state vector
of the peer, the new node nd, and the place [ndl, ndr] at which
this new node is inserted, i.e., the right end of ndl, encoded
with (ndl.v, ndl.offset, ndl.len), and the left end of ndr,
encoded with (ndr.v, ndr.offset). Procedure decode(Ins) at
a remote peer will return a triple (nd�, nd�l, nd

�
r) such that:

nd�.pid = nd.pid ∧ nd�.v = nd.v ∧ nd�.str = nd.str

∧ nd�.rendered = false ∧ nd�l.v = ndl.v

∧ nd�l.offset+ nd�l.len = ndl.offset+ ndl.len

∧ nd�r.v = ndr.v ∧ nd�r.offset = ndr.offset

D. Integrating a local deletion
The main part of the integration is a loop that associates

all nodes corresponding to the deleted characters with the
del elements of the deletion. In every iteration, pos is at the
left end of curr. If initially the current position pos is in
the middle of curr, curr is split at pos and the new right
node becomes curr (Lines 2 and 3). If pos is at the right
end of curr, curr’s right visible neighbor becomes the new
curr (Lines 4–5). len is the number of characters yet to be
handled. nds contains the nodes of this deletion that have been
processed so far. nd is the next visible node to be processed.

Lines 8–16 set nd, curr and len properly in different cases.
Line 17 associates nd with a del of the deletion and Line 20
pushes nd into nds. Line 19 takes care that the del elements

Procedure integrateL(Del)
1 v ← peer.tick(peer.id);
startv, startp ← curr.v, cuu.offset

2 if curr.offset < pos < curr.offset+ curr.len then
3 (−, curr) ← curr.split(pos)
4 else if pos = curr.offset+ curr.len then
5 curr ← curr.visibleRight

6 len, nds ← Del.len, []
7 while len > 0 do
8 if len = curr.len then
9 nd ← curr; curr ← curr.visibleRight

10 len ← 0
11 else if len < curr.len then
12 (nd, curr) ← curr.split(curr.offset+ len)
13 len ← 0
14 else // len > curr.len
15 nd ← curr; curr ← curr.visibleRight
16 len ← len− curr.len

17 nd.dels.push(newDel(v))
18 if nds �= [] then
19 nds.last.del(v).r, nd.del(v).l ← nd, nds.last

20 nds.push(nd)

21 pos ← curr.offset
22 return encode(DEL, peer.id, v, startv, startp, nds)

are chained correctly. After the loop, the new current position
is placed at the left end of curr (Line 21).

Finally, the procedure returns the encoded representation of
the graph update (Line 22). Every node nd in nds is encoded
with (nd.v, nd.offset, nd.len). Function decode(Del) at a
remote peer will return (pid�, v�, nds�) such that:

pid� = peer.id ∧ v� = v

∧ ∀(nd�, len�) ∈ nds�,

(nd�.v = nd.v ∧ nd�.offset = nd.offset

∧ len� = nd.len)

startv and startp are encoded to ensure that even if the start
node is split (Line 3), a remote peer can still obtain the node
via its hash index. Note that except the first and the last nodes,
nd�.len ≤ nd.len, because at a remote peer a corresponding
node may have been split by a concurrent operation.

E. Integrating a remote insertion
A peer only integrates a remote update when it is causally

ready, i.e., when all the updates the remote update “saw” upon
its generation have been integrated in this peer.

Definition (causally ready). A remote update with state vector
vr from peer i is causally ready at a peer with state vector vp
iff vr[i] = vp[i] + 1 ∧ ∀j �= i, vr[j] ≤ vp[j].

Next, we introduce a few more terms that are relevant for
the integration procedure.

Definition (happens before). Operation op1 with state vector
v1 happens before operation op2 with state vector v2, denoted
by op1 → op2, if ∀i, v1[i] ≤ v2[i] ∧ ∃j, v1[j] < v2[j].

Definition (concurrent operations). Operation op1 with state
vector v1 and operation op2 with state vector v2 are concur-
rent, denoted by op1 � op2, if op1 �→ op2 ∧ op2 �→ op1.

Two operations are compatible if they “see” exactly the
same states.

Definition (compatible operations). Operation op1 with state
vector v1 and operation op2 with state vector v2 are compat-
ible, denoted by op1 � op2, if op1 � op2 and there is no op3,
such that (op3 → op1∧op3 � op2)∨ (op3 → op2∧op3 � op1).

Two concurrent operations are compatible if there does
not exist a third operation that happens before one of the
operations and is concurrent with the other operation. In the
definition, if op3 → op1 and op3 � op2, op1 and op2 are
concurrent but not compatible, because op1 “sees” the effect
of op3 but op2 does not.

Procedure integrateR(Ins)
1 (nd, ndl, ndr) ← decode(Ins)
2 while ¬(ndl.r = ndr) do
3 nds ← compatibleNodesBetween(nd, ndl, ndr)
4 (ndl, ndr) ← resolveConflicts(nd, ndl, ndr, nds)

5 ndl.r, ndr.l, nd.l, nd.r ← nd, nd, ndl, ndr
6 peer.tick(nd.pid)
7 nodes[(nd.v, 0)] ← nd

Because of causal readiness, a peer can obtain the inser-
tion node and the place of insertion [ndl, ndr] by decod-
ing the received insertion update (Line 1). Node ndl might
have been split locally or remotely (integrateL(Ins) Line
5). Since the right end of ndl was encoded with ndl.v,
ndl.offset and ndl.len, the correct node in this local peer
can be obtained by starting from the node hash-indexed with
(ndl.v, ndl.offset) and then navigating through the splits
until position ndl.offset+ ndl.len. If the insertion is in the
middle of a node, the node will be split after decode.

At the local peer, however, there might be nodes between
ndl and ndr due to conflicting insertions.

Definition (conflicting insertions). Two concurrent insertions
conflict if they are to be inserted at the same place.

Policy II is used to resolve conflicts between compatible
insertion operations.

Policy (II). For two compatible conflicting insertions op1 and
op2, op1 is placed to the left of op2 if op1.pid < op2.pid.

The loop in ingtegrateR(Ins) resolves conflicts among
compatible insertions in each iteration. Line 3 obtains the
nodes between ndl and ndr that are compatible with the
remote insertion node nd. Line 4 resolves the conflicts with

Peer 1
ag

afg

abfg
abcfg

abcdfg
abcdefg

abcxdefg

Peer 2
ag

axg?

Peer 3
ag

afg

adfg

Insert “x” (v = (1, 1, 1)) between “a” and “g”:

g
(1,0,0)

f
(1,0,2)

e
(4,0,3)

d

(1,0,3)

c
(3,0,2)

b

(2,0,2)

a
(0,0,1)

Resolve conflict with compatible node “f”
=⇒ Insert “x” between “a” and “f”:

gfedcba

Resolve conflict with compatible nodes “b” and “d”
=⇒ Insert “x” between “b” and “d”:

gfedcba

Resolve conflict with compatible node “c”
=⇒ Insert “x” between “c” and “d”:

gfed
x

cba

Fig. 5. Resolving conflicts

Policy II to decide the new place, between ndl and ndr, where
nd is to be inserted. The loop continues until there is no node
between ndl and ndr, and nd is inserted between ndl and
ndr (Line 5). Finally, the peer advances its state vector for
the integrated insertion (Line 6) and hash-indexes the inserted
node (Line 7).

Fig. 5 illustrates the process of how conflicts are resolved. In
every iteration, “x” is to be inserted between two nodes . An
iteration starts with finding the compatible nodes between
the two nodes and then resolving conflicts with Policy II.
Finally, when there is no node between “c” and “d”, “x” is
inserted in between. This process is in essence very similar to
the algorithm presented in [7].

F. Integrating a remote deletion
A peer integrates a remote deletion by associating the

corresponding nodes with the del elements of the deletion. To
make our work comparable with related work, we introduce
Policy DD.

Policy (DD). The characters that are deleted concurrently by
multiple peers are regarded as being deleted multiple times.

All previous work adopted a unit-operation policy. That is,
when a character is deleted by multiple peers, the character is

regarded as being delete by the first deletion. The subsequent
deletions are handled as unit operations that have no effect.
Unit-operation policy seems to have the same effect as Pol-
icy DD with regard to the invisibility of the deleted character.
They are, however, different when undo is taken into account.
With unit-operation policy, a single undo will bring back the
visibility of the deleted character, whereas with Policy DD, the
character is only visible when all deletions on it are undone.

Procedure integrateR(Del)
1 (pid, v, nds) ← decode(Del)
2 ndl, split ← nil, false
3 while split ∨ nds �= [] do
4 if split then
5 len, nd, split ← (len− nd.len), nd.ir, false
6 else
7 (nd, len) ← nds.removeF irst

8 if len < nd.len then
9 (nd,−) ← nd.split(nd.offset+ len)

10 else if len > nd.len then
11 split ← true

12 if nd.visible ∧ nd.rendered then
13 nd.rendered ← false
14 else
15 nd.rendered ← true

16 nd.dels.push(newDel(v))
17 if ndl then ndl.del(v).r, nd.del(v).l ← nd, ndl
18 ndl ← nd

19 peer.tick(pid)

Decoding a remote deletion generates a list nds of node-
length pairs for the deleted characters (Line 1). The main
loop associates the corresponding nodes of the local graph
with the del elements of the deletion. ndl is the last node
that was associated with a del and must be linked to from
the del of nd being handled in the current iteration. The
boolean variable split indicates whether a node in nds has
been split locally. Lines 4–7 set the node nd to be handled in
the current iteration. If the node of the previous iteration had
been split locally, nd is set to the right part of the split (Line
5); otherwise nd is the next node in nds (Line 7). There are
then three cases to consider: the remote peer did a split this
peer is unaware of (Lines 8–9); the local peer did a split the
remote peer was unaware of (Lines 10-11); or otherwise (do
nothing). nd is marked as not rendered only when the change
of visibility makes a change in the view (Lines 12–15). Then
nd is associated with the del (Line 16) and the del elements
are linked properly (Line 17).

G. Model rendering
Rendering a model brings a view updated with the remote

updates that have been integrated in the model. With a partial
rendering, only a specific number of characters near the current
position are rendered.

A redering calls procedure render recursively, starting with
the current node curr by calling render(curr, pos, δ0, 0).
When it returns, nodes corresponding to characters between
pos and pos+ δ0 in the view are known to be rendered.

Procedure render renders from position p of node nd.
Except the starting node curr, p is the left (or right) end of nd
for redering toward right (or left). If δ is positive, δ characters
to the right are rendered; otherwise, −δ characters to the left
are rendered. δdone indicates how far the rendering has been
done so far. The pre-condition of running render is that all
nodes between curr and nd are rendered.

Procedure render(nd, p, δ, δdone)
1 if nd.rendered then
2 if nd.visible then
3 if δ > 0 then δn ← nd.offset+ nd.len− p
4 else δn ← p− nd.offset

5 else
6 δn ← renderNode(nd, δdone)

7 if δ > 0 then // rightwards
8 if δ − δn ≤ 0 then return
9 else render(nd.r, nd.r.offset, δ − δn, δdone + δn)

10 else // leftwards
11 if δ + δn ≥ 0 then return
12 else render(nd.r, nd.r.offset+ nd.r.len,
13 δ + δn, δdone − δn)

In the procedure, δn is the number of characters that nd
contributes to the entire rendering. render calls renderNode
if nd has not been rendered (Line 6). The rendering contin-
ues recursively until the expected number of characters are
rendered (Lines 7–13).

Procedure renderNode(nd, δ)
1 view.move(δ)
2 if nd.visible then
3 view.ins(nd.str)
4 if δ > 0 then view.move(−δ)
5 else view.move(−δ + nd.len)
6 else
7 if δ > 0 then
8 view.del(nd.len)
9 view.move(−δ)

10 else
11 view.move(−nd.len)
12 view.del(nd.len)
13 view.move(−δ − nd.len)

14 nd.rendered ← true
15 return nd.visible? nd.len : 0

Procedure renderNode renders node nd and returns the
number of characters that are added to the view. It takes

an additional argument δ. The pre-condition of running
renderNode is that nd is not rendered, all nodes between
curr and nd are rendered, and there are δ visible characters
between (curr, pos) and nd. It moves the current view position
to the place of the update (Line 1, and additionally Line 11 to
the left end of the sub-string to be deleted), makes the view
update (Lines 3, 8 and 12), and then brings the current view
position back to its original place (Lines 4–5, 9 and 13). If the
update is to the left of the current position, the new current
position must accommodate the update (Lines 5 and 13).

H. Moving current position

A position move in the model starts with calling
move(curr, pos, δ, 0), which traverses the nodes recursively
until it reaches the destination node. If δ is positive, it moves
δ characters to the right; otherwise, it moves −δ characters
to the left. δdone is the move that has been done so far.
Upon the execution of move(nd, p, δ, δdone), position p in
node nd is δdone characters away from the original position
of the move. Except for the starting node, p is the left (or
right) end of nd when moving toward right (or left). The pre-
condition of running move is that all nodes between curr and
nd are rendered, and there are δdone visible characters between
(curr, pos) and (nd, p).

Procedure move(nd, p, δ, δdone)
1 if ¬nd.rendered then renderNode(nd, δdone)
2 if nd.visible then
3 if p+ δ > nd.offset+ nd.len then // rightwards
4 δdone ← δdone + nd.offset+ nd.len− p
5 δ ← (δ + p− nd.offset− nd.len)
6 nd ← nd.r; p ← nd.offset
7 else if p+ δ < nd.offset then // leftwards
8 δdone ← δdone + nd.offset− p
9 δ ← (δ + p− nd.offset)

10 nd ← nd.l; p ← nd.offset+ nd.len
11 else // destination
12 curr, pos ← nd, (p+ δ); return
13 else
14 if δ > 0 then nd ← nd.r; p ← nd.offset
15 else nd ← nd.l; p ← nd.offset+ nd.len

16 move(nd, p, δ, δdone)

Along its way, move renders the nodes that have not been
rendered (Line 1). It stops when nd is the destination (Line
12); otherwise, it sets the new arguments (Lines 2–10, 14–15)
and continues its journey (Line 16).

The cost of move is dependent on the distance of the move
and the granularity of the nodes. Note that it is only necessary
to call move of a model prior to the integration of a local
insertion or deletion. Consecutive moves in the view can be
aggregated into a single one. Furthermore, because position
moves and editing operations are queued in the local operation
queue, they can be integrated in groups. For example, the

Initiating peer:

Spv ← suppressG(v)
broadcast(Spv)

...

supressI(v)
...

Other peers:

...

· · · suppressG(v)
...

supressI(v)
...

Fig. 6. Two-phase model suppression

operations in the group can be integrated from one end of
the graph to the other to minimize the total move distance,
very much like the elevator algorithm for disk scheduling.

I. Model suppression

Model graphs get larger and more complex along with
editing operations, leading to larger hash tables of nodes and
increasing overhead of procedures like model.move. Model
suppression reduces the size and complexity of the graph.

One issue is that when a peer suppresses its model graph,
other peers may concurrently refer to the nodes prior to the
suppression. To address this issue, we introduce a two-phase
protocol (Fig 6). In the first phase, a peer first suppresses
its graph with suppressG. suppressG builds a temporary
mapping from the nodes before the suppression to the nodes
after the suppression. The peer then broadcasts the suppression
command to the other peers that in turn run suppressG
to suppress their own graphs. During this phase, when a
peer receives remote updates that refer to nodes before the
suppression, it uses the temporary mapping to find the correct
position in its suppressed graph. When a peer knows that
all peers have suppressed their graphs (by checking the state
vectors of the incoming updates), it discards the temporary
mapping by running suppressI .

suppressG suppresses the model graph up to state vector v.
A node is suppressed if all operations it is part of have state
vectors smaller or equal to v. A node remains in the suppressed
graph if it is part of at least one operation with state vector vop
such that ∃i, vop[i] > v[i]. suppressG replaces all suppressed
nodes with a single new insertion consisting of the visible
characters of these nodes. Nodes that remain may split the
new insertion into several nodes.

The loop of the procedure walks through the graph from
left to right and builds the nodes for the new insertion. In the
procedure, nd is the node in the original graph to be handled
in the current iteration, ndi is the node under construction for
the new insertion, str is the string currently built for ndi, p is
the offset of the left end of ndi from the leftmost position of
the entire insertion, and ndl is the last node that remains in
the suppressed graph. If the insertion is split by a remaining
node, ndil is the node of the new insertion left to ndi.

Procedure suppressG(pid, vnew, v)
1 nd, str, p, ndl, ndil ← leftmostNode, “ ”, 0, nil, nil
2 while nd do
3 discard all del ∈ nd.dels such that del.v ≤ v
4 if nd.v ≤ v ∧ nd.dels = ∅ then // suppressed
5 nodes[(nd.v, nd.offset)] ← (vnew, p, str.len)
6 if nd.visible then str ← str + nd.str
7 suppressed nds.push(nd)
8 else // remains
9 if str.len > 0 then

10 ndi ← newNode(pid : pid, v : vnew,
11 offset : p, str : str)
12 if ndil then ndil.ir, ndi.il ← ndi, ndil
13 if ndl then ndl.r, ndi.l ← ndi, ndl
14 nodes[(v, p)] ← ndi
15 p, str, ndil ← p+ str.len, “ ”, ndi

16 ndl ← nd

17 nd ← nd.r

18 discard nodes in suppressed nds
19 return encode(SP, peer.id, vnew, v)

For node nd in the original graph, all del elements with state
vector smaller or equal to v are discarded (Line 3). If nd is to
be suppressed (Line 4), a redirection mapping is constructed
for nd (Line 5). If nd is visible, its string is appended to str
(Line 6).

If nd remains (Line 8) and the string for the insertion node
has been partially built (Line 9), nd splits the insertion into
a new node ndi. So ndi is constructed (Line 10), linked with
ndil (Line 12) and ndl (Line 13), and hash-indexed (Line 14).
Line 15 prepares the construction of the new insertion node
in the subsequent iterations.

IV. CORRECTNESS

This section gives a sketch of the correctness of the ap-
proach. According to [5], an OT system is correct if the
following conditions hold:

• Causality preservation: an operation is executed at a peer
only when all operations that happened before it have
been executed at the peer.

• Admissibility preservation: established effects relations
are preserved at all peers.

Our approach, as most other approaches, preserves causality,
because a peer integrates a remote operation only when the
operation is causally ready at the peer.

Admissibility preservation can be analysed as follows. The
system must guarantee that all peers eventually have the
same set of characters associated with the same total effects-
relation order. Characters in the same node follows implicitly
an effects-relation order. Splitting a node keeps the same
effects-relation order. New characters and effects relations
are introduced with insertions. It is thus crucial that effects
relations established by insertions are preserved at all peers.

• When a local operation is integrated, there is no conflict-
ing operation that has been integrated but not rendered.
This is because (1) all local operations are integrated
prior to remote operations (Procedure ingerate), (2) the
region the end user is editing is rendered (Procedures
integrate and render), and (3) a position move renders
the nodes along the way (Procedure move). Therefore
a local insertion, upon its integration, never “meets” a
conflicting insertion.

• Because a remote insertion can only be integrated at
a peer when it is causally ready, the insertion position
encoded during integrateL will be uniquely located by
integrateR.

• When there are concurrent insertions that conflict with
ins, a unique ordering will be established at all peers.
This can be seen with theoretical global iterations that
are established in such a way that in an iteration, all
peers have the same set of compatible operations at the
insertion position. Because all peers adhere to the same
Policy II, a unique ordering among these compatible
operations is established. After this iteration, it is as if
all peers have executed all these compatible operations.
Starting from the state established by this iteration, the
following iteration establishes the same ordering among
the new compatible operations in the new insertion posi-
tion of this new state. The process goes on until there is
no more concurrent conflicting operations.

Finally, all peers eventually have the same set of visible
characters. This is achieved by associating the del elements
of the same deletion to the same set of characters at all
peers. Again, because a remote deletion operation can only
be integrated when it is causally ready, all characters that
integrateL are aware of are uniquely located by integrateR.

V. PERFORMANCE

Both integrateL and integrateR have time complexity
O(1) with respect to the length of operation history. A graph
update is only concerned with the nodes at the place of
insertion or deletion. For integrateL it is node curr. For
integraeR, the nodes can be obtained via the hash index.
The procedures involve loops or node traversals. The numbers
of the nodes depend on the sizes of deletions or the number
of concurrent operations and splits, and thus are independent
of the length of the operation history.

A model graph may not necessarily take more space than
a typical operation history. If we regard history entries as
corresponding to graph nodes, every character operation has
an entry in history. So the number of history entries is typically
an order of magnitude greater than the number of graph nodes.

Moving the current position in the model has time com-
plexity O(N), where N is the number of nodes traversed. The
runtime overhead depends on the granularity of nodes and the
distance of the move. Model suppressions reduce the sizes of
graphes and therefore reduce the overhead of position moves.
Furthermore, integrating local operations in groups may reduce
the zigzags and thus the total distances of position moves.

0

20

40

60
80

100

120

140

0 50 100 150 200

In
te

gr
at

io
n

tim
e

(m
s)

History length

abts
abtu
erm

Fig. 7. Integration time

Model rendering has time complexity O(N), where N is the
number of traversed nodes. Rendering can be partial. A peer
can bound the overhead by only rendering a restricted region
displayed by the editor. Again, model suppression helps reduce
the overhead of model rendering.

Model suppression has time complexity O(N), where N is
the total number of nodes in the model graph. The frequency of
model suppressions is a trade-off issue. Frequent suppressions
keep the graph small but bear frequent overhead of the
suppressions.

We have implemented a prototype of the core procedures in
Emacs Lisp. To compare our approach with related work, we
have also implemented ABTS [8] and ABTU [10] in Emacs
Lisp. ABTS supports string operations and ABTU is one of
few that has linear complexity. No special effort was made for
performance optimization or byte compilation. We measured
the time for local and remote integrations using Emacs Lisp
Profiler, which is not really precise but is sufficient to indicate
the tendance. With different operation patterns, the overhead
of local and remote integrations may be different in ABTS and
ABTU. The sum of local and remote integrations seems quite
independent of the operation patterns. Fig. 7 shows the sum of
local and remote integrations at different history lengths. The
measurement was taken under Aquamacs 2.2 (GNU Emacs
23.3.1) running on an iMac with 64-bit Mac OS X 10.6.7,
2.8GHz Intel Core i5 and 4GB RAM. In the figure, “abts”
stands for ABTS, “abtu” for ABTU, and “erm” for effects-
relation model, i.e. our work. Although there is no operation
history in our work, we run the same sequences of operations
for all three approaches to make the results comparable (except
that “abtu” has character operations whereas “abts” and “erm”
have string operations with string lengths between 5 and 10
characters). As Fig. 7 shows, our work takes nearly constant
time (2.6ms) for operation integration whereas the time for
integration with ABTS and ABTU grow with history length.

VI. CONCLUSION

OT has been established as the concurrency control mecha-
nism for collaborative editing, because it is non-blocking and
therefore may provide the responsiveness that is not achiev-
able with a mutual-exclusion based mechanism. However,

this potential responsiveness has not been fully realized in
practice due to the time-consuming computation for operation
transformation and integration. Currently, the best time com-
plexity of operation transformation and integration is O(|H|)
where |H| is the length of operation history. Furthermore,
most work supports only character operations. Consequently,
operation histories typically have lengths in the order of
thousands and grow indefinitely. Transforming and integrating
a single remote operation can thus easily involve seconds of
intensive computation. Our approach supports transformation
and integration of string operations with constant-time com-
plexity. In an implementation i Emacs Lisp without any special
efforts in performance optimization, it takes only a couple of
milliseconds to transform and integrate an operation of a string
of almost arbitrary length. Furthermore, our approach has the
following additional desirable features: the data structure can
be suppressed at any time to reduce its size and complexity;
integrated remote operations can be partially rendered to
further reduce both runtime overhead and interference with
the user’s current editing activities. Our work is based on
admissibility preservation, a correctness criterion with which
the correctness of our approach can be formally proven.

REFERENCES

[1] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,”
in SIGMOD Conference, J. Clifford, B. G. Lindsay, and D. Maier, Eds.
ACM Press, 1989, pp. 399–407.

[2] A. Imine, P. Molli, G. Oster, and M. Rusinowitch, “Proving correct-
ness of transformation functions functions in real-time groupware,” in
ECSCW, K. Kuutti, E. H. Karsten, G. Fitzpatrick, P. Dourish, and
K. Schmidt, Eds. Springer, 2003, pp. 277–293.

[3] D. Li and R. Li, “Preserving operation effects relation in group editors,”
in CSCW, J. D. Herbsleb and G. M. Olson, Eds. ACM, 2004, pp.
457–466.

[4] ——, “An approach to ensuring consistency in peer-to-peer real-time
group editors,” Computer Supported Cooperative Work, vol. 17, no. 5-
6, pp. 553–611, 2008.

[5] ——, “An admissibility-based operational transformation framework for
collaborative editing systems,” Computer Supported Cooperative Work,
vol. 19, no. 1, pp. 1–43, 2010.

[6] G. Oster, P. Molli, P. Urso, and A. Imine, “Tombstone transformation
functions for ensuring consistency in collaborative editing systems,” in
CollaborateCom. IEEE, 2006, pp. 1–10.

[7] G. Oster, P. Urso, P. Molli, and A. Imine, “Data consistency for p2p
collaborative editing,” in CSCW, P. J. Hinds and D. Martin, Eds. ACM,
2006, pp. 259–268.

[8] B. Shao, D. Li, and N. Gu, “ABTS: A transformation-based consistency
control algorithm for wide-area collaborative applications,” in Collabo-
rateCom. IEEE, 2009, pp. 1–10.

[9] ——, “A sequence transformation algorithm for supporting cooperative
work on mobile devices,” in CSCW, K. I. Quinn, C. Gutwin, and J. C.
Tang, Eds. ACM, 2010, pp. 159–168.

[10] ——, “An algorithm for selective undo of any operation in collaborative
applications,” in GROUP, W. G. Lutters, D. H. Sonnenwald, T. Gross,
and M. Reddy, Eds. ACM, 2010, pp. 131–140.

[11] B. Shao, D. Li, T. Lu, and N. Gu, “An operational transformation
based synchronization protocol for web 2.0 applications,” in CSCW,
P. J. Hinds, J. C. Tang, J. Wang, J. E. Bardram, and N. Ducheneaut,
Eds. ACM, 2011, pp. 563–572.

[12] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence,
causality preservation, and intention preservation in real-time coopera-
tive editing systems,” ACM Trans. Comput.-Hum. Interact., vol. 5, no. 1,
pp. 63–108, 1998.

