
A Distributed Web Browser as a Platform for
Running Collaborative Applications

Yasushi Shinjo, Fei Guo, Naoya Kaneko, Takejiro Matsuyama, Tatsuya Taniuchi, Akira Sato
Department of Computer Science

University of Tsukuba
1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan

Email: yas@cs.tsukuba.ac.jp, {kaku,nkaneko,tmatsuya,taniuchi}@softlab.cs.tsukuba.ac.jp, akira@cc.tsukuba.ac.jp

Abstract—Most existing collaborative applications on the Web
require centralized servers for storing shared data and relaying
communication messages among browsers. This means that users
of these applications must fully trust centralized servers that hold
and relay potentially sensitive and important data. Furthermore,
users can lose access to their data if centralized servers go out
of service.

This paper proposes building a distributed Web browser as
a platform for Web-based collaborative applications to address
these problems with centralized servers. A distributed browser
consists of multiple browser nodes. Each node looks like a
regular Web browser, is operated by a single user, but works
together with other nodes. An application of the distributed
browser runs across multiple nodes, and can make use of
resources in both a local node and remote nodes. Multiple users
can use a single application together. The distributed browser
provides authenticated and secure inter-node communications for
applications.

This paper describes an implementation of a distributed
browser, called Subspace. Subspace uses an instant messaging
system, Skype, to perform user authentication and secure com-
munication among browser nodes. Reusing the overlay network
and social features of Skype makes the implementation of
Subspace extremely simple. Several applications on Subspace
including simple collaborative browsing and comment sharing
have been developed. These implementations demonstrate that
Subspace provides useful facilities utilized as a platform for
developing Web-based collaborative applications.

Index Terms—Distributed systems, web browsers, distributed
online social networks, social networking services, instant mes-
saging systems, collaborative browsing, web annotation

I. INTRODUCTION

People on the Internet collaborate not only with messaging
tools, such as email and instant messaging (IM), but also
with Web-based collaborative applications. Examples of Web-
based collaborative applications are wikis, blogs, bookmark
sharing, images and video hosting, social networking services
(SNSs) or online social networks (OSNs), and Web confer-
encing. Collaborative browsing and Web annotations are also
interesting collaborative applications that overlay existing Web
resources. Web browsers are essential front-end tools for these
collaborative applications for users.

Central Web servers in most existing Web-based collabora-
tive applications store shared persistent data and relay com-
munication messages among users. This centralization causes
technical and social problems [7]. One technical problem is

the potential lack of scalability. Administrators of the micro-
bogging system Twitter must work hard to avoid service
disruptions and to avoid the famous Fail Whale 1. Social
problems include privacy and trust issues. It is not trivial
for casual users to maintain access control lists (ACLs) of
resources in central servers to maintain their privacy. Users
must trust central servers when they upload their sensitive and
important data. It is hard to completely block unplanned data
disclosures and malicious break-ins [19]. In addition to privacy
and trust issues, users have to think about losing access to
their data in centralized servers if these servers shut down.
For example, developers and users who had been attracted by
Google Wave since May 2009 [23] began to worry about their
code and data when Google announced Wave development
would be suspended on August 2010 [22].

To address these problems with centralized servers, we
propose building a distributed Web browser, or distributed
browser for short, as a platform for Web-based collabora-
tive applications. A distributed browser consists of multiple
browser nodes as a distributed operating system that consists
of multiple workstations. Each node looks like a regular Web
browser and is operated by a single user, but it can work
together with other nodes. An application of the distributed
browser runs across multiple nodes, and can make use of re-
sources in both a local node and remote nodes. Multiple users
can use a single application together. The distributed browser
provides authenticated and secure inter-node communications
for applications.

This paper explains the implementation of a distributed
browser called Subspace, which was implemented as an exten-
sion of the Web browser Google Chrome [24]. Subspace runs
collaborative applications written in JavaScript and provides
authenticated and secure inter-node communications for these
applications by using an instant messaging system (IMS),
Skype [2], [29]. IM is a popular social service on the Internet,
and most users install some IM programs on their personal
computers (PCs). Since we can reuse the overlay network and
social features of Skype, Subspace becomes very simple to
implement.

We have developed several applications on the distributed

1http://www.nytimes.com/2009/02/15/magazine/15wwln consumed-t.html,
http://royal.pingdom.com/2009/02/18/social-network-downtime-in-2008-2/

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247088



browser Subspace including simple collaborative browsing
and comment sharing. These implementations demonstrate
that Subspace provides useful facilities as a platform for
developing Web-based collaborative applications.

The rest of the paper is organized as follows. Section II
describes the system model that a distributed browser should
provide. Section III explains how our distributed browser,
Subspace, was implemented by using Google Chrome and
Skype. Section IV describes applications running on Subspace.
Section V and VI present future and related work while
Section VII summarizes the key points and concludes the
paper.

II. SYSTEM MODEL

This section explains the system model that a distributed
browser should provide. We also discuss user grouping,
communication patterns, application types, and storage in a
distributed browser.

A. Networked Workstation Model

The goal of a distributed browser is to provide an execution
environment for collaborative applications that are used by a
group of people who trust each other. Our distributed browser
provides a system model as the networked workstations in
Fig. 1 show.

Fig. 1a shows three workstations connected to a local area
network (LAN). Each workstation has I/O devices, such as a
bitmap display, a keyboard, and a mouse, and these I/O devices
are dedicated to a single user. He/she mainly uses his/her
workstation and runs commands locally. Alice in Fig. 1a
controls the “more” process with her keyboard to view a long
file. The output for the “more” process appears on her display.
Users of these workstations can collaborate with network-
capable programs. The three users Alice, Bob, and Carol in
Fig. 1a are having a conversation with the “phone” processes.
The “phone” is a text chat program like “talk” in Unix but it
allows more than two users to have a conversation. Bob and
Carol in Fig. 1a share the X11 application “xterm” with the
collaboration tool “xtv” [1]. In addition to using their own
local workstations, users can use remote workstations. For
example, Alice in Fig. 1a runs the remote shell (rsh) process
and the “write” process to send a message to Bob. The message
appears on Bob’s display.

Each workstation node in a networked workstation runs a
network operating system (OS) that provides communication
facilities across machine boundaries [30]. Workstations in a
network OS often share files with a network file system, such
as the Sun network file system (NFS), and share a password
file with the Sun network information system (NIS). If an OS
provides a higher degree of network transparency, this OS is
called a distributed OS [30]. A distributed OS usually has a
distributed kernel that provides inter-process communications
across machine boundaries.

Fig. 1b shows the system model that the distributed browser
should provide. A distributed browser consists of multiple
browser nodes. Each node has I/O devices, such as browser

windows, a keyboard, software buttons, menus and a mouse,
and these I/O devices are dedicated to a single user. Each node
can use two types of networks. The first is a regular LAN that
is connected to the Internet. The second is a protected overlay
network that is connected with other browser nodes.

A user mainly uses his/her node and executes programs in
a local node. We call an instance of a program a process,
which is the same term as in a distributed OS. Each process
has an internal resource as a tree of the document object
model (DOM). A process can use the browser node’s I/O
devices. Alice in Fig. 1b runs a “view” process; she can control
the process with her mouse and keyboard, and the output of
the process appears in a browser window. A process has the
attribute user identifier (UID), which means the owner of the
process. The UID of a process is used for access control the
same as in a regular OS. For example, Alice owns a file in
a shared storage and wishes to allow Bob to read the file,
Alice adds the ACL entry “allow Bob read” to the file. When
a process that has Bob’s UID tries to read the file of Alice,
this access will be granted.

Users of the distributed browser can collaborate with
network-capable applications. The three users Alice, Bob, and
Carol in Fig. 1b are playing the same video with the “co-
player” processes. Bob and Carol are sharing a browsing
session with the application “co-browse”. In addition to using
their own browser node, users can use remote nodes. For
example, Alice in Fig. 1b is running the “send” process to
send a screen shot image of the browser window. The screen
shot image appears in Bob’s browser widow by the “receive”
process.

A distributed browser must provide secure inter-process
communications across node boundaries in the protected over-
lay network. A process in this overlay network can be ad-
dressed with a UID in a collaborative application. For example,
the single collaborative application of “co-player” in Fig. 1b
includes three processes, and each process is addressed with
each user’s UID.

B. User Grouping

It is useful to group users to describe access control config-
urations in a distributed browser. For example, consider that
Alice has ten pictures of classmates, and Alice wishes to give
the access rights of these files to classmates Bob, Carol, Dave,
and Eve. With no grouping facility, Alice has to add these
classmates to the ACLs of ten files. However, with a grouping
facility, Alice only makes a group called “Classmates” once,
and adds a single entry “Classmates” to the ACLs of the ten
files. Multiuser operating systems usually have such grouping
facilities.

While it is obvious that having a grouping facility is useful,
it is not a simple problem as to who should maintain group
member lists. In an early distributed OS for a LAN, since users
of a system are closed. A distributed OS has a password file (or
a list of users), /etc/passwd in Unix, and a group definition file,
/etc/group in Unix. System administrators maintain these files.



Kernel
OS

phone

rsh

Workstation
Kernel

OS

phone

write

Workstation

Local Area Network (LAN)

Kernel
OS

phone

Workstation

xterm xtv

Alice Bob Carol
xtv

Network or 
Distributed
Operating 
System

more

(a) Workstations connected to local area network in network or distributed operating
system.

Kernel
Browser

co-layer

Browser Node
Kernel

Browser

co-layer

Browser Node
Kernel

Browser

co-layer

Browser Node

co-
browse

Alice Bob Carol

co-
browse

view

Distributed
Browser

External 
Resource

External 
ResourceExternal 

Resource

receivesend

Protected Overlay 
Network

The Internet

(b) Browser nodes connected to overlay network in distributed browser.

Fig. 1. System models in distributed operating system and distributed browser.

This closed model is suitable for companies and university
laboratories.

A distributed browser, on the other hand, should deal with
a wide variety of ideas about grouping. An individual person
belongs to several groups, such as friends in offices and
schools, neighborhoods, circles, someone who likes the same
stuff, and alumni associations. Furthermore, members of a
group are ambiguous. For example, consider that Alice and
Bob are classmates. Alice thinks Bob is her friend, but Bob
thinks that Alice is not his friend.

It is preferable for a distributed browser to deal with two
types of groups to express complicated social relations.

• Personal group. An individual user maintains this type of
a member list. Only this user uses the member list in this
type of group. When a member list is interpreted, the list
is expanded to the members in it. The user must maintain
the member list.

• External group. An external trusted user or organization
maintains this type of a member list. A user does not
have to maintain members in a list in this type of group.

C. Communication Patterns

Conventional Web-based collaborative applications store
shared data on centralized servers, and use them as a hub

for inter-browser communication. In a distributed browser,
processes of a collaborative application directly communicate
with one another, and they need no mediation by central
servers.

Interprocess communication in a distributed browser can
be based on the client-server model. An application can
consist of a single helper server process and other client
processes. This helper server process should run on the PC of a
collaborating member. Section IV presents applications based
on the client-server model. A distributed browser does not
prevent developing distributed applications based on a peer-
to-peer model.

D. Application Types

Applications of regular (non-distributed) browsers are clas-
sified into three types:
(1) Code in JavaScript and cascading style sheets (CSS)

delivered from a server.
(2) Add-ons (or extensions) written in HTML, JavaScript,

CSS, XML user interface language (XUL) for Firefox.
Add-on programs are loaded from local files.

(3) Plug-ins that deal with media types other than standard
texts and images. Representative examples of plug-ins
are Java, Flash Player, QuickTime, RealPlayer, and Win-



dows Media Player. Plug-ins can be written in C and
C++ typically based on the Netscape plug-in application
programming interface (NPAPI). Plug-in programs are
loaded from local files.

Applications of a distributed browser resemble Type (2) and
(3) programs that are loaded from local files. Applications can
be loaded from trusted shared storage. A distributed browser
and its applications should not interfere with these applications
for regular Web browsers.

E. Storage

It is preferable for a distributed browser to provide storage
service as a distributed file system in a distributed OS. The
storage of a distributed browser can hold not only shared per-
sistent data among users and applications but also application
code.

A storage server should be executed on the PC of a
collaborating member. If a storage server is running in a public
space, we may face privacy and long-term availability issues
as discussed in Section I. We need to encrypt content and
make backup copies when we use such servers.

Shared storage is useful if it can provide high availability
with replication. However, replication causes a revocation
problem. For example, suppose that Alice revokes the access
right for her file to Bob; this change should be delivered to
all replications of the file. However, it is hard to deliver the
control message to offline replicas. Replicating mutable items
requires a classic cache coherent algorithm.

III. SUBSPACE: DISTRIBUTED BROWSER BASED ON
GOOGLE CHROME BY USING SKYPE INSTANT MESSAGING

SYSTEM

We are implementing a distributed browser, called Sub-
space, which is an extension of Google Chrome. We chose
Google Chrome as the base browser. This is because, first, its
source code is available as Chromium 2. The second reason
is that its process model [24] is suitable for the workstation
model described in Section II.

As explained in Section II, a distributed browser must
provide secure inter-process communication across browser
nodes. We use an instant messaging system (IMS) in Subspace
to accomplish inter-process communication. We chose Skype
as an IMS because it provides an application-to-application
(AP2AP) communication facility [29]. The AP2AP commu-
nication allows stand-alone external programs to use Skype’s
overlay network. In addition, since Skype has a decentralized
architecture, this fits in well with the goal of a distributed
browser. Subspace provides remote procedure call (RPC) to
applications by using Skype’s AP2AP facility.

A. Overview of Distributed Browser Subspace

Fig. 2 overviews the distributed browser Subspace, which
consists of two programs, the process manager and the RPC
module, running on unmodified Google Chrome.

2http://src.chromium.org/

The process manager fulfills the concept of processes on
a distributed browser and provides JavaScript API to these
processes. A process is implemented as a browser tab on
Google Chrome. When a browser tab is created on Google
Chrome, a new OS process is also created for isolation. A
process on Subspace inherits the features of a tab on Google
Chrome. A Subspace process has internal memory resources
as DOM tree nodes. Unlike the base Google Chrome, a process
on Subspace has an attribute UID, as described in Section II.
An UID is a string name in an IMS. The process manager
is an extension (add-on) of Google Chrome and written in
JavaScript.

The RPC module provides an inter-browser RPC facility for
processes by using an external IMS program. The RPC module
also provides IMS facilities, such as obtaining the identifier of
the user who is running the IMS program. A user identifier is
used by the process manager. The RPC module is a Google
Chrome plug-in, and written in C and C++ based on NPAPI.

An application of Subspace consists of a group of processes
that are running on multiple browser nodes. A process executes
not only the regular built-in code for Web browsing but also
special JavaScript code. A process can call the JavaScript API
of the process manager. Non-collaborative browsing is also
done as in executing a process. In Fig. 2, the process “view”
executes the built-in code for Web browsing.

B. API for JavaScript Programs Running in Distributed
Browser

The process manager exports JavaScript API for collabora-
tive applications. The API functions of the process manager
are classified into two categories: interprocess communication
and process management.

Table I lists the important API functions for interprocess
communication. Applications use these functions to achieve
RPC asynchronously. When a client calls send request(), a
request message for RPC is sent to the server immediately, but
the client does not wait for a reply message to arrive. When a
reply message is received, a callback function is called. When
a server calls accept(), it registers a callback function. When
a request message is received, the callback function is called.
The server in the callback function obtains the arguments of
RPC, performs a task, and sends a reply message to the client.

Table II lists the process management API. The function
new process creates a new child process that has the specified
user ID. A process can terminate a process with kill(). In
addition to these functions, application can use regular API
functions of Google Chrome.

C. Using Subspace Communication Facility outside Browser
Nodes

JavaScript programs in Subspace can communicate with
one another based on RPC. We made it possible to use
this communication mechanism from C and Ruby programs
running outside browser nodes (Fig. 2). These C and Ruby
programs outside browser nodes can work together with
JavaScript programs inside browser nodes. For example, we



RPC 
Module

in C

Process 
Manager in 
JavaScript

Process1

Process 2

Basic Browser Function of 
Google Chrome

Skype
Overlay Network of Skype

Sk
yp

e 
AP

2A
P 

C
om

m
un

ic
at

io
n

RPC 
Module

in C

Process 
Manager in 
JavaScript

Process 3

Basic Browser Function of 
Google Chrome

Skype

Sk
yp

e 
AP

2A
P 

C
om

m
un

ic
at

io
n

Subspace 
API

Remote 
Procedure Call

Host 1 Host 2

Programs
in C & Ruby

RPC 
Module

File Server 
in C
RPC 

Module

Skype AP2AP 
Communication

Subspace API

Subspace node 1 Subspace node 2

Fig. 2. Overview of distributed browser Subspace.

have implemented a file server in C and its client in JavaScript
inside browser nodes. We have also implemented Ruby clients
that send requests to JavaScript servers inside browser nodes.

D. Using UIDs for Access Control and Services

All communication messages among processes across
browser nodes in Subspace are associated with the UIDs of
processes. These UIDs are user names in Skype IMS. Users
and applications can use these UIDs for the following places
and purposes.

(1) The reference monitor in the RPC module. In this place,
users can describe access control policies with method names
and UIDs. These policies are checked every time a RPC
message is sent and received. The current implementation
cannot check the parameters in request and reply messages.
The reference monitor works not only on the server side but
also on the client side. In addition to user names in Skype,
a user can use his/her contact list to describe access control
policies. A user can also define personal groups of users.

(2) Individual server functions of RPC. When a request
arrives from a client, a call back function is called with the
UID of the client process. The callback function can use
the client UID for various purposes. For example, a server

TABLE I
API FOR REMOTE PROCEDURE CALLS.

Function Name Description
s=bind(n,v) This function binds RPC with node name n

and service name v, and returns an identifier s
of the server in the program. The return value
is passed to function send request().

send request(s,m,a,c) This function sends an RPC request message
to server s. Parameters m and a are the
method and arguments of the RPC. When a
reply message arrives, callback function c is
called with the reply message.

accept(v,c) This function registers service v of RPC.
When a request message arrives, callback
function c is called. The callback function
takes an identifier of the request, a method
name, arguments, and the name of the client
node. The callback function performs an RPC
task, and returns a reply message to the client.

in collaborative browsing shows the client UID in a pop-up
window to the user to ask if the user of the client can join
the current session or not. When a client in annotation sharing
tries to store a comment in storage, a server can attach the
UID of the client to the comment. After that, when a client
tries to retrieve comments from storage, the server can use the
client UID as a trusted extra query parameter. The server can
select comments that are allowed to be read by the client of
the UID.

E. Shell Program and “ps” Command

Subspace has a shell program that is a command interpreter
as a shell in Unix. This shell accepts some built-in commands.
The “ps” command of the shell shows the list of current
running processes as the ps command in Unix.

IV. APPLICATIONS IN DISTRIBUTED BROWSER SUBSPACE

We have implemented some applications in Subspace to test
and verify that it provides enough facilities for developing
collaborative applications. Since current Subspace uses Skype
IMS, we do not need applications in which Skype has similar
facilities, such as voice/video calling, a presence service, and
instant messaging.

A. Simple Collaborative Browsing

Collaborative browsing or co-browsing allows users in re-
mote places to see the same Web page. We have implemented
a simple co-browsing application that has two main features
[12].

• Push Web pages: Pushing a Web page allows the sender
to force a specific Web page to appear on the receiver’s
window.

TABLE II
API FOR PROCESS MANAGEMENT.

Function Name Description
p=new process(u) This function creates a new process with UID

u. The created process has a tab of Google
Chrome and a DOM tree of the tab.

kill(p) This function kills process p and closes the
tab.



(a) Client node that is sending URL.

(b) Server node that is receiving URL.

(c) Server node that opens tab of URL.

Fig. 3. Screenshots of simple collaborative browsing application.

• Hand-over control: This feature allows a sender who has
logged in to a session to give control of the Web session
to a receiver. A sender with this facility can pass a session
to the receiver without telling him/her the user name or
password for the site.

We are working on higher level co-browsing features, includ-
ing sync-surfing, co-scrolling, and co-filling.

Fig. 3 shows screenshots of our simple co-browsing appli-
cation. This was developed based on a client-server model. A
client sends a URL to a server. Fig. 3a is a screenshot of the
client node. This node has two tabs, i.e., two processes. One
process is opening a site. The other process is executing our

Fig. 4. Results for ps command in server node.

co-browsing application. The user is filling in the boxes with
the receiver Skype name, subject, and URL.

Fig. 3b is a screenshot of the server node, where an RPC
server is waiting for a request message. The user is browsing
a news site. When the server receives a request, it creates a
window and shows the client user name, subject, and URL.
If the user pushes the “OK” button, the server creates a new
process with a tab, and opens the received URL in the process.
The browser node obtains the HTML file of the received URL
from the HTTP server, parses the HTML file, and obtains
inline images from the HTTP server. Finally, the tab reveals
the requested site as seen in Fig. 3c.

Fig. 4 shows a screenshot of the server node when the user is
opening a shell window and typing the ps command. The result
for the ps commands means that three processes are running
in the browser node. The first and last processes are owned
by the user him/herself, and the second process is owned by
the client process. Therefore, the second process is running
at a lower privilege, and cannot see the content of the other
processes even if they have the same origin.

The client in Fig. 3a sends a simple URL to the server. In
addition to sending a simple URL, we can send two items.

• A submission form: With this feature, a user can open
a Web page that is created with a POST method. The
client process sends a form to the server process, which
receives the form, creates a process and its DOM tree
nodes, and fills the DOM tree nodes with the received
form.

• Cookies: With this feature, a user can sends session
cookies to a remote friend. This makes it possible to
accomplish the handing-over control mentioned above.

We can run a client from a command line in our simple
co-browsing application. The following command line has the
same effect as the client in Fig. 3a.

$ open-url -s "You must see it" skyperpctest \
http://www.collaboratecom.org/2011/

B. Comment Sharing by Using Tuple Space
We have implemented a simple comment sharing applica-

tion in Subspace, which uses a Linda-type tuple space as a
backend store [6]. We have extended the Linda tuple space



model with access control capability. The following is an
example of Alice adding a comment.

out(["comment-sharing",
"http://www.tsukuba.ac.jp/",
"I like it"],
["Bob", "Carol"])

This function out() takes two arguments: a tuple and
an ACL. The tuple consists of the name of application
"comment-sharing", the URL of the page, and the comment
text. Unlike Linda, the function takes an additional argument,
i.e., an ACL, which is a list of users who are allowed to read
the tuple.

To read comments, the client calls function rd_all() (read
all) as follows.

rd_all(["comment-sharing",
"http://www.tsukuba.ac.jp/",
nil])

This function is called when the user visits the URL. The
first and second elements are fixed, and the third element nil
means a wild card.

When our tuple space receives this request, it first performs
pattern matching with the argument, and collects all the tuples
as a regular Linda tuple space. Next, our tuple space checks the
ACLs of the matched tuples, and removes a tuple if the client
does not have permission. Finally, our tuple space returns the
readable tuples of the URL.

We have implemented a tuple space server by extending
that of the Ruby language, called Rinda [27]. First, in this
implementation, we extended the Linda server of Ruby to use
the RPC facility of Skype. Next, we added the access control
feature to the Linda server.

In the current implementation, the Linda server runs outside
the browser node, and should be executed on the PC of a
trusted user. The PC should run the Skype client and should
always be online to maintain availability.

C. Screen Capture

Google Chrome has an extension called “Screen Capture”
[13]. A user can capture the browser screen as a portable
network graphics (PNG) image with this extension and add
annotations to the image. He/she can save the image to not
only a local file but also remote picture sharing sites, such as
Picasa, Facebook, and Sina Microblog.

We changed this saving function to send the image to a
remote RPC server of Subspace. Fig. 5 shows screenshots of
our modified screen capture extension. The user captures the
screen image, adds text, lines, and highlighting to the image,
and sends the image to the remote user “skyperpctest” of
Skype. The client sends an image transfer request to the server.
When the remote user accepts the request, the server creates
a new process, creates a DOM tree, and adds an IMG node
of HTML to the DOM tree. Next, the client begins sending
the image, and the server receives it and stores it in the IMG
node.

Fig. 5. Screenshot of modified screen capture extension.

V. NEXT STEPS

We are developing our distributed browser project, and we
have many tasks to implement.

The current Subspace implementation depends on the cen-
tral servers of Skype IMS. When these central servers are
down by accident [3], [17], collaborative applications do not
work. This dependence also means that users must trust Skype
IMS. If Skype IMS is cracked, inter-browser communication
becomes vulnerable to man-in-the-middle attacks. Users must
use Skype IMS although they may prefer other IM systems.

We are thinking about using alternative IMSs or SNSs to
solve this problem with dependence. Candidates for IMS are
Yahoo!Messenger, Facebook Chat over eXtensible Messaging
and Presence Protocol (XMPP), and Google Talk [26].

When we use multiple IMSs or SNSs, we have to identify
a single person in them. For example, consider that Alice has
an account Alice-skype-123 with Skype and Alice-yahoo-345
with Yahoo!Messenger. We have to combine Alice-skype-123
and Alice-yahoo-345 into a single person. To achieve this, we
can use a public key as in some decentralized OSNs (DOSNs)
[5], [7], [8].

We need more collaborative applications. First, we are
working on higher levels of co-browsing features, including
sync-surfing, co-scrolling, and co-filling. We wish to support
dynamically changing Web pages as in [20] without central-
ized servers. Second, we are also interested in playing video
collaboratively. These applications are sensitive to communi-
cation delays. We will evaluate our approach of IMS though
implementing these applications.

VI. RELATED WORK

Co-browsing is one of our most important applications,
and we have implemented the simple co-browsing applica-
tion described in Section IV. There are many co-browsing
systems, browser extensions, and services [12]. Web confer-
encing services usually include a co-browsing feature. Most
of these systems require centralized servers to relay control
messages among browser nodes. Our distributed browser does
not require centralized servers. Brosix is an IMS, and has a



co-browsing feature [4]. However, Brosix requires centralized
servers and provides no application development framework.

Web annotation is another key application of our distributed
browser. Many Web annotation services have been proposed
and developed [16]. Most existing Web annotation services
depend on centralized servers. Our distributed browser stores
comments on a server running on a trusted member’s PC in a
small group.

ShiftSpace is a rich Web annotation system, and it is
trying to eliminate dependence on centralized servers [35]. The
current implementation of ShiftSpace uses centralized servers
to store rich Web annotations. Collaborative browser nodes in
ShiftSpace communicate with one another through a backing
store where keys are URLs. The collaborative browser node
in our distributed browser, on the other hand, communicates
through an overlay network in RPC style.

Skype is an IMS, and provides an application development
framework [2], [29]. TalkAndWrite achieves collaborative
editing, and IDroo achieves a whiteboard facility by using this
framework 3. Our prior report has described passing access
rights over the Skype network in an anti-spam scheme based
on capability-based access control [28]. Some desktop and
application sharing services use Skype for binding PCs, but
they do not use the Skype overlay network for exchanging
control messages for sharing. If we share a Web browser
screen in these services, we can implement co-browsing.
However, they require centralized servers and a wide band-
width to transfer screen images. Skype4Games provides a
framework for developing online games on the Skype overlay
network [33]. Our distributed browser provides a framework
for developing Web-based collaborative applications on the
Skype overlay network.

Many academic and commercial SNSs or OSNs have been
proposed and developed. Some of these are called decentral-
ized OSNs (DOSNs) [5], [7], [8]. Many peer-to-peer (P2P)
and distributed hash table (DHT) systems and protocols have
also been proposed and developed. These distributed systems
have the goal of providing services without depending on
centralized servers. The goal of our distributed browser was
to provide a service for Web-based collaborative applications
without depending on centralized servers. To achieve this,
we reused an existing system, Skype IMS, and made our
implementation much simpler than that in these systems. In
DOSN, an IMS can be used to exchange public keys for
identity as an out-of-channel mechanism in the bootstrap
phase. Our distributed browser uses an IMS as a daily commu-
nication network for user authentication, message encryption
and NAT traversal. Collaborative applications can use the
overlay network of the IMS in RPC style. Users can use the
user names of an IMS to describe access control policies.
Our distributed browser also differs from these systems in
that it provides the workstation model described in Section
II. Furthermore, unlike DOSN, we are trying to eliminate the
dependence on Skype and to avoid single points of failure

3http://shop.skype.com/apps/ and https://extras.skype.com/

by adding an alternative IMS, as discussed in Section V. The
domain name system (DNS) also has alternative servers, which
achieves very high availability.

Collaborative browsing and search (COBS) is a research
project to achieve co-browsing and annotation-sharing in a
distributed way [34]. This is implemented in COBS by a Web
browser front-end and a DOSN backend. The COBS browser
is designed to use a DHT as backend storage while the current
implementation uses some central servers to demonstrate their
ideas. The current implementation uses a centralized XMPP
server for co-browsing. In our terminology, COBS is also
implementing a distributed browser. The differences between
COBS and ours have already been discussed as differences
between DOSN and our distributed browser. In summary, the
differences between COBS and ours are first, our distributed
browser provides a workstation model, second, our implemen-
tation is much simpler because it reuses existing IMSs, and
finally, we have tried to avoid single points of failure by having
multiple IMSs.

Opera Unite is a technology that runs an HTTP server in
a Web browser [32]. If a user runs a file server, he/she can
allow the public or limited people to access files in his/her PC.
Applications in the HTTP server of Opera Unite are written in
JavaScript. Central servers in Opera Unite make HTTP servers
accessible from the Internet. Central servers also perform user
authentication every time an HTTP connection is established.
On the other hand, our distributed browser does not require
central servers after the initialization phase.

WebSocket is part of the HTML5 standard, and allows
JavaScript code running on a Web browser to connect with
a Web server to exchange various types of data [11], [14].
WebSocket does not allow running a server in a browser
for security and direct communication among Web browsers.
BrowserSocket makes it possible for JavaScript code running
on a Web browser to act as a server for WebSocket [25].
BrowserSocket is implemented as an extension and a plug-in
of Firefox but does not provide authenticated communication.
Our distributed browser provides authenticated communica-
tion, and allows applications to address nodes with user names
in an IMS.

Web Storage API and Indexed Database API are also
parts of the HTML5 standard and they allow JavaScript code
running on a browser to store persistent data in the browser
[15], [21]. This standard does not deal with any access control
mechanisms with user identifiers. Our distributed browser has
access control mechanisms with user identifiers, and stored
files and tuples can be shared among users and applications.

SPORC is a framework for collaborative applications by
using untrusted centralized servers [10]. In SPORC, central-
ized servers are used to realize operational transformation (OT)
[9]. The main application of SPORC is collaborative editing,
and it is implemented by reusing the source code of Google
Wave [18], which is also based on OT. The objective of our
distributed browser is similar to that of SPORC. However, ours
is different from SPORC in that it provides the communication
facilities of IMS for collaborative Web-based applications.



The Illinois browser operating system (IBOS) is a micro-
kernel based operating system for Web browsers, which pro-
vides strong isolation among activities that have different
origins [31]. IBOS does not support collaborative applications.

VII. CONCLUSION

We proposed the idea of a distributed browser, and the
workstation model as a system model for a distributed browser.
A distributed browser consists of multiple browser nodes,
where each node has I/O devices and is dedicated to a
single user. Collaborative applications are a group of processes
running in multiple nodes. A distributed browser achieves
network transparency for processes as distributed operating
systems.

We discussed the implementation of a distributed browser,
called Subspace, which achieves inter-browser communica-
tions by using the existing IMS of Skype. This design simpli-
fies the implementation of Subspace. Subspace also provides
a remote procedure call facility for processes, where the user
names of the IMS are used for addressing communication
peers and describing access control policies.

We have implemented several applications in Subspace,
including simple co-browsing, snapshot sharing, and simple
comment sharing. These implementations have demonstrated
that Subspace provides useful facilities for developing Web-
based collaborative applications.

We plan to enhance co-browsing and Web annotation fa-
cilities in the future, and evaluate our approach in such
applications that are more interactive and delay sensitive. We
also intend to eliminate single points of failure by using
multiple IMSs together.

REFERENCES

[1] H. Abdel-Wahab and M. Feit, “XTV: a framework for sharing X Window
clients in remote synchronous collaboration,” in IEEE TRICOMM ’91
Communications for Distributed Applications and Systems, 1991, pp.
159–167.

[2] S. A. Baset and H. G. Schulzrinne, “An Analysis of the Skype Peer-to-
Peer Internet Telephony Protocol,” in 25th IEEE International Confer-
ence on Computer Communications (INFOCOM), 2006, pp. 1–11.

[3] T. Brock. (2010, Dec.) Skype Outage Today. [Online]. Available:
http://blogs.skype.com/enterprise/2010/12/skype outage today.html

[4] Brosix. Features - Brosix Instant Messenger. [Online]. Available:
http://www.brosix.com/features/

[5] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “PeerSoN: P2P
Social Networking: Early Experiences and Insights,” in the Second ACM
EuroSys Workshop on Social Network Systems (SNS ’09), Mar. 2009.

[6] N. Carriero and D. Gelernter, “How to Write Parallel Programs: a Guide
to the Perplexed,” ACM Computing Surveys, vol. 21, no. 3, pp. 323–357,
September 1989.

[7] A. Datta, S. Buchegger, L. Vu, T. Strufe, and K. Rzadca, “Decentralized
Online Social Networks,” Handbook of Social Network Technologies and
Applications, pp. 349–378, 2010.

[8] A. Datta, “SoJa: Collaborative Reference Management using a De-
centralized Social Information System,” in Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom 2010),
2010.

[9] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,”
in ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’89, 1989, pp. 399–407.

[10] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “SPORC:
Group Collaboration Using Untrusted Cloud Resources,” in the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’10), Oct. 2010.

[11] I. Fette and A. Melnikov, “The WebSocket proto-
col (draft-ietf-hybi-thewebsocketprotocol-14),” IETF Internet Draft,
Sep. 2011. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-hybi-thewebsocketprotocol-14

[12] R. Good. (2007, Mar.) Co-Browsing Tools And Technology: A
Mini-Guide. [Online]. Available: http://www.kolabora.com/news/2007/
03/22/cobrowsing tools and technology a.htm

[13] Google. chrome-screen-capture - Capture webpage screen-
shot in Chrome. [Online]. Available: http://code.google.com/p/
chrome-screen-capture/wiki/EnglishFAQ

[14] I. Hickson (ed.), “The WebSocket API,” W3C Working
Draft, Apr. 2011. [Online]. Available: http://www.w3.org/TR/2011/
WD-websockets-20110419/

[15] I. Hickson (ed.), “Web Storage,” W3C Working Draft,
Sep. 2011. [Online]. Available: http://www.w3.org/TR/2011/
WD-webstorage-20110901/

[16] J. Hunter, “Collaborative Semantic Tagging and Annotation Systems,”
Annual Review of Information Science and Technology, vol. 43, pp. 187–
239, 2009.

[17] J. Kirk. (2011, Jun.) Skype Sign-in Problems Knock Millions
Offline. [Online]. Available: http://www.pcworld.com/article/229604/
skype signin problems knock millions offline.html

[18] S. Lassen and S. Thorogood, “Google Wave Federation Architecture,”
Google Wave Protocol, May 2009. [Online]. Available: http://www.
waveprotocol.org/whitepapers/google-wave-architecture

[19] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data
repository (SUNDR),” in the 6th conference on Symposium on Opearting
Systems Design & Implementation (OSDI’04), 2004.

[20] D. Lowet and D. Goergen, “Co-Browsing Dynamic Web Pages,” in The
18th international conference on World wide web (WWW ’09), Apr.
2009.

[21] N. Mehta, J. Sicking, E. Graff, A. Popescu, and J. Orlow (eds),
“Indexed Database API,” W3C Working Draft, Sep. 2011. [Online].
Available: http://www.w3.org/TR/2011/WD-IndexedDB-20110419/

[22] D. Osinga. (2009, May) Introducing the Google Wave APIs: what
can you build? [Online]. Available: http://googlewavedev.blogspot.com/
2009/05/introducing-google-wave-apis-what-can.html

[23] L. Rasmussen. (2009, May) Went Walkabout. Brought back Google
Wave. [Online]. Available: http://googleblog.blogspot.com/2009/05/
went-walkabout-brought-back-google-wave.html

[24] C. Reis and S. D. Gribble, “Isolating Web Programs in Modern Browser
Architectures,” in the 4th ACM European Conference on Computer
systems (EuroSys ’09), Apr. 2009.

[25] T. Ruottu and K. Markus, “BrowserSocket API,” 2010. [Online].
Available: http://browsersocket.org/api.html

[26] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6129, 2011.

[27] M. Seki, “dRuby and Rinda: Implementation and Application of Dis-
tributed Ruby and its Parallel Coordination Mechanism,” International
Journal of Parallel Programming, vol. 37, no. 1, pp. 37–57, 2009.

[28] Y. Shinjo, K. Matsui, T. Sugimoto, and A. Sato, “An Anti-Spam Scheme
Using Capability-Based Access Control,” in Proceedings of IEEE 34th
Conference on Local Computer Networks, 5th IEEE LCN Workshop on
Security in Communication Networks (SICK), 2009, pp. 907–914.

[29] Skype Limited. (2011) Skype Public API. [Online]. Available:
http://developer.skype.com/accessories

[30] A. S. Tanenbaum and R. Van Renesse, “Distributed Operating Systems,”
ACM Computing Surveys, vol. 17, pp. 419–470, December 1985.

[31] S. Tang and H. Mai, “Trust and Protection in the Illinois Browser
Operating System,” the 9th USENIX Conference on Operating Systems
Design and Implementation, 2010.

[32] H. S. Tømmerholt and D. Davis, “Opera Unite developer’s primer,”
Dev.Opera, Oct. 2009. [Online]. Available: http://dev.opera.com/articles/
view/opera-unite-developer-primer-revisited/

[33] T. Triebel, B. Guthier, and W. Effelsberg, “Skype4Games,” in the 6th
ACM SIGCOMM workshop on Network and system support for games
(NetGames ’07), Sep. 2007.

[34] C. von der Weth and A. Datta, “COBS: Realizing Decentralized In-
frastructure for Collaborative Browsing and Search,” in IEEE Advanced
Information Networking and Applications (AINA 2011), 2011, pp. 617–
624.

[35] M. Zer-Aviv. (2010, Sep.) ShiftSpace Developer Tutorial.
[Online]. Available: https://github.com/ShiftSpace/shiftspace/wiki/
Developer-Tutorial


