
OTPM: Failure Handling in Data-intensive
Analytical Processing

Binh Han∗, Edward Omiecinski†, Leo Mark‡ and Ling Liu§
School of Computer Science

Georgia Institute of Technology, Atlanta, Georgia 30332
∗binhhan@gatech.edu
†edwardo@cc.gatech.edu
‡leomark@cc.gatech.edu
§lingliu@cc.gatech.edu

Abstract—Parallel processing is the key to speedup perfor-
mance and to achieve high throughput in processing large scale
data analytical workloads. However, failures of nodes involved in
the analytical query can interrupt the whole process, resulting
in the complete restart of the query if the system does not have
query fault-tolerance. Complete restart might be too costly for
processing query on very large databases and might not be able
to meet the time constraints in decision support systems. In
this paper, we present an approach to resume query processing
after failure by keeping track of the point at which data has
been processed by an operator, called operator tracking. We also
consider saving intermediate results using partial materialization.
We look at several fundamental parallel database techniques
which are widely used today and analyze the performance cost of
query processing and recovery using those techniques with our
OTPM fault-tolerance approach. We perform simulation-based
experiments which show that our approach incurs only a small
resume overhead compared to complete pipelining and complete
materialization of intermediate results. Also, the combination of
our approach with vertically partitioned database in a shared-
nothing environment yields the best performance among different
settings for parallel processing of data intensive analytical work-
loads.

Index Terms—Failure handling, fault tolerance, analytical
processing, parallel query processing.

I. INTRODUCTION

Data volume is growing exponentially in data warehousing.
Today, it is not unusual to hear about data warehouses with
hundreds of terabyte size databases. Large commercial entities
such as eBay, Yahoo and Facebook have already reached
databases with sizes larger than a petabyte [1]. Data analysis
involving large databases is often parallelized across nodes in
large clusters in order to achieve high performance. However,
this also increases the probability of failure during query
processing as the number of nodes in the cluster increases,
along with the trend to use low-priced hardware to carry
out nontrivial workloads. Currently, there are two main ap-
proaches in parallel query processing: parallel DBMSs and the
MapReduce-based systems [2]. Parallel DBMSs (PDBMSs)
support fault tolerance at the granularity of a transaction,
which only benefits queries that make changes to the database,
not the read-only queries as in most analytical workloads.
In a parallel DBMS, a query is executed in a pipeline of
operators so that we have to recompute everything if we want

to get access to the previous intermediate tuples. Consider
a read-only query on a very large database that has been
running for a long time and is about to finish. If a node fails,
it will trigger the entire query to be reprocessed, which is
sometimes unacceptable. In contrast to the complete pipeline
execution of PDBMSs, the MapReduce approach to query fault
tolerance is complete materialization. All intermediate outputs
from an operator are locally saved to disk before executing
the next operator. When a node goes down, its work can be
restarted on an alternate node. However, performing complete
materialization also degrades the performance of the whole
process due to high I/O cost. In fact, it is one of the reasons
why Hadoop and HadoopDB, two open source versions of
the MapReduce framework, run significantly slower than two
parallel DBMSs, Vertica and DBMS-X [3, 4].

In this paper, we present an efficient query fault tolerance
scheme which avoids both complete restart and complete
materialization, supports partial query restart by using operator
tracking and partial materialization. The rest of the paper is
organized as follows. In section II, we describe our platform
assumptions. Our approach is then described in detail in
section III. We present an analytical evaluation of our approach
compared to complete pipelining and complete materialization
in section IV. The experimental results are shown in section
V. Section VI contains related work and the paper concludes
in section VII.

II. PLATFORM ASSUMPTIONS

In this section, we look at several fundamental parallel
database techniques which are widely used today and pick
the most popular techniques to use in our analytical model.

A. Parallel Architectures

There are three common parallel architectures: shared-
memory, shared-disk and shared-nothing [5]. In a shared-
memory system, all the processors share one memory and
a set of disks. Its benefits are ease of programming and
load balancing. However, memory contention is a problem in
shared-memory systems because the memory bandwidth will
become a bottleneck as the number of CPUs increases. In a
shared-disk system, every processor has access to a collection

COLLABORATECOM 2011, October 15-18, Orlando, United States
Copyright © 2012 ICST
DOI 10.4108/icst.collaboratecom.2011.247083

of hard disks but has its own private memory. The shared-
disk architecture also limits the scalability of the system as
in the shared-memory approach. In contrast, each processor
in a shared-nothing system has its own memory and disks.
Every processor performs a task locally on its own resources
which avoids the problem of resource contention. Therefore,
of three approaches, shared-nothing systems scale the best
[6]. The shared-nothing architecture is suitable for processing
large data warehouse workloads. We assume a shared-nothing
architecture for our analytical model.

B. Forms of Parallelism

Three forms of parallelism can be exploited in processing
data analytical workloads [7]. First, we have the parallel
execution of multiple queries, called inter-query parallelism.
Next, there is the parallel execution of multiple operations in
a query, known as intra-query parallelism. Lastly, we have
the parallel execution of multiple sub-operations for a single
operation, called intra-operation parallelism. We will use intra-
query parallelism and intra-operation parallelism in processing
our example query.

C. Data Placement Strategies

In parallel DBMSs, a relation is partitioned across the
data sites usually horizontally or vertically [8]. In horizontal
partitioning, the rows in a relation are spread across a number
of data nodes by hashing, round-robin partitioning or range
partitioning. In vertical partitioning, a relation is divided across
data sites by projecting over its columns. After using horizon-
tal or vertical partitioning, each data node has a fragment of
the original relation. Each fragment can also be replicated. If
two physical copies of a fragment (one primary fragment and
one backup fragment) are stored on two different data nodes,
it is called chain replication. If the system has N data nodes,
the primary fragment is stored on one data node and its backup
copy is subdivided into N − 1 subfragments stored on N − 1
other data nodes, which is known as interleaved replication.

The physical layout of the database is an important factor
that affects load balancing and query optimization. Hence we
consider both horizontal and vertical approaches.

III. OUR APPROACH

Suppose we have an SQL query that needs to be parallelized
across multiple nodes in a cluster. The query optimizer will
generate the best query plan based on the minimum estimated
cost. A query plan is expressed as a tree of algebra operators.
Each operator is assigned to nodes in the cluster by exploiting
possible forms of parallelism. Each node is considered as
a possible single point of failure. We call the nodes which
receive data from a node Pi the downstream nodes of node Pi.
The nodes sending data to a node Pi are called the upstream
nodes of node Pi. As in Figure 1(a), Psend is the upstream
node of Precv and Precv is the downstream node of Psend.
Our approach prevents the loss of produced data and ensures
that the query can be resumed from the point it stops in the
event of failure. No duplicate tuples will be produced during

failure recovery. In order to do this, an operator tracker is
placed at every node to checkpoint the progress of its upstream
nodes. In addition, resulting tuples produced by each node are
cached locally in memory and are materialized on a backup
node only upon exceeding memory. Using operator tracking
requires that data is processed and produced in a deterministic
order. Since every database table usually has a clustered index
on its primary key, we can process and produce data in the
order of the primary key. If the table also has an index on
the select/ project/ aggregation/ join attribute, we will use that
index instead of the index on the primary key. Without loss of
generality, we explain our approach assuming data is processed
and produced in the order of the primary key.

A. Operator Tracking

An operator tracker is placed at every node Precv to check-
point the progress of its upstream node Psend. The operator
tracker stores different information corresponding to different
types of operators (select/ project, join, aggregation) which
Psend performs.

1) Select/ project: A select/ project scan usually performs
directly on the data source since it is often pushed down as
far as possible in the optimal query plan. Thus, we can take
advantage of the index scan to process and produce resulting
tuples in the order of the primary key. The operator tracker
at Precv will log the last pk , the primary key of the most
recent tuple which Precv has received from Psend, as described
in Figure 1(a). The operator tracker keeps information in a
temporary table in memory which has two fields: Psend ID
and last pk. Each row in this table is the checkpoint of each
upstream node sending tuples to Precv . When a new tuple
reaches Precv, the operator tracker at Precv will update the
last pk value with the primary key of the new tuple. If Psend
fails, its work will be taken over by an alternate node Palter.
Palter is chosen from the sites which have a copy of the data
stored on Psend. All previous connections to Psend now switch
to Palter. The checkpoint information last pk kept at Precv
is sent to Palter, telling Palter to start scanning its input from
the tuple next to the tuple whose primary key equals last pk,
called the last pk tuple from now on. This guarantees that no
duplicate results are produced and sent out to Precv .

2) Aggregation: To exploit intra-operator parallelism, an
aggregate operator at each node is usually hash-based. Input
tuples are hashed on the Group By attributes. Each row in the
hash table will keep updating the accumulated result as in the
aggregation function until the entire set of input tuples have
been processed. Since hash-based aggregate cannot produce
results until it has seen the entire input, Psend cannot transmit
results to Precv until it finishes processing. If Psend goes down
before that time, a complete restart of the work of Psend at
Palter is required. If Psend has transmitted part of the results
to Precv when it fails, the tracker at Precv keeps all the
hash values of the Group By attribute that have been sent
to Precv. During failure recovery, Palter can skip computing
those tuples whose hash values are saved at Precv’s tracker.

2

Select

Ri

Select

Ri

Psend

Precv

Palter

Psend_ID last_pk

... ...

Tracker

Psend i

ID ...
...
i

i+1

...

ID ...
...
i

i+1

...

Fail at i

Start from i +1scan scan

(a) Select

Join: S.a = R.a

Psend

Psend_ID last_pk

... ...

Tracker

Psend i

Precv

Join: S.a = R.a

Palter

ID ...
...
i

i+1

...

Hash table

scan
Fail here

S

ID ...
...
i

i+1

...

Hash table

scanStart here

S

probe probe

(b) Hash Join

Join: S.a = R.a

Psend

Psend_ID last_pk_out

... ...

Tracker

Psend i

Precv

Join: S.a = R.a

Palter

ID ...
...
i

i+1

...

Fail here

S

ID ...
...
i

i+1

...

Start here

ID ...
...
j

j+1

...

R

last_pk_in
j

...

ID ...
...
j

j+1

...

RS

(c) Nested Loop Join

Fig. 1. Operator tracking

3) Join: If there is a join of two relations in the SQL query,
the query optimizer might implement a parallel hash join or
a parallel nested loop join depending on the statistics of the
data sources. First, the data sources are redistributed across the
nodes. Then each node can do a hash join or a nested loop
join and can produce the matching tuples in parallel. Suppose
Psend performs a join on two operands S and R.

Figure 1(b) shows the operator tracker for a hash join. If
Psend performs a hash join, then assume that R is the build
operand which is used to build the hash table and S is the
probe operand whose join attribute values are probed the hash
table to find matches. The probe operand is scanned in the
order of its primary key. Each matching tuple is tagged with
the primary key of the probe operand that was used to produce
the match before sending it downstream. The tracker on Precv ,
like in the select/ project tracker described above, also keeps a
table with two field (Psend ID, last pk) rows, where last pk
is the tag of the most recent tuple transmitted to Precv. This
last pk value is used, in case Psend fails, to tell Palter to
start scanning the probe operand at the tuple next to the tuple
whose primary key equals last pk.

For a nested loop join, assume that S is the outer operand
which is scanned one time and R is the inner operand which
is scanned as many times as S’s cardinality. Every matching
tuple is now tagged with two primary keys, one for the
tuple from S and one for the tuple from R used to produce
the match, and then is sent downstream. The tracker on
Precv keeps a table with three field (Psend ID, last pk out,
last pk in) rows, where last pk out and last pk in rep-
resent the tag of the most recent tuple transmitted to Precv.
During recovery, Palter continues the iteration through S at
last pk out tuple and search for a match through R from the
tuple after last pk in tuple, as illustrated in Figure 1(c). The
next iteration is then performed as usual nested loop join.

For all types of operators, we can see that the information
kept at each operator tracker is small and can certainly be kept
in memory. Hence, the cost to maintain an operator tracker at

each node is negligible.

B. Partial Materialization

Using operator tracking is not enough to restart partially
at Palter after failure. The operator tracker only checkpoints
the progress running at Psend and informs Palter to continue
processing where Psend left off. One issue is how to supply
the input tuples for Palter to process. For operators that
compute directly on relations stored on disks, i.e. operators
that process the leaves of the query tree, Palter will be
referred to the data source sites to get its input during failure
handling. But if the operator does not perform directly on
the available database and intermediate results have not been
saved, restarting at Palter can cause all the upstream nodes to
restart in order to produce data input for Palter. One solution
is to completely materialize intermediate results. However,
complete materialization might be too costly to perform as
it increases both total running time and failure rate. Hence, it
is reasonable to perform partial materialization during query
processing. Intermediate tuples are locally cached in memory
and materialization is only done when memory is exceeded.

During query planning, several nodes in the system will be
assigned for storing intermediate results when needed. Those
nodes only act as storage nodes so the number of query
sites in the system will decrease. When the memory at the
operation node is full, we free it up by sending all the tuples
in memory to the assigned backup node (log in the memory
of the backup node if there is enough space or write to disk
otherwise). Extra network traffic is incurred to transmit tuples
from the operator node to the backup node. However, doing
materialization on a backup node instead of the same operator
node will not degrade the performance of the operator node.
If a node fails, we can use the results from the previous level,
logged in memory of the right upstream node and maybe on
disk/ memory from a backup node if there’s any to begin
recovering at the point of failure.

In the rest of this paper, we will call our approach OTPM,

3

Join: S.b = T.b

Join: S.a = R.a

Select:
Predicate(R.d)

Select:
Predicate(S.e)

S R

T

Fig. 2. A typical query tree.

which is the abbreviation of operator tracking and partial
materialization. In addition, CP stands for Complete Pipelining
and CM stands for Complete Materialization. We also use the
terms site and node interchangeably in the paper.

IV. ANALYTICAL COST MODEL

In a parallel DBMS, the database can be partitioned hor-
izontally or vertically. A query is executed differently for
different data placement strategies. Suppose we have a query
tree as in Figure 2. We will describe the query execution
and analyze the running cost of this query on a horizontally
partitioned database and on a vertically partitioned database.
Since the query is parallelized, the cost in terms of the time
of running a task across multiple nodes is measured by the
cost of the node which takes the maximum time. There have
been several approaches for progress indicators (PIs) for SQL
queries which estimate the amount of the work completed and
the remaining time to complete SQL queries. In our paper, we
consider failure at each operator node so we would like to
apply one of those PIs approaches to determine the point of
failure happening at each node. Here, we choose the points
of failure with regard to the percentage of input tuples that
has been processed at each node, as in [9]. Our evaluation
is based on the TPC-H benchmark [10], the most widely
used benchmark to measure performance of decision support
systems involving large amount of data. It has a set of ad-hoc
queries which models the activities of a business information
analysis in a wholesale supplier. We use the TPC-H schema
in Figure 3 with the scale factor SF=1 as the test data. The
partitions for different relations are assumed to be stored on
different data nodes. We take the following query, which is an
example for the query tree above, to calculate the specific I/O
costs and network costs.

SQL command:

SELECT T.* FROM part as R,
partsupp as S,supplier as T
WHERE T. suppkey = S.suppkey
AND R.Partkey = S.Partkey
AND S.ps_availqty < 1000
AND R.p_size < 21

Fig. 3. The TPC-H database [10].

TABLE I
PARAMETERS USED IN THE ANALYTICAL COST MODEL

Sym. Description Values
tIO Time for a block access 3500 µs
ttup Time to iterate through a tuple 0.065 µs
tBlk Time to iterate through a block 0.020 µs
tfunc Time to call a function 0.009 µs
B Block size 32KB
P Network packet size 32KB
tp Time to transmit a packet 320µs1

R Size of relation R -
|R| Number of tuples in relation R -
sslR The selectivity2 of the select -

operator performed on relation R
jslR The selectivity of the join operator -

performed on relation R
1With 100MB/s bandwidth

2The ratio of the output and input cardinalities

In this SQL query, S=partsupp, R=part, T=supplier. The se-
lectivity of the predicate for Part (p size < 21) is 0.4. The
selectivity of the predicate for Partsupp (ps availqty < 1000)
is 0.1. The first join (partsupp on part) produces 9624 tuples.
The second join (partsupp on supplier) produces 9624 tuples as
well. Table I includes parameters used for calculating specific
costs in our example. Some of the values are taken from [11].

A. For a Horizontally Partitioned Database

Each base relation in the query is equally partitioned across
a number of data nodes. Relations R, S, T are spread over m,
n, k data sites respectively. Figure 4(a) shows the optimized
query plan, including three separate steps:

1) Do the select scan simultaneously on m partitions of R
and n partitions of S then hashes the resulting tuples
on the value of attribute a into u query sites A1, A2,

4

. . . , Au. Let Ri be the partition on which it takes
the maximum time to perform these tasks. The cost to
perform step 1 includes:
• Scan the partition: I/O cost = Ri

B × tIO
• Iterate through blocks, iterate through tuples in each

block to check the select predicate, apply the hash
function to each satisfying tuple:
CPU cost = Ri

B × tBlk + |Ri| × (ttup + tfunc) +
sslR × |Ri| × tfunc

• Extra I/O cost to write/ read the results to/ from
local disk (if complete materialization is used):
I/O cost = 2× (sslR×Ri)

B × tIO
• Send resulting tuples to the storage node (if OTPM

is used): NW cost = (sslR×Ri)
P × tp

• Send resulting tuples to query sites: NW cost =
(sslR×Ri)

P × tp
2) Let RAj

and SAj
represent the set of records sent to

Aj (j = 1, 2, . . . , u) and stored in temporary tables at
Aj . Each query site Aj performs the hash join of RAj

and SAj . The matching tuples are hashed on the value
of attribute b then sent to v query sites Q1, Q2, . . . , Qv .
Relation T is also repartitioned by the same hash func-
tion onto the same v query sites Q1, Q2, . . . , Qv .
• Write and read temporary tables:

I/O cost =
(RAj

+SAj
)

B × tIO × 2
• Iterate through blocks, iterate through tuples in each

block to build the hash table (for the tuples in the
smaller table) and probe for matches (for the tuples
in the other table), apply the hash function to each
matching tuple:
CPU cost =

(RAj
+SAj

)

B × tBlk + (|RAj |+ |SAj |)×
(ttup + tfunc) + jslSAj

× |SAj
| × tfunc

• Extra I/O cost to write/ read the results to/ from
local disk (if complete materialization is used):

I/O cost = 2×
(jslSAj

×SAj
)

B × tIO
• Send resulting tuples to the storage node (if OTPM

is used): NW cost =
(jslSAj

×SAj
)

P × tp
• Send resulting tuples to query sites: NW cost =

(jslSAj
×SAj

)

P × tp
3) Let SQi

and TQi
represent the set of tuples, which

originally belong to relations S and T respectively, that
have been sent to Qi(i = 1, 2, . . . , v). Each query site
Qj will perform the join SQi

on TQi
using the same

algorithm as in the previous join of R and S. The
matching tuples are sent to a central node which stores
the final result of the given query.
• Write temporary tables and load them into memory:

I/O cost = TQi
+SQi

B × tIO × 2
• Iterate through blocks, iterate through tuples in each

block to build the hash table (for the tuples in the
smaller table) and probe for matches (for the tuples
in the other table): CPU cost = TQi

+SQi

B × tBlk +
(|TQi

|+ |SAj
|)× ttup + tfunc

• Extra I/O cost to write/ read the results to/ from

Select

Sn

Select

Si

Select

S1 ...

...

Select

Rm

Select

Ri

Select

R1 ...

...

Join

Au

Join

Ai

Join

A1 ...

...

Hash

Tk

Hash

Ti

Hash

T1 ...

...

Join

Qv

Join

Qi

Join

Q1 ...

...

(a) Horizontally partitioned

Select

Se

Select

Rd

Hash

Sa

Hash

Ra

Hash

Sb

Hash

Tb

Join

Au

Join

Ai

Join

A1 ...

...

Join

Qv

Join

Qi

Join

Q1 ...

...

(b) Vertically
partitioned

Fig. 4. The query plan for partitioned database.

local disk (if complete materialization is used):
I/O cost = 2×

(jslSQi
×TQi

)

B × tIO
• Send resulting tuples to the storage node (if OTPM

is used): NW cost =
(jslSQi

×TQi
)

P × tp
• Send the final result to a central node:

NW cost =
(jslSQi

×TQi
)

P × tp

B. For a Vertically Partitioned Database

For vertical partitioning, relation R, which has m attributes,
is partitioned into m data nodes R1, R2, . . . , Rm. Each node
Ri stores a table with two columns, one with values from
column i of R and one with the primary key values from R,
denoted as Rid.

Similarly, S is vertically partitioned into n data sites and T
is vertically partitioned into k data sites.

Let Rd, Se,Ra, Sa, Sb, T b denote the tables on the data
sites which store R.d, S.e, R.a, S.a, S.b, T.b columns, respec-
tively.

The query above can be processed as a pipeline of operators
as illustrated in Figure 4(b):

1) The select scan is processed at Rd and Se, which can be
expressed as πRid(σR.d > α) and πSid(σS.e<β). This
will return the qualifying Rids and Sids, which are
then sent to Ra and Sa respectively. We assume the
maximum cost for performing this step is on Rd.
• Scan the partition: I/O cost = Rd

B × tIO
• Iterate through blocks, iterate through tuples in each

block to check the select predicate
CPU cost = Rd

B × tBlk +Rd× ttup + tfunc
• Extra I/O cost to write/ read the results to/ from

local disk (if complete materialization is used):
I/O cost = 2× (sslR×|Rd|×sizeRid)

B × tIO

5

• send resulting Rids to the storage node (if OTPM is
used): NW cost = (sslR×|Rd|×sizeRid)

P × tp
• send resulting Rids to Ra:

NW cost = (sslR×|Rd|×sizeRid)
P × tp

2) The Rids and Sids are sent to Ra and Sa respec-
tively to access the corresponding σR records in Ra
and σR records in Sa involving in the first hash join
Ra onR.a=S.a Sa. These records are hashed on the value
of column a and sent to u query sites A1, A2, . . . , Au,
which correspond with u buckets of the hash function
H1.
• Scan the partition: I/O cost = B(Ra)timestIO

where sslR×Ra
B ≤ B(Ra) ≤ Ra

B
• Iterate through blocks, iterate through tuples in each

block and apply the hash function to each satisfying
tuple:
CPU cost = B(Ra) × tBlk + sslR × Ra × ttup +
sslR ×Ra× tfunc

• Extra I/O cost to write/ read the results to/ from
local disk (if complete materialization is used):
I/O cost = 2× (sslR×Ra)

B × tIO
• Send resulting tuples to the storage node (if OTPM

is used): NW cost = (sslR×Ra)
P × tp

• Send resulting tuples to query sites: NW cost =
(sslR×Ra)

P × tp
3) Let RAj , SAj be the set of records sent from Ra, Sa

to Aj(j = 1, 2, . . . , u). Each query site Aj will perform
the join RAj

on SAj
. The resulting Sids are sent back

to Sb.
• Write and read temporary tables: I/O cost =

RAj
+SAj

B × tIO × 2
• Iterate through blocks, iterate through tuples in each

block to build the hash table (for the tuples in the
smaller table) and probe for matches (for the tuples
in the other table), apply the hash function to each
matching tuple:
CPU cost =

RAj
+SAj

B × tBlk + (|RAj | + |SAj |) ×
ttup + tfunc + jslSAj

× |SAj
| × tfunc

• Extra I/O cost to write/ read the results to/ from
local disk (if complete materialization is used):

I/O cost = 2×
(jslSAj

×|SAj
|×sizeSid)

B × tIO
• send resulting Sids to the storage node (if OTPM is

used): NW cost =
(jslSAj

×SAj
)

P × tp
• send resulting Sids to Sb: NW cost =

(jslSAj
×SAj

)

P × tp
4) The resulting Sids of the first hash join, i.e. j =
∪uj=1πSid(RAj

on SAj
) are sent back to Sb to access the

corresponding records in Sb involving in the second hash
join Sb onS.b=T.b Tb. These records are then hashed on
the value of column b using the hash function H2 and
sent to v query sites Q1, Q2, . . . , Qv . Simultaneously,
Tb is also hashed by H2 and sent to those v query sites.
The cost to perform this step on Sb includes:
• Scan the partition: I/O cost = B(Sb)× tIO

where Sb×
Σu

1 (jslSAj
×|SAj

|)
|Sb|timesB ≤ B(Sb) ≤ Sb

B
Iterate through blocks, iterate through tuples in each
block and apply the hash function to each satisfying
tuple:
CPU cost = B(Sb) × tBlk + Σu1 (jslSAj

× |SAj
| ×

ttup + Σu1 (jslSAj
× |SAj

|)× tfunc
• Extra I/O cost to write/ read the results to/ from

local disk (if complete materialization is used):

I/O cost = 2×
Sb×Σu

1 (jslSAj
×|SAj

|)
|Sb|×B × tIO

• Send resulting tuples to the storage node (if OTPM
is used):

NW cost =
Sb×Σu

1 (jslSAj
×|SAj

|)
|Sb|×B × tp

Send resulting tuples to query sites: NW cost =
Sb×Σu

1 (jslSAj
×|SAj

|)
|Sb|×B × tp

• The cost to perform this step on Tb includes: Scan
the partition: I/O cost = Tb

B × tIO
• Iterate through blocks, iterate through tuples in each

block and apply the hash function to each satisfying
tuple:
CPU cost =TbB × tBlk + |Tb| × ttup + |Tb| × tfunc

• Send resulting tuples to query sites:
NW cost = Tb

P × tp
5) Let SQi , TQi are the set of tuples sent from Sb, Tb to

Qi(i = 1, 2, . . . , v). Each query site Qj will perform the
join SQi

on TQi
. The resulting Tids are sent back to all

the Ti sites.

• Write and read temporary tables:
I/O cost = TQi

+SQi

B × tIO × 2
• Iterate through blocks, iterate through tuples in each

block to build the hash table (for the tuples in the
smaller table) and probe for matches (for the tuples
in the other table):
CPU cost = TQi

+SQi

B × tBlk + (|TQi | + |SQi |) ×
ttup + tfunc

• Extra I/O cost to write/ read the results to/ from
local disk (if complete materialization is used):
I/O cost = 2×

(jslSQi
×|TQi

|×sizeTid)

B × tIO
• Send resulting Sids to the storage node (if OTPM

is used): NW cost =
(jslSQi

×TQi
)

P × tp
• Send resulting Sids to Tb: NW cost =

(jslSQi
×TQi

)

P × tp
6) The resulting Tids of the second join, i.e. i =
∪v1πTid(SQi

on TQi
) are sent back to all the Ti sites

to get the final results.

• Scan the partition: I/O cost = B(Ti)× tIO
where Ti ×

Σv
1(jslSQi

×|TQi
|)

|Ti|×B ≤ B(Ti) ≤ Ti

B
• Iterate through blocks, iterate through tuples in each

block :
CPU cost = B(Ti)×tBlk+Σv1(jslSQi

×|TQi |)×ttup
• Send resulting tuples to a central node: NW cost =
Ti ×

Σv
1(jslSQi

×|TQi
|)

|Ti|×P × tp

6

0

1000

2000

3000

4000

5000

6000

7000

Horizontal Vertical

m
il
is
e
c
o
n
d
s

Complete pipelining Pipelining with OTPM

Complete materialization

Fig. 5. Total running time without failure.

V. EXPERIMENTAL EVALUATION

We create a simulator to evaluate the effectiveness and
efficiency of our proposed fault-tolerance scheme. The input
for the simulator includes the query plans and the costs as
described in our analytical cost model. The simulator models
different scheme of parallel processing and controls the query
progress. We run the simulator for our example TPC-H query
with SF=1. When using the OTPM scheme, we need nodes to
store intermediate results. If the system has a fixed number of
query sites, some of them have to operate as storage nodes
when using the OTPM scheme. Thus, for a fair comparison,
the number of query sites used in the OTPM scheme should
be fewer than the number of query sites used in a complete
pipelining (CP) scheme and a complete materialization (CM)
scheme. This means that the amount of work at each query
site in a system with the OTPM scheme is larger than that in a
system with complete pipelining or complete materialization.
Figure 5 shows the total running time to process the given
query without failure. Complete materialization is the most
expensive of the three schemes. Complete pipelining is obvi-
ously the cheapest. If the database is horizontally partitioned,
the overhead cost of using CM compared to CP is 17.44%
while that of OTPM is 7.78%. If the database is vertically
partitioned, CM is 20.86% slower than CP while OTPM is
2.69% slower than CP.

A. Failure Handling at Select Site

When there is a failure at a select site then the processing
continues from the replicated data at the other sites. The repli-
cated data is either chained or interleaved. If interleaved data
replication is used, it will speed up processing after failure.
Instead of scanning on one site, in case an operator node fails,
the task is performed by (m− 1) operations concurrently on
(m− 1) sites that store the interleaved replication of data. If
chain replication is used, the failed scan will be performed at
the site that stores the identical copy of the data as the failed
node. Here we compute the cost for chain replication.

For complete pipelining, the query has to be restarted from
the beginning. Thus, the total running time will be the original

running time (without the event of failure) plus the time it
takes to run from the beginning to the point of failure at
the select site, i.e. the percent of the relation that has been
scanned. In complete materialization, since all the intermediate
results saved at the local site are lost when that site fails, the
failed scan has to completely restart at the site which stores
the data replica. Hence, the greater the percent of the relation
has been scanned before failure, the longer it takes to finish
the query. This is illustrated in Figure 6, in which the total
running time of CP and CM (denoted as CP-Failure and CM-
Failure) is proportional to the point of failure at the select site.
CP-Elapsed and CM-Elapsed are the elapsed time for CP and
CM respectively until the site fails.

For pipelining using our OTPM scheme, the alternate site
can start scanning exactly where the failed scan left off. The
scan at the alternate site will begin after the max last pk
tuple. We assume the cost to switch connections and to
send checkpoint information from the operator trackers at
downstream sites to the alternate site is negligible compared to
the scan cost. So basically, the running time (OTPM-Failure)
is nearly the same as original running time regardless of the
point of failure, which makes this scheme the best of the three
in failure handling, as shown in Figure 6.

B. Failure Handling at the First Join Site

Figure 7 shows the total cost, i.e. total running time,
corresponding to three processing schemes when there is a
single join site failure. The underlying join at each join site is
a hash join. The smaller of the two relations is taken as the
build relation, i.e. Part. For a horizontally partitioned database,
we choose u = 5 when using CP and CM, u = 4 when using
OTPM as the number of query sites to perform the parallel
join. When using OTPM, at each join site Ai, there are 20000
tuples from Partsupp joining with 20000 tuples from Part,
which are the results from the select scan. These fit in memory
and can be cached locally at the select site. But for a larger
database, e.g. table Partsupp with 205 million records and the
query site with a memory of size 1Gb, the select results will
exceed memory and must be materialized on a storage node.
We assume that case, so upon Ai’s failure, there are additional
I/O costs and network costs for reading and sending tuples
from the storage node to the alternate node. Here, we take the
point of failure as the percent of tuples from the larger-size
operand, i.e. the probe operand, which has been processed
so far. The unprocessed part of the probe relation is resent
while the build relation will have to be fetched entirely from
the storage node. Thus, the recovery overhead of the OTPM
scheme is inversely proportional to the point of failure. This
makes the total cost of using OTPM decrease when failure
happens at later points as evident from Figure 7. However,
the join site in the OTPM scheme has to process more data
than in the other two schemes since we use smaller number of
query sites. Moreover, earlier failure requires a larger amount
of data to be read from the storage node and sent to the
alternative node as its input. That is why from Figure 7(a),
we can see that complete materialization is more efficient than

7

(a) - Horizontal (b) – Vertical

0

1500

3000

4500

6000

7500

9000

10500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

(a) Horizontal

(a) - Horizontal (b) – Vertical

0

1500

3000

4500

6000

7500

9000

10500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

(b) Vertical

Fig. 6. Relative performance of the schemes when the select site fails.

OTPM when the failure happens early (at points of failure ¡
30%). However, this does not happen when the database is
vertically partitioned (Figure 7(b)). Here we choose u = 3
for CP/CM and u = 2 for OTPM. The reason is that we only
process on the join column so the size of input data decreases
significantly compared to the horizontal partitioning approach.
Thus, there is just a small difference between the sizes of data
which the join sites in OTPM scheme and complete pipelining
or complete materialization have to process. The difference
of incurred recovery cost between two consecutive points of
failure in each scheme is also small. This is illustrated in
Figure 7(b) where the lines have slight slopes.

CP-Failure is the most expensive and is a linear function of
the point of failure at a join site. It is because for complete
pipelining, when a failure happens at a join site Ai, failure
handling means completely restarting the query. All the work
which has been done so far is lost. Therefore, it takes the
sum of the elapsed time until the point of failure and the total
running time without any failure. If complete materialization
is used, the failed operation is restarted at an alternative node.
Only the work from the beginning of step 2 (see section IV-A)
to the point of failure is lost. Intermediate results saved at
upstream sites are rescanned and sent to the alternate node
as inputs for the join. The costs during recovery are the cost
to supply the input for the join and the cost to reprocess the
work from the beginning of step 2 to the point of failure. In our
example, the selectivity of the select scan and the first join are
quite high, i.e. the proportion of qualifying tuples is low (10%
at the select scan and 20% at the first join) so that materializing
intermediate results is more efficient than complete restarting
when there is failure at Ai. Hence, CM-Failure lies below CP-
Failure in Figure 7. With a lower selectivity query, the cost
for complete materialization scheme might dominate.

C. Failure Handling at the Second Join Site

The number of records generated after the first join is
9624 which are assumed to be equally hashed between the

different nodes of the second join. Also from the third relation
(Supplier), the records are hashed to the join sites. The same
formula as the previous join would apply here. At the second
join site Qi, the size of input data is just about 12.5% of that
at the first join site Ai. Hence, the relative performance of the
three schemes is similar to the previous Figure 7(b). As shown
in Figure 8, pipelining with OTPM still outperforms the other
two in query processing with the event of failure.

VI. RELATED WORK

Several methods [12, 13] have been presented to support
query restarting in centralized query processing. In [12],
each query operator performs checkpointing asynchronously at
times when its state is minimal. Checkpointing or dumping the
state of the whole query, whichever incurs smaller restarting
cost, is chosen to perform suspending and resuming the query.
A different approach [13] is to cache some immediate results
during execution so that they can be skipped during restarting
the whole query. These methods are applied for handling
intended query stopping or suspending while we aim to handle
unintended query stopping due to site failure.

In data stream management systems (DSMSs), fault toler-
ance has been well studied to support stream based appli-
cations. These applications have to process large quantities
of data continuously pushed into the systems, so that these
systems must keep processing even when failures occur. Fault
tolerance techniques in DSMSs usually employ replication of
computation. The approaches in [14, 15] require a backup
server for every primary server, running the same computation
in parallel with the primary server, which can provide fast
recovery when a server fails. However, these approaches incur
significant runtime overhead and sometimes may not take the
advantage of the backup server since the failure probability
of the backup server is the same as of the primary server.
Hwang et. al. [16] presented the concept of passive standby
server which stores the state of the primary server periodi-
cally. If a server goes down, its standby server recovers the

8

(a) - Horizontal (b) – Vertical

0

1500

3000

4500

6000

7500

9000

10500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

(a) Horizontal
(a) - Horizontal (b) – Vertical

0

1500

3000

4500

6000

7500

9000

10500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

(b) Vertical

Fig. 7. Relative performance of the schemes when the first join site fails.

(a) – Horizontal (b) – Vertical

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

(a) Horizontal
(a) – Horizontal (b) – Vertical

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
il

is
e

c
o

n
d

s

Point of failure

CP-Elapsed time CM-Elapsed time

OTPM-Elapsed time CP-Failure

CM-Failure OTPM-Failure

(b) Vertical

Fig. 8. Relative performance of the schemes when the second join site fails.

failed operation from the last checkpoint. Another approach
presented in [16] is upstream backup where the primary server
logs its produced data in an output queue. When the primary
server fails, the backup server has to reprocess all the data
output logged at upstream server. However, the paper does
not describe how to log the output data, whether in memory
or on disk. Both passive standby and upstream backup cause
re-sending and re-processing some data that has already been
processed and sent downstream, which results in duplicate data
at the final output if failure occurs. In contrast, our approach
restarts the failed operation at the point of failure and gives
the exact final output as in the original process.

Unlike stream based applications which run continuously
to process a dynamic sequence of data input, data analytical
applications rely on a set of static data sources. Therefore,
mechanisms in parallel query processing should be less re-

source consuming and provide fast runtime. To the best of our
knowledge, there has not been much work on fault tolerance in
parallel query processing. Some clustered DBMS implementa-
tions [17, 18] also use the passive standby scheme. Jim Smith
and Paul Watson [19] modified OGSA-DQP [20], a publicly
distributed query processing system for the grid, to support
fault tolerance using a rollback recovery protocol presented in
[21]. Each operator node saves its output tuples in a recovery
log and inserts a checkpoint marker to each block of tuples sent
downstream. After traveling through a given number of nodes,
the checkpoint marker will be sent back to the node where it
was created so that all tuples preceding this checkpoint in the
recovery log can be truncated. During recovery, the recovery
log at an upstream node is sent to the replaced node to restart
the failed operation. Duplicate tuples produced by the new
node will be discarded at downstream nodes. An approach

9

close to our own was proposed by Hauglid et. al. [22] in which
each operator node inserts a number to each tuple packet sent
downstream. This number is the ID of the last processed tuple
in order to output the tuple packet or the number of tuples
which have been sent downstream, depending on whether the
operator is stateless or stateful respectively. The replace node
does the work of the failed node from the beginning and starts
sending out results when it reaches that number. This approach
prevents sending duplicate tuples from the new node but does
not prevent reprocessing tuples during failure recovery. Our
approach prevents both resending and reprocessing tuples by
tracking operator progress in more details, provides substantial
savings in both network cost and CPU cost during recovery.

VII. CONCLUSION

We have introduced OTPM, an efficient fault-tolerance
scheme for parallel query processing of data analytical work-
loads. Our scheme benefits read-intensive queries as in most
analytical workloads. There is an operator tracker at each
node which stores a small information about the progress
running at its upstream nodes. In addition, intermediate tuples
are partially materialized. The OTPM scheme guarantees that
if a node fails, its task can be resumed at an alternate
node thus the elapsed progress is not wasted. We study the
effectiveness of our approach under different system settings
through an analytical cost model and a set of simulation-based
experiments. The analytical and experimental results show that
our approach incurs only a small overhead during execution
and outperforms the two widely used schemes in parallel
DBMSs and MapReduce-based systems at failure handling.

ACKNOWLEDGMENT

This work is partially sponsored by grants from NSF CISE
NetSE and CrossCutting program, an IBM SUR grant, an IBM
faculty award and Intel ISTC.

REFERENCES

[1] Dbms2’s blog. [Online]. Available: http://www.dbms2.
com/2009/05/11/facebook-hadoop-and-hive/

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Sil-
berschatz, and A. Rasin, “Hadoopdb: an architectural hy-
brid of mapreduce and dbms technologies for analytical
workloads,” Proc. VLDB Endow., vol. 2, no. 1, pp. 922–
933, 2009.

[4] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker, “A comparison
of approaches to large-scale data analysis,” in Proc.
SIGMOD’09, 2009, pp. 165–178.

[5] D. J. Dewitt and J. Gray, “Parallel database systems: the
future of high performance database systems,” Commu-
nications of the ACM, vol. 35, pp. 85–98, 1992.

[6] S. Madden, D. J. DeWitt, and M. Stonebraker. Database
column blog. [Online]. Available: www.databasecolumn.
com/2007/10/database-parallelism-choices.html

[7] M. T. Özsu and P. Valduriez, “Distributed and parallel
database systems,” ACM Computing Surveys, vol. 28, pp.
125–128, 1996.

[8] M. Mehta and D. J. DeWitt, “Data placement in shared-
nothing parallel database systems,” The VLDB Journal,
vol. 6, no. 1, pp. 53–72, 1997.

[9] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke,
“Toward a progress indicator for database queries,” in
Proc. SIGMOD’04, 2004, pp. 791–802.

[10] The TPC-H benchmark. [Online]. Available: http:
//www.tpc.org/tpch/

[11] D. J. Dewitt, S. R. Madden, D. J. Abadi, D. J. Abadi,
D. S. Myers, and D. S. Myers, “Materialization strategies
in a column-oriented DBMS,” in Proc. ICDE’07, 2007,
pp. 466–475.

[12] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang,
“Query suspend and resume,” in Proc. SIGMOD’07,
2007, pp. 557–568.

[13] S. Chaudhuri, R. Kaushik, A. Pol, and R. Ramamurthy,
“Stop-and-restart style execution for long running deci-
sion support queries,” in Proc. VLDB ’07, 2007, pp. 735–
745.

[14] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker, “Fault-tolerance in the borealis
distributed stream processing system,” in Proc.
SIGMOD’05, 2005, pp. 13–24.

[15] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly
available, fault-tolerant, parallel dataflows,” in Proc.
SIGMOD’04, 2004, pp. 827–838.

[16] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik, “High-availability al-
gorithms for distributed stream processing,” in Proc.
ICDE’05, 2005, pp. 779–790.

[17] IBM, “High availability and disaster recovery options for
DB2 on Linux, Unix, and Windows,” IBM Redbooks,
2009.

[18] Oracle, “Mysql cluster 7.0 & 7.1: Architecture and new
features,” A MySQL technical white paper, 2010.

[19] J. Smith and P. Watson, “Fault-tolerance in distributed
query processing,” in Proc. IDEAS’05, 2005, pp. 329–
338.

[20] M. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W.
Paton, P. Watson, A. A. Fernandes, and D. J. Fitzgerald,
“OGSA-DQP: A service for distributed querying on the
grid,” in Proc. EDBT’04, 2004, vol. 2992, pp. 858–861.

[21] J. Smith and P. Watson, “A rollback-recovery protocol
for wide area pipelined data flow computations,” Tech.
Rep., 2004.

[22] J. O. Hauglid and K. Nørvåg, “PROQID: partial restarts
of queries in distributed databases,” in Proc. CIKM’08,
2008, pp. 1251–1260.

10

http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
www.databasecolumn.com/2007/10/database-parallelism-choices.html
www.databasecolumn.com/2007/10/database-parallelism-choices.html
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	Introduction
	Platform Assumptions
	Parallel Architectures
	Forms of Parallelism
	Data Placement Strategies

	Our Approach
	Operator Tracking
	Select/ project
	Aggregation
	Join

	Partial Materialization

	Analytical Cost Model
	For a Horizontally Partitioned Database
	For a Vertically Partitioned Database

	Experimental Evaluation
	Failure Handling at Select Site
	Failure Handling at the First Join Site
	Failure Handling at the Second Join Site

	Related Work
	Conclusion

