
Supporting Evidence-Based Software Engineering
with Collaborative Information Retrieval

(Invited Paper)

Heri Ramampiaro, Daniela Cruzes, Reidar Conradi
Department of Computer and Information Science

Norwegian University of Science and Technology (NTNU), Norway
Email: {heri,dcruzes,conradi}@idi.ntnu.no

Manoel Mendona
Department of Computer Science/UFBA

Salvador, BA - Brazil
Email: manoel.g.mendonca@gmail.com

Abstract— The number of scientific publications is constantly
increasing, and the results published on Empirical Software
Engineering are growing even faster. Some software engineering
publishers have began to collaborate with research groups to
make available repositories of software engineering empirical
data. However, these initiatives are limited due to issues related
to the available search tools. As a result, many researchers
in the area have adopted a semi-automated approach for
performing searches for systematic reviews as a mean to
extract empirical evidence from published material. This
makes this activity labor intensive and error prone. In this
paper, we argue that the use of techniques from information
retrieval, as well as text mining, can support systematic reviews
and improve the creation of repositories of SE empirical evidence.

Keywords: Collaborative Information Retrieval, Empirical Software
Engineering, and Systematic Review.

I. INTRODUCTION

The number of scientific publications is continuously in-
creasing, and the number of journals reporting on results
from Empirical Software Engineering is also growing. As a
consequence, it is important to have approaches to execute
secondary studies, i.e., studies that draw conclusions over the
evidence collected from previous studies. Systematic Review
has quickly become the approach of choice to integrate evi-
dence from Software Engineering literature [1]. A systematic
review is a summary of the literature that uses explicit methods
to perform a repeatable and thorough literature search. Sys-
tematic reviews execute critical appraisals of individual studies
and uses appropriate techniques to combine results of valid
studies.

Although a systematic review seeks to accurately capture
evidences, the process is costly, taking several months from
conception to publication [2] and tremendous effort [3]. The
systematic review process requires that a user identify a
comprehensive collection of articles, extract information from
those articles, verify the accuracy of those extracted facts,
and analyze the extracted facts using either qualitative or
quantitative techniques [4].

To reduce the risk of bias, a systematic review requires
explicit methods to search for literature for inclusion in the
review [4]. An explicit search strategy needs to be developed
and systematically applied to a range of resources, such as
ACM, IEEE, SpringerLink, and Elsevier repositories. In most

approaches to systematic reviewing, the aim is to produce
a comprehensive and unbiased set of relevant papers to the
research question. It is then, necessary to find a balance
between sensitivity - i.e., finding all the papers in a topic area,
and specificity - i.e., finding relevant papers.

Dieste et al. [5] investigated the sensitivity problem in one
specific systematic review in software engineering. They found
important limitations that can affect search strategy sensitivity:

1) Limited bibliographic resources. Some databases do not
cover a broad spectrum of publications but are confined
to just publications by one publisher. This applies to
IEEEXplore, Springerlink, ScienceDirect and ACM Dig-
ital Library. This is an impediment for searching because
each search strategy has to be applied over again on
different search engines for combination at a later date.
The combination has to be made apart usually by hand.

2) Problems with the search algorithm. In both IEEEXplore
and ACM DL, the search cannot be run on certain fields.

3) Failure to recognize plurals, synonyms and roots. In
some cases, like IEEEXplore (Basic Search option), the
search engine did not search both the singular and plural
of the specified term. This meant that the plural form of
each term had to be entered separately.

4) Incomplete article abstracts or full texts. In some cases,
like IEEEXplore and ACM DL, the abstract or the
full text cannot always be accessed because they are
sometimes not linked to the article title. This is an
important weakness, as it makes it difficult to retrieve
articles and for researchers to check abstracts and texts.

As a result of the above limitations, a researcher performing
(the) systematic review has to rely on his experience in the
field to judge if the underlying search was done properly. There
is also a risk that the retrieved references may lead to bias due
to subjectiveness of the researcher with respect to relevance
judgments. And there is an increased chance that not all the
relevant papers are retrieved in these searches.

Therefore, it is unquestionable that the area would profit
from tools and methods that could help to locate, organize,
and summarize information for systematic reviews, as well
as to synthesize it into usable knowledge [6], [7]. A sensible
question would be: Can such tools be built?

This paper investigates the challenges on the search activity

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.9

of the systematic review and the use of information retrieval
techniques to accomplish some of these tasks. Information
retrieval (IR) is a term that has a broad meaning and is used for
almost all aspects that involve making information available
to users. The main emphasis is on users need for information.
As such, IR is concerned with the representation, storage,
organization of, and access to information item [8], [9].

The reminder of this paper is organized as follows. Sec-
tion II introduces some examples of searches for relevant
papers for systematic reviews in software engineering. Section
3 describes some approaches we foresee to approach some of
the challenges in the area. Section 4 summarizes our paper
and describes our plans for future research.

II. EBSE APPROACHES

A systematic review is a defined and methodical way
of identifying, assessing, and analyzing published primary
studies in order to investigate a specific research question. A
systematic review can also discover the structure and patterns
of existing research, and so identify gaps that can be filled by
future research [4]. Systematic reviews differ from ordinary
literature surveys in being formally planned and methodically
executed. A good systematic review should be independently
replicable and so will have much greater scientific value than
an ordinary literature survey. However, systematic reviews
require much more effort than ordinary literature surveys.
There are many reasons for undertaking a systematic review.
The most common reasons are [4]:

• To summarize the existing evidence concerning a treat-
ment or technology e.g. to summarize the empirical
evidence of the benefits and limitations of a specific agile
method.

• To identify any gaps in current research in order to
suggest areas for further investigation.

• To provide a framework/background in order to appro-
priately position new research activities.

The following features differentiate a systematic review
from a conventional literature review [4]:

• Definition and documentation of a systematic review
protocol in advance of conducting the review, to specify
the research questions and the procedures to be used to
perform the review.

• Definition and documentation a search strategy as part of
the protocol, to find as much of the relevant literature as
possible;

• Description of the explicit inclusion and exclusion criteria
as part of the protocol, to be used to assess each potential
study;

• Description of quality assessment mechanisms as part of
the protocol, to evaluate each study;

• Description of review and crosschecking processes as
part of the protocol, and involving multiple independent
researchers, in order to control researcher bias.

Kitchenham [4] published guidelines for software engi-
neering researchers performing systematic reviews. Although

procedures and systems for systematic reviews are well estab-
lished in other disciplines (particularly in medicine), software
engineering researchers have yet to come to a well-understood
consensus about the conduct and value of systematic reviews.
The guideline was derived from three existing guidelines used
by medical researchers.

Kitchenham describes the three main phases of a systematic
review process: planning the review, conducting the review,
and reporting the review. Each of these phases contains a
sequence of stages, but the execution of the overall process
involves iteration, feedback, and refinement of the defined
process [4], the process is described in Figure 1.

Plan Review

Document Review

Conduct Review

Identity Relevant Research

Develop Review Protocol

Validate Review Protocol

Select Primary Studies

Assess Study Quality

Extract Required Data

Synthesise Data

Write Review Report

Validate Report

Fig. 1. Systematic Review Process [4]

Recently, Kitchenham et al. [1] performed a review on the
current status of EBSE since 2004, in particular they focused
on articles related to EBSE literature reviews (SLRs). This
review that was published this year identified 20 relevant
studies in 10 journals and 4 conference proceedings. The
search approaches done in five of these studies are described
in Table I. This also shows how searches are performed in
these studies. It is worth to note that the search process, the
sources of papers and how many papers were reviewed for the
selection were not clearly stated in some of the papers from
the original review. Nevertheless, we decided to select some
of these approaches to illustrate how the reviews have been
performed.

III. FILLING THE GAP

As can be inferred from our discussion above there are
several challenges that we need to address.

First, finding a sensible way to build uniform interface
to existing research repositories is crucial but is by far a
challenging task. As can be inferred from our discussion
above, existing repositories such as the ACM DL, IEEExplore,
Science Direct, and Springer Digital Library all provide their
proprietary interfaces. This makes it less straightforward to

TABLE I
SEARCH APPROACHES IN EBSE

Ref Source List Search String ApproachIEEE ACM Others
Evaluation
Approaches
for Software
Architectural
Documents [10]

X X X IEEE String: (software <and> <not>
(hardware, synthesize, circuit) <and> ar-
chitecture <phrase> (<or> (evaluate, as-
surance, review, inspection, verification)))
<in> metadata

80 scientific studies were identified and af-
ter the analysis, only 54 described at least
one evaluation approach. Based on these
studies, 20 software architectures evaluation
approaches were identified.

Software effort
estimation
terminology: The
tower of Babel [11]

X Google: software engineering course books
Amazon: top 100 bestselling.
BestWeb: Manual Selection

Google: They manually investigated the
rst 100 URLs that appeared relevant, and
counted the frequency of each textbook used
in university courses on software engineer-
ing.
Amazon: books were selected by using Ama-
zons list of the top 100 bestselling computer
science books.
BESTweb: The journal papers were selected
by manually scanning potentially relevant
journals, while conference papers were iden-
tied by a search in the INSPEC-library. They
ended up with 8 books and 23 research
papers.

A Systematic Review
of Software Develop-
ment Cost Estimation
Studies [12]

X Manual Selection: The main criterion for
including a journal paper in the review was
that the paper describes research on software
development effort or cost estimation.

The search for papers was based on an issue-
by-issue, manual reading of titles and ab-
stracts of all published papers, in more than
100 potentially relevant, peer-reviewed jour-
nals with papers written in English. Papers
that were potential candidates for inclusion
in their review were read more thoroughly
to decide whether to include them or not. In
total, 304 relevant papers were found in 76
of these journals.

A systematic review
of web Engineering
Research [13]

X X X (Web engineering OR WWW engineering
OR World?Wide Web engineering OR Inter-
net engineering)

They selected 173 primary studies published
in scholarly literature (e.g. Web engineering
track of the WWW conference, IEEE Mul-
timedia special issues on Web engineering,
Web engineering conferences).

A survey of Con-
trolled Experiments in
Software Engineering
[14]

X X X Manual Search issue-by-issue in each of the
selected sources

One researcher systematically read the ti-
tles and abstracts of 5,453 scientific arti-
cles published in the selected journals and
conference proceedings for the period 1993-
2002. Excluded from the search were edito-
rials, prefaces, article summaries, interviews,
news, reviews, correspondence, discussions,
comments, readers letters, and summaries of
tutorials, workshops, panels, and poster ses-
sions. In the end, 103 articles were selected.

provide users uniform access. Still, we believe it is possible
to address this challenge by providing a Meta-Searcher as
shown in Figure 2 that allows the user to search through these
repositories using a unified user interface. Such an interface
will also collects and merge the results as if he/she were using
a single search engine.

The concept of meta-searcher is not new per se. It has been
used already in Web search applications and in commercial
library search applications such as Google Scholar1. However,
the main difference with our approach is that while Google
indexes books and papers from all fields in their repository,
ours is restricted to a limited area. Another similar system is

1Google Scholar is a trademark of Google. See also
http://scholar.google.com/

Scopus2

Like Google Scholar, Scopus is also a comprehensive
system, indexing papers from many fields, consisting of 36
million records. This means that to be able to use Scopus
for our approach, a search filter would be needed. We intend
to focus our approach as an interface on top of existing
repositories, and with capability of filtering out papers not
in the Software Engineering field. In this way, we will be
able to restrict our search results to software engineering
papers only, and thus restricting the search space to a more
manageable size. In addition, we will apply techniques that
take into account the characteristics of EBSE and systematic
review discussed in Section II. Furthermore, since more than
one user or researcher will carry out systematic reviews, it can

2Scopus is a trademark of Elsevier B.V. See also
http://www.scopus.com/scopus/home.url

IEEEXplore ACM DL Springer Link Science Direct Scopus Other

. . .

MetaSearch Interface

User Query

Local IndexSearch Log / History

User Query. . .

Fig. 2. Illustration of the idea of a meta-searcher

be seen as collaborative effort. As such, we can benefit from
the collaborative information retrieval techniques. This means
that results including user evaluations from several different
searches can be extracted and used as a result for a specific
systematic review process. This approach uses the search log
or search history as a basis to analyze the search behavior, and
synthesize the search result for a new search.

Second, finding suitable information retrieval (IR) tech-
niques as well as text mining methods is an important chal-
lenge, and must be addressed carefully. One of the main issues
with EBSE is that it is not only concerned with identification of
relevant research papers as they are defined within the IR field,
but the papers must also represent enough knowledge such
that they can be used as means for evaluating and interpreting
the available research. To address this challenge, we propose
to use automatic text summarization in combination with the
indexing techniques borrowed from the IR field. Automatic
text summarization will extract most important sentences from
the papers based on known natural language processing (NLP)
techniques [15], [16]. Once the summarizations are available,
they can be indexed and stored in a searchable repository. The
main benefit is reduced labor effort in post processing the
search results. Another approach is to group similar papers
using known clustering method such as k-means or k-NN [17],
before indexing and retrieval. In this way, one can reduce the
search space before the actual search is initiated.

Third, according to [18] one of the main important steps in
EBSE is to convert a relevant problem or information needed
into an answerable question. This can then be used in the
search of the best available evidence. Seen from IR perspec-
tive, an important challenge is to translate the information
need to suitable search terms within a search domain, such
that relevant papers representing the best available knowledge
can be retrieved. One way to address this challenge is to
collect relevant terms from the literature that has been used in
previous manual search work (See Table I).

Finally, to be able to evaluate the applied IR techniques,
there is necessity of having an effective evaluation strategy
is important. With respect to EBSE, the main goal is to
find all relevant papers without using too much effort. A
possible way to evaluate is to measure recall and precision.
However, as we mentioned before, the lack of consolidated

corpus in combination of heterogeneous repositories makes
this a challenge. Having a consolidated corpus with suitable
and comprehensive judgment information, we can address this
challenge. Thus, what we need is a test collection similar to the
standard collections such as Test Retrieval Conference (TREC)
and GOV2 [8], [9]. Such a test collection can be built based
on currently available papers where the systematic reviews
were carried out manually or semi-automatically. This, in turn,
allows us to evaluate our approaches in a more systematic way
using widely used measures such as mean average precision
(MAP), as well as precision and recall.

IV. CONCLUDING REMARKS

In this paper, we have motivated the necessity of having
effective information retrieval tools to support evidence-based
software engineering on performing systematic reviews. With
growth of number of available papers, and the results published
on Empirical Software Engineering field, the need for such
a tool is widely recognized. However, there are number of
challenges we face. This paper has addressed this challenges
and outlined information retrieval approaches that we believe
are sensible to use.

As a next step towards an investigation of the usefulness of
these approaches, we will reproduce the search from the work
we presented in this paper to evaluate the possibilities. Then,
using the result from this study, we will further develop our
approach, and evaluate the results based on a test collection
and using end users from the Software Engineering field.

REFERENCES

[1] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering-A
systematic literature review”, Information and Software Technology, vol.
51, no. 1, pp. 7–15, 2009.

[2] A. Petrosion, “Lead authors of cochrane reviews: Survey results”,
Report to the Campbell Collaboration. Cambridge, MA: University of
Pennsylvania., 1999.

[3] I.E. Allen and I. Olkin, “Estimating time to conduct a meta-analysis
from number of citations retrieved”, JAMA, vol. 282, no. 7, pp. 634,
1999.

[4] B. Kitchenham, “Procedures for performing systematic reviews”, Keele,
UK, Keele University, vol. 33, 2004.

[5] O. Dieste and OAG Padua, “Developing search strategies for detecting
relevant experiments for systematic reviews”, in First International
Symposium on Empirical Software Engineering and Measurement, 2007.
ESEM 2007, 2007, pp. 215–224.

[6] C. Blake, “Information synthesis: A new approach to explore sec-
ondary information in scientific literature”, in Proceedings of the 5th
ACM/IEEE-CS joint conference on Digital libraries. ACM, 2005, p. 64.

[7] D. Cruzes, M. Mendonça, V. Basili, F. Shull, and M. Jino, “Automated
Information Extraction from Empirical Software Engineering Literature:
Is that possible?”, in First International Symposium on Empirical
Software Engineering and Measurement, 2007. ESEM 2007, 2007, pp.
491–493.

[8] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto, Modern Information
Retrieval, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[9] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Sch
”utze, An introduction to information retrieval, Cambridge University
Press, 2008.

[10] R.F. Barcelos and G.H. Travassos, “Evaluation approaches for software
architectural documents: a systematic review”, in Ibero-American
Workshop on Requirements Engineering and Software Environments
(IDEAS), La Plata, Argentina, 2006.

[11] S. Grimstad, M. Jørgensen, and K. Moløkken-Østvold, “Software effort
estimation terminology: The tower of Babel”, Information and Software
Technology, vol. 48, no. 4, pp. 302–310, 2006.

[12] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies”, IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 33–53, 2007.

[13] E. Mendes, “A systematic review of Web engineering research”, in 2005
International Symposium on Empirical Software Engineering, 2005,
2005, p. 10.

[14] DIK Sjøberg, JE Hannay, O. Hansen, VB Kampenes, A. Karahasanovic,
N.K. Liborg, and AC Rekdal, “A survey of controlled experiments in
software engineering”, IEEE Transactions on Software Engineering, vol.
31, no. 9, pp. 733–753, 2005.

[15] Y. Gong and X. Liu, “Generic text summarization using relevance

measure and latent semantic analysis”, in Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2001, pp. 19–25.

[16] B. Liu, Web data mining: exploring hyperlinks, contents, and usage
data, Springer Verlag, 2007.

[17] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J.
McLachlan, A. Ng, B. Liu, P.S. Yu, et al., “Top 10 algorithms in data
mining”, Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37,
2008.

[18] T. Dyba, B.A. Kitchenham, and M. Jorgensen, “Evidence-based software
engineering for practitioners”, IEEE software, vol. 22, no. 1, pp. 58–65,
2005.

