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Abstract-A social network is a collection of social entities 
and the relations among them. Collection and sharing of such 
network data for analysis raise significant privacy concerns 
for the involved individuals, especially when human users are 
involved. To address such privacy concerns, several techniques, 
such as k-anonymity based approaches, have been proposed in the 
literature. However, such approaches introduce a large amount 
of distortion to the original social network graphs, thus raising 
serious questions about their utility for useful social network 
analysis. Consequently, these techniques may never be applied 
in practice. In this paper, we emphasize the use of network 
structural semantics in the social network analysis theory to 
address this problem. We propose an approach for enhancing 
anonymization techniques that preserves the structural semantics 
of the original social network by using the notion of roles and 
positions. We present experimental results that demonstrate that 
our approach can significantly help in preserving graph and 
social network theoretic properties of the original social networks, 
and hence improve utility of the anonymized data. 

I. INTRODUCTION 

Social networks have increasingly attracted interest from 

different research communities such as academia, business, 

and even intelligence agencies. The focus of research on social 

networks is generally to identify structural properties and 

patterns in the data depending on the application of interest. 

With the advent of online social networks in recent years, 

while capturing and recording social interactions is becoming 

easier the concerns about the privacy of the individual users 

captured in such social networks also grow significantly. 

Such privacy concerns have direct influence on data handling 

practices and can become a significant burden on potentially 

fruitful collaboration and data sharing among organizations. 

In order to reduce the risk of privacy violations by the expo­

sure of privacy-sensitive information to unauthorized entities, 

it is important to anonymize the network data. Recent work 

on social network analysis show that naive anonymization of 

social network data sets such as simply removing personally 

identifiable information (PU) associated with the nodes of a 

network is not sufficient to fully preserve privacy [1][2][3]. 

Based on the topological structure of a network an adversary 

may be able to identify certain nodes by leveraging external 

background information that may be publicly available, e.g., 

over the Internet. 
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To cope with this problem, several researchers have pro­

posed various anonymization techniques for social networks 

that can be broadly categorized into perturbation and gener­

alization approaches. In a perturbation approach, the struc­

ture of the original network is slightly modified, usually by 

insertion/deletion of edges, to achieve a certain desired level 

of anonymity. The notion of k-anonymity has been primarily 

adopted from relational anonymization approaches for this 

purpose [4]. Alternatively, generalization approaches partition 

a social network into groups of nodes and replace them with 

hyper nodes; further, these methods only report the connectiv­

ity among hyper nodes and some associated properties such 

as the number of nodes and links within a hyper node. 

Recent observations show that both these approaches 

severely suffer from a same problem: if data is anonymized 

up to an acceptable degree the results become highly distorted 

compared to the original networks, thus, severely affecting 

their utility for analysis purposes [3]. In order to use a social 

network anonymized by a generalization method it is needed 

to be reconstructed by randomly generating sub-structures 

in place of hyper nodes based on the reported hyper node 

properties in the results. Modifying links in the perturbation 

methods to fulfill the anonymization criteria (e.g., degree k­

anonymity) also strongly affects the structure of the network. 

For instance, a node with a low centrality value may become 

of high centrality because of the introduction of many fake 

links to other nodes. Such a change can make any judgement 

made on the basis of the centrality of the nodes in the network 

invalid. The key problem related to these methods is that they 

usually focus on achieving the anonymization objectives and 

disregard the crucial need to preserve the original structural 

semantics of the network; hence, the outcome is a significant 

decrease in the utility of the results. 

In this paper, we consider such structural semantics in 

the anonymization process by using concepts from the social 

network analysis theory [5]. In particular, we leverage the 

notion of structural roles and positions as the key entities to 

enhance existing perturbation techniques so that the original 

structural semantics are preserved. As we demonstrate in 

this paper, this approach shows significant improvements in 

maintaining the structural measurements of the social networks 

such as network diameter, betweenness centrality, clustering 
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Fig. 1: A Social Network of Managers 

coefficient, etc., all of which have direct effect on the useful­

ness of the anonymization results. The key contributions of 

the proposed work are as follows. 

• We provide a formal approach towards preserving role 

structure in social networks during perturbation. To the 

best of our knowledge, this is the first attempt in the 

literature that leverages such network theoretic properties 

to lessen the negative effects of perturbation on the 

structure of a social network. 

• Based on the proposed formalism, we outline an enhance­

ment approach that can be easily applied to most of the 

key perturbation techniques. 

• We present experiments on enhancing two specific al­

gorithms proposed in the literature and demonstrate the 

improvements on the utility of the anonymized networks. 

The results show very encouraging results on preserving 

structural properties of the social network, compared to 

the original version of the algorithms. 

The rest of the paper is organized as follows. In Section 

II, we present preliminary concepts and techniques for our 

approach. In particular, we define the notion of roles and 

positions in a social network and present the conceptual 

equivalency approaches to classify actors. Then, we review 

an algorithm to identify such equivalency classes, and present 

required modification to adapt it for undirected social net­

works. We also outline a generalized perturbation algorithm 

that is later used as reference to apply the enhancements. 

In Section III, we propose a formal approach to preserve 

role structure during social network perturbation, and show 

how such an approach can be used to enhance a typical 

perturbation technique based on the algorithm outlined in 

Section II. We empirically evaluate enhancement of structural 

network properties in two major perturbation techniques by 

using our approach in Section IV. In Section V, we review 

the related literature, and subsequently conclude the paper in 

Section VI. 

II. PRELIMINARIES 

A. Roles and Equivalence in Social Networks 

Roles and positions are very helpful in representing the 

structure of a social network. Figure 1 shows an example 

social network of managers in a small company in which 

vertices represent managers and edges show direct contact 

among them (adopted from [5]): manager a has direct contact 

with managers b, c, and d, manager b has direct contact with 

managers e and 1, etc. We can intuitively identify three roles 

in this social network: top manager (a), middle manager (b, 

c, and d), and line manager (e, 1, g, h, and i). Roles can 

indicate many structural properties of social networks such as 

centrality measures. In our example, the actors with the middle 

manager role have a lower centrality than the actor with the 

top manager role, and higher centrality than the actors with 

the line manager role. 

There are three major approaches to classify actors in a net­

work into their social positions based on the relations among 

them. Each approach defines graph theoretic properties that 

sets of actors must have in order to be considered equivalent 

in terms of roles they play. The equivalence classes formed 

this way represent positions [5][6]. Structural equivalence 

is the simplest approach, which requires each two actors in 

the same class to have identical ties with identical other 

actors. For instance, in Figure 1, e and f are structurally 

equivalent, so are h and i; no other pair of structurally 

equivalent actors exists. The set of equivalency classes is 

{{ a}, {b}, {e}, {d}, {e, J}, {g}, {h, i}}. Automorphic equiva­

lence relaxes the structural equivalence requirement by requir­

ing actors in the same position to have identical ties with 

different sets of actors that play the same role in relation to that 

position. The set of automorphic equivalency classes in Figure 

1 is {{a}, {b, d}, {e}, {e, f, h, i}, {g}}. Regular equivalence is 

the least restrictive approach. Actors are regularly equivalent if 

they have same kind of relations with actors that are also reg­

ularly equivalent. This results in {{a}, {b, e, d}, {e, f, g, h, i}} 
as the set of equivalency classes of Figure 1. 

The above three approaches were represented in decreasing 

order of restrictiveness. The less restrictive the approach is, the 

more populated the equivalency classes become. In this paper, 

we use the regular equivalence, which is the least restrictive 

concept. This makes the perturbation enhancement process that 

we propose in this paper more flexible and effective. 

B. Identifying Roles Using CATREGE 

CATREGE [7] is a popular algorithm for computing regular 

equivalence of categorical data that also provides an intuitive 

role similarity measure. Although the key assumption in 

categorical network data is the existence of different edge 

types, CATREGE can also work perfectly for non-categorical 

data (that is the concern of this paper). CATREGE requires 

as input a multiplex adjacency matrix of the target network. 

The values of such a matrix are categorical codes that index 

each unique combination of input relations (and their inverses) 

that connect each pair of nodes. For instance, for a single 

directed relation R, the possible values are 1 (if iRj but not 

jRi), 2 (if jRi but not iRj), 3 (if iRj and jRi), and 0 (if 

not iRj and not jRi). Given a multiplex matrix, CATREGE 

iteratively verifies that pairs of nodes that were equivalent 

in the previous iteration have the same type of multiplex 

relations with their neighbors. If not, they are marked as non­

equivalent. All actors are assumed equivalent prior to the first 

iteration. The procedure is repeated until there is no change in 
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(a) Initial State (b) Iteration 1 (c) Iteration 2 

VI V2 V3 V4 V5 V6 V7 Vs Vg VlO 

VI 5 1 o 1 2 2 2 2 0 0 

V2 1 5 o 3 1 1 1 1 0 0 

V3 0 0 5 0 0 0 0 0 4 4 

V4 1 3 0 5 1 1 1 1 0 0 

V5 2 1 0 1 5 5 2 2 0 0 

V6 2 1 0 1 5 5 2 2 0 0 

V7 2 1 0 1 2 2 5 5 0 0 

Vs 2 1 0 1 2 2 5 5 0 0 

Vg 0 0 4 0 0 o 0 0 5 5 

VlO 0 0 4 0 0 o 0 0 5 5 

(d) Iteration 3 (e) Iteration 4 (f) (Non-normalized) Similarity Matrix 

Partition Color Codes: l=Yellow, 2=Green, 3=Red, 4=Purple, 5=Pink, 6=White, 7=Orange. 

Fig. 2: A Sample Execution of the Modified CATREGE Algorithm 

equivalencies compared to the previous iteration. The extent 

of regular equivalence between two actors can be obtained by 

counting the number of iterations it takes them to split into 

different partitions. This value can be normalized by dividing 

it by the total number of iterations. The result is a similarity 

measure in the range [0,1]. 

In this paper, we deal with non-categorical (single-type 

edge), undirected social networks in this paper. Employing 

CATREGE for such social networks results into an uninterest­

ing regular equivalence: all the actors will be classified in the 

same equivalency class. This is because only one bundle of 

relations exists here, and therefore the multiplex matrix would 

only constitute of zeros and ones. In order to tackle this issue, 

instead of starting with the full partition that has all the actors 

in the same equivalence class, we initialize the algorithm with 

two partitions: nodes with only one neighbor are grouped into 

one partition, separated from the rest of the nodes in the other 

partition. In other words, we consider the perimeter nodes in 

a network more regularly equivalent to each other, and less to 

the others that fall inside the network. Note that each iteration 

of the CATREGE algorithm will further classify the actors in 

each of the two initial partitions. 

Figure 2 illustrate the execution of our modified version 

of CATREGE on a small network. In each iteration, vertices 

within the same partition are marked with the same color 

(number). Note that partitIOn colors (numbers) are just to 

indicate equivalent actors in one iteration and do not carry 

any other semantics. In the initial state (Figure 2a), vertices V3, 

Vg, and VlO are colored yellow, and all the others are colored 

green. Figure 2b illustrates the resultant partitions after the 

first iteration of CATREGE. Since in the previous step, the 

yellow vertices were all connected to the green vertices, they 

will not separate in this iteration. However, the previously 

green vertices become divided into two partitions: the ones 

that were only connected to greens, and the ones that were 

connected to both yellows and greens. If we continue the 

procedure, the final result is obtained after iteration 4 (Figure 

2e); further iterations will not change the partitions. Figure 

2f shows the (non-normalized) extent of regular equivalence 

between pairs of actors. For instance, the similarity value for 

VI and V2 is 1, because they were separated after the first 

iteration. Analogously, the similarity value for V5 and V7 is 

2, because they were separated after the second iteration. If 

two vertices are eventually remain equivalent their similarity 

will be maximum number of steps (e.g., 5 for V5 and V6 ) ' A 

normalized version of this similarity matrix can be obtained 

by dividing the elements by 5. 

C. Overview of Perturbation Techniques 

In this section, we provide an abstract overview of the 

perturbation algorithms for social network anonymization. 



Later in Section III, we present the details of the proposed 

enhancements to these generalized algorithms towards pre­

serving structural semantics in the anonymized data. Pertur­

bation techniques output a graph with modified edge struc­

ture compared to the original one, which satisfies a specific 

anonymization criteria. These techniques typically follow a 

greedy iterative approach, which can be abstractly expressed 

as in Algorithm 1. In each iteration, Algorithm 1 selects an 

Algorithm 1 Iterative Edge Perturbation Algorithm 

1: Start from the original graph 

2: repeat 
3: if an edge should be inserted then 
4: Choose non-existent edge {u, v} to be inserted 

5: Insert {u, v} 
6: end if 
7: if an edge should be deleted then 
8: Choose existing edge {u, v} to be deleted 

9: Delete {u, v} 
10: end if 
11: until anonymization criteria is achieved 

edge to be inserted/deleted using a heuristic which depends on 

the specific technique. The iterations continue until the graph 

is considered anonymized according to the anonymization 

criteria. The algorithm aborts if the anonymization criteria 

cannot be achieved. Different anonymization techniques have 

different anonymization criteria. In the random perturbation 

technique [2], the goal is to simply delete m edges randomly 

and then insert m random edges. In k-anonymity-based ap­

proaches (e.g., [8], [9], [10], [11]), the goal is, for instance, 

to achieve a graph with k-anonymous vertex degrees (such as 

Supergraph[8] or Union-Split [lO]). 

The Greedy Swap algorithm proposed in [8] includes an 

optimization phase to select a group of edge changes in the 

graph in each iteration, which results in a slightly different 

algorithm scheme (see Algorithm 2). The algorithm first cre-

Algorithm 2 The Greedy Swap Algorithm 

1: Create an anonymized random social network 

2: repeat 
3: Select 10g(IEI) of existing edges randomly 

4: for all Pairs of selected edges {u, v} and {u', v'} do 
5: Calculate the gain value considering swapping the 

pair either with {u, u'} and {v, v'}, or {u, v'} and 

{u',v} 
6: end for 
7: Perform the swap with maximum gain (if any) 

8: until No edge swap is performed 

ates a random anonymized graph based on the k-anonymous 

degree sequence of the graph. In each iteration, every pair of 

edges in a subset of existing edges is examined to be selected 

for a swap. In a swap operation, a pair of edges are replaced 

with another pair using the same end nodes. Two swap options 

are considered for a pair of edges {{ u, v}, {u', v'}}: either 

{{ u, u'}, {v, v'}}, or {{ u, v'}, {u', v}}. Such swaps do not 

change vertex degrees thus ensuring the already-established 

degree k-anonymity. A gain value is calculated for each swap 

option, and the swap with maximum (positive) gain is selected. 

In [8], the authors calculate the gain value as the increment 

of edge overlap (intersection) between the interim and the 

original graph. Performing the swap with maximum gain at 

each iteration would greedily make the anonymized graph 

more structurally similar to the original one. 

III. PRESERVING STRUCTURE IN PERTURBATION 
TECHNIQUES 

In this section, we formally define the notion of roles and 

related concepts in the context of undirected social networks; 

we adopt some definitions from [12]. Then, we present a 

formal approach to preserve the role structure during graph 

perturbation. Finally, we extend the algorithms outlined in Sec­

tion II-C, using the proposed structure-preserving approach. 

A. Preliminaries 

We define a social network as an undirected graph G(V, E), 
where the set of vertices V represents the actors in the 

network, and the set of edges E � {{ u, v} lu, v E V} represent 

the links between actors in V. 
Definition 1 (Role Assignment): A role assignment for net­

work G(V, E) is a surjective function <P : V --+ R, defined for 

every member of V, where R is a set of roles. 

A role assignment partitions actors into equivalency classes. 

Two actors are considered equivalent if they are assigned the 

same role: Vu,v E V ; u =,p v {=? <p(u) = <p(v). In other 

words, a role assignment is a projection of an equivalence 

relation. Of our particular interest is the regular equivalence. 

The following definition captures the relations between actors. 

Definition 2 (Neighbor Role Set): f,p : V --+ 2R is a 

function that maps an actor in network G(V, E) to the 

roles of its neighbors according to role assignment <P, i.e., 

fg(u) = {<p(v)l{u,v} E E}. 

Recall that regularly equivalent actors (actors that are as­

signed the same role) must have the same kind of relations 

with other regularly equivalent actors. A role assignment that 

projects a regular equivalence relation is defined as follows. 

Definition 3 (Regular Equivalence Role Assignment): A 

role assignment <P : V --+ R projects a regular equivalence 

for actors in G(V, E) if and only if 

Vu, v E V, <p(u) = <p(v) =} f,p(u) = f,p(v). 

We refer to this as RE-role assignment in the rest of the 

paper. We observe that despite regular equivalence being the 

least restrictive approach in identifying positions, synthetic 

algorithms for computing it such as CATREGE (which use 

no external semantics other than the network structure) result 

in very low-populated equivalency classes. However, as we 

discuss later, our perturbation enhancement approach relies 

highly on the existence of alternatives same-role actors. We 

tackle this issue by using the extent of the (dis)similarity 



between actors. We abstractly define a dissimilarity measure 
for roles as follows. 

Definition 4 (Regular Equivalence Role Dissimilarity): 

�<l> : V X V --+ [0,1] is a role dissimilarity function for 
actors of network G (V, E) corresponding to role assignment 
1> where �<l> ( U, v) = 0 implies actors u and v have the same 
role (1)(u) = 1> (v», and �<l>(u,v) = 1 implies actors u and 
v have completely dissimilar roles. 

The actual values of the function can depend on the role 
identification scheme used. In this work we use the similarity 
measure provided by the CATREGE algorithm (Section II-B), 
and subtract it from 1 to obtain the dissimilarity values be­
tween roles. Subsequently, we are interested in a dissimilarity 
measure between two sets of roles, based on the dissimilarity 
measure we have for individual pairs of roles; we define it as 
follows. 

Definition 5 (Regular Equivalence Role Set Dissimilarity): 

Let S � Rand S' � R be two sets of roles. The regular 
equivalence dissimilarity between S and S', written as 
A(S, S'), is calculated as follows: 

2::xEs IS'{lTIyEs' 6.(x,y) + 2::yEs' IS{lTIxES 6.(x,y) 
lSI IS'I A( S, S') = -------'---'--------:-2-------'----'-----

The above formula essentially calculates the (asymmetric) 
dissimilarities of S to S', and S' to S, and then takes 
the average to compute an overall (sYlmnetric) dissimilarity 
between S and S'. The dissimilarity of S to S' (the first 
expression in the numerator) is calculated as follows. For every 
role x in S, the product of its dissimilarities with all roles in 
S' is calculated, and its IS'Ith root is taken. This gives us an 
overall dissimilarity value between x and roles in S'. If one 
of the roles in S' is the same as x the result would be zero; 
otherwise the dissimilarity values for each will be effective in 
the result. The average of all such dissimilarities for all the 
roles in S is considered as the dissimilarity of S to S'. The 
dissimilarity of S' to S is calculated in a similar fashion. 

B. Formalizing Role Structure Preservation 

Our intuition is that preserving the role structure in a net­
work in the anonymization process would essentially preserve 
the network structural properties that a social network analyzer 
may be looking for in the anonymized network. To be more 
specific, our goal is to ensure that an RE-role assignment 
in the original network is applicable to its edge-perturbed 
version as well. However, modifications to the edge structure 
of a network during perturbation can easily thwart this goal. 
The following theorem captures a sufficient condition for 
preserving an RE-role assignment in the edge perturbation 
process. 

Theorem i: Let G' (V, E') be an edge-perturbed version of 
network G(V, E). An RE-role assignment 1> for G is also an 
RE-role assignment for G' if 

Vu E V [rg' (u) = rg(u)] (1) 

Proof The proof is straightforwardly implied from Def­
inition 3 and condition (1). For every u and v where 1>(u) = 

1>( v), by Definition 3 we have rg (u) = rg (v). Considering 
condition (1) we have rg' (u) = rg(u) = rg(v) = rg' (v), 
and hence rg' (u) = rg' (v). This is essentially the sufficient 
condition for 1> to be an RE-role assignment for G'. • 

The above theorem simply states that keeping the neighbor 
role sets of actors in a network intact in the anonymization 
process will preserve an RE-role assignment. As an edge 
perturbation algorithm involves a series of edge insertions/ 
deletions, the above condition can be further captured with 
regards to the set of inserted or deleted edges as in the 
following theorem. 

Theorem 2: Let G' (V, E') be an edge-perturbed version of 
network G(V, E). An RE-role assignment 1> for G is also an 
RE-role assignment for G' if the following conditions are met 

V{u,v} E Ei :3{u, v'} E E [1>(v) = 1>(v')] (2) 

V{u,v} E Ed :3{u, v'} E E' [1>(v) = 1>(v')] (3) 

where sets Ei = E'\E and Ed = E\E' represent inserted 
and deleted edges, respectively. 

Proof Since the same role assignment 1> is considered 
for both G and G', any difference between rg(u) and rg' (u), 
for any actor u, can only be the result of either insertion or 
deletion of an edge adjacent to u. For an inserted edge {u, v}, 
by condition (2) we have :3{u,v'} E E[1>(v) = 1>(v')] and 
therefore 1>(v) = 1>(v') E rg(u), i.e., an inserted edge would 
not affect the neighbor role set of an actor. For a deleted edge 
(u,v), by condition (3) we have :3{u,v'} E E'[1>(v) = 1>(v')] 
and therefore 1>( v) = 1>( v') Erg' (u), i.e., a deleted edge 
would not affect the neighbor role set of an actor. These 
suggest 

G' G Vu E V [r<l> (u) = r<l>(u)] 

which is sufficient condition for 1> to be an RE-role assignment 
for G' according to Theorem 1. • 

C. Preserving Structure in iterative Edge Perturbation Algo­

rithms 

We use Theorem 2 to extend and enhance the iterative 
edge perturbation techniques represented by Algorithm 1 as 
follows. After selecting an edge for insertion, the insertion 
is performed only if it conforms to condition (2). For this 
purpose, line 5 of the algorithm should be replaced with the 
following. 

if :3{u,v'} E E [1>(v) = 1>(v')] A :3{u',v} E E [1>(u) = 

1>(u')] then 
Insert {u, v} 

end if 
This checks if there exists vertex v' in u's neighborhood with 
the same role as v's, and that there exists vertex u' in v's 
neighborhood with the same role as u's. If the checks fail the 
insertion decision is ignored. Analogously, a deletion should 
be allowed if it conforms to condition (3). As per Theorem 
(2), such a modified version of Algorithm 1 will preserve an 
RE-role assignment for the graph in each iteration. Therefore, 
an RE-role assignment for the original social network graph 
will be valid for its final edge-perturbed version. 



Although theoretically sound, the above-mentioned condi­
tions may not perform well in practice. The key issue, as 
briefly mentioned in Section III-A, is that algorithms such as 
CATREGE identify very small number of actors with the same 
role. Therefore, when inserting/deleting edge {u, v} there is 
a low probability of finding an actor with same role as v's 
in u's neighborhood and vice versa, which is required by 
the above conditions. In order to overcome this limitation, 
we use a relaxed version of the conditions in Theorem (2), 

by using a threshold on RE-role dissimilarity between roles 
instead of checking the exact role match. Algorithm 3 provides 
pseudocode for the enhanced version of the iterative edge 
perturbation approach. Here, <5 E [0,1] is a constant that 
specifies the allowed extent of non-perfect role matching. 

Algorithm 3 RE-Enhanced Iterative Edge Perturbation Algo­
rithm 

1: Start from the original graph 
2: repeat 
3: if an edge should be inserted then 
4: Choose non-existent edge {u, v} to be inserted 
5: Let G(V, E) be the current graph 
6: if 3{u,v'} E E [�p(v,v') < <5] /\ 3{u',v} E 

E [�p(u, u') < <5] then 
7: Insert {u, v} 
8: end if 
9: end if 

10: if an edge should be deleted then 
11: Choose existing edge {u, v} to be deleted 
12: Let G' (V, E') be the graph after deleting edge {u, v} 
13: if 3{u,v'} E E' [�p(v,v') < <5] /\ 3{u',v} E 

E' [�p (u, u') < <5] then 
14: Delete {u, v} 
15: end if 
16: end if 
17: until anonymization criteria is achieved 

D. Preserving Structure in Greedy Swap Algorithm 

As mentioned in Section II-C, the greedy swap algorithm 
follows a different overall procedure than most of the other 
perturbation approaches. Hence, we need a different approach 
to enhance it for preserving role structure. We propose to 
substitute the gain function in Algorithm 2 with a new similar­
ity gain measure. Note that in Algorithm 2 the gain measure 
captures increase in edge overlap. The new gain function is 
intended to measure how much each of the involved vertices 
in an edge swap is closer (more similar) to their corresponding 
original states in terms of role structure. Recall from Theorem 
1 that the neighbor role set of an actor acts as an important 
factor in preserving its role. Hence, we consider it as the main 
clue for calculating such a similarity gain measurement. 

There are four vertices involved in a swap of a pair of 
edges {u,v}and{u',v'}. For vertex u, in the ith iteration 
in Algorithm 2, let rg (u) be its neighbor role set in the 
original network, rgi (u) be its neighbor role set in the interim 

network, and rgi+1 (u) be its neighbor role set in the next 
state of the interim network if the swap is performed. The 
o�ective of opti�izi

.
ng based on role similarity gain is to make 

r p'+l (u) more sImIlar than rg' (u) to rg (u). We calculate 
such a gain by measuring the decrease in dissimilarity between 
the neighbor role set in the original and interim networks. Thus 
the total role similarity gain of a swap is calculated as follows. 

2:xE{U,V,U' ,v'} [A(rg (x), rgi (x)) - A(rg(x), rgi+1 (x))] 

4 
IV. EXPERIMENTAL RESULT 

A. Setup 

We use the following undirected network dataset: 
• jazz: a social network of jazz musicians' (IVI = 198 and 

lEI = 5484) 
We have implemented the original and the RE-enhanced 

versions of the random perturbation and the greedy swap 

techniques in Java. We used our version of CATREGE ac­
cording to the descriptions in Section II-B to generate regular 
equivalency classes and the corresponding dissimilarity matrix. 
These served as extra inputs to the enhanced algorithms. The 
algorithms were run for 10 rounds and the average of the 
measurements are reported. We measure the following graph 
and social network theoretic parameters: 

• Edge overlap: the proportion of edges in the anonymized 
network that overlap with the original network. 

• Diameter: the longest shortest path between any pair of 
vertices in the graph. 

• (Average) Clustering Coefficient: the proportion of links 
between the vertices within one vertex's neighborhood 
to the number of links that could possibly exist between 
them. 

• (Average) Betweenness Centrality: the proportion of all 
shortest paths between that pass through a vertex. 

• (Average) Closeness Centrality: the mean shortest path 
between a vertex and all other vertices reachable from it. 

The closer a perturbed network's measurements are to the 
original network's, the more preserved its structure becomes, 
and hence better is the utility of such an anonymized network. 

B. Evaluating Enhancement of T he Random Perturbation 

Technique 

We evaluate the proposed enhancement method for edge 
perturbation presented in Section III-C by running the ran­
dom perturbation algorithm [2][13] against its RE-enhanced 
version. As suggested in [2], in order to achieve sufficient 
anonymization, we have choosen to delete randomly 10% 

of the original edges and insert back randomly the same 
number of edges. Figure 3 illustrates the results for the jazz 
network, tested over different values of <5 (the dissimilarity 
threshold of considering items to be regularly equivalent). 
As seen in Figure 3a, for <5 = 0.1 and <5 = 0.2, the 
resulting RE version fully overlap with the original graph. 

1 Available at http://deim.urv.cat/�aarenas/dataJwelcome.htm 
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This means that the strict thresholding on the enhancement 

in fact has allowed only those original edges which were 

randomly removed to be added back, which effectively defeats 

the anonymization purpose. However, results for (j ;::: 0.3 seem 

to indicate that sufficient anonymization has been performed, 

i.e., the edge overlap is approximately the same as in the non­

enhanced version. The results show significant improvement in 

the network measurements, where our RE-enhanced approach 

almost outperforms the original algorithm for all (j values 

(Figure 3b-3e). Increasing the value of (j intuitively reduces 

the effectiveness of the enhancement procedure, as more non­

perfect perturbations (with regard to role structure) are al­

lowed. Therefore, identifying a suitable threshold that balances 

the utility enhancement while keeping the anonymization 

property (here, the randomness of inserted edges, which is 

measured by edge overlap) is necessary. A value of (j = 0.3 

seems to provide such a desirable tradeoff for the jazz dataset. 

C. Evaluating Enhancement of T he Greedy Swap Technique 

We evaluate the performance of our proposed enhancement 

for the greedy swap method in Section III-D, as the mea­

surement results of the jazz network for different k values 

(the k parameter in k-anonymity) are illustrated in Figure 4. 

The edge overlap (Figure 4a) is constantly improved to about 

0.8 in the RE-enhanced algorithm compared to 0.6 in the 

original algorithm. Note that unlike the random perturbation, 

here the anonymization quality is not reflected by the edge 

overlap. The other four measured properties (Figure 4b-4e) 

are also often considerably closer to the original graph in the 

RE-enhanced results than the original greedy swap algorithm 

results, regardless of the value of k. Note that the increasing 

values of k in these figures is not supposed to correlate with 

increase or decrease in property measurements, as different 

values of k may impose different structural changes, depending 

on the original network structure. 

V. RELATED WORK 

A. Privacy Risks 

Naive anonymization of social networks, i.e., replacing true 

node identifiers with random ones has been shown to be inef­

fective, similar to observations on anonymization techniques 

in relational database literature [4]. While in the case of 

relational data a subset of an entity's attributes may help with 

unique identification (quasi-identifier), in the case of social 

networks the connectivity of an entity and its surrounding 

entities in the network can be revealing without a need for 

explicit data attributes (as in relational data). Backstrom et al. 

discovered a family of active/passive attacks that work based 

on uniqueness of some small random subgraphs embedded 

in a network [1]. In active attacks, an adversary chooses 

a target set of users, creates small number of new users, 

and then creates a pattern of links among the newly created 
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users, in the way that it stands out in the naively anonymized 

version of the network. In passive attacks, existing users of a 

network collude to re-identify certain nodes connected to them, 

based on the fact that such a small coalition of friends can 

uniquely identify the subgraph of their coalition by exchanging 

structural information. 

Hay et al. study the extent of node re-identification based 

on structural information [2][14]. They define k-candidate 
anonymity for a structural query based on the notion of k­

anonymity [4]. Three types of structural queries are considered 

as adversary background knowledge. Vertex refinement queries 

are iteratively defined and capture degrees of different distant 

levels of neighbors around a target. Subgraph queries capture 

a less complete structure surrounding a target than vertex 

refinement based on known edges to the adversary. Hub 

fingerprints express a target's distance from certain hubs in 

the network. Their experiments on real, naively anonymized 

social networks show significantly low k-candidate anonymity 

for such background knowledge queries. 

Narayanan et al. propose a different attack approach that 

relies on input of an auxiliary, overlapping, probably publicly 

available social network without any assumption about struc­

tural background knowledge of an adversary [3]. Empirical 

evaluation of their approach shows that a third of users who 

have accounts both on Twitter and Flickr can be re-identified 

in the anonymous Twitter graph with a low error rate. 

B. Anonymization by Generalization 

The non-naive social network anonymization approaches 

in the literature can be categorized into two groups: graph 

generalization and graph perturbation. In graph generaliza­

tion techniques, the network graph is first partitioned into 

subgraphs. Then each subgraph is replaced by a supernode, 

and only some structural properties of the subgraph alongside 

linkage between clusters are reported. 

Hay et al. propose a generalization approach in which 

actors are partitioned into groups of size at least k (a k­

anonymity approach), and edge densities within and between 

partitions are reported [14]. Their algorithm optimizes fitness 

to the original network via a maximum likelihood approach. 

Zheleva et al. study re-identification of sensitive links in a 

network that may disclose node attributes and nonsensitive 

links [15]. Accurate probabilistic model of predicting sensitive 

edges based on observing nonsensitive edges is assumed as 

adversary background knowledge. The authors consider differ­

ent anonymization approaches including combination of node 

attribute anonymization and partial edge removal, and graph 

generalization which avoid disclosure of exact nonsensitive 

edge structure. Campan et al. also follow a graph generaliza­

tion approach similar to, but more detailed than the approach 

in [15]. They provide formal information loss measurement 

due to attribute generalization and structural generalization, 

and use them to greedily optimize their proposed clustering 



anonymization. 
In order to use a generalized social network for analysis 

purpose, one should sample a random graph in accordance 
with the reported generalized properties. Although such a 
network may maintain some local structural properties of the 
original network, much of high-level graph structure is lost 
[10], which impacts negatively the utility of results. 

C. Anonymization by Perturbation 

In graph perturbation techniques, the network graph is 
(slightly) modified to meet desired privacy requirements. This 
is usually carried out by inserting and/or deleting graph edges. 
Although, theoretically, perturbation can be introduced to 
graph nodes (i.e., network actors) as well, it is not considered 
plausible because of adverse effects on the dataset. 

Hay et al. propose a random perturbation approach, in 
which a sequence of m edge deletions followed by m edge 
insertions[2]. Assuming an adversary needs to consider the 
set of possible worlds implied by m deletions/insertions, the 
authors reason that it could be intractable for an attacker to 
achieve exact identification. However, this cannot guarantee 
that the adversary will not succeed in (sufficiently accurate) 
identification of selected individuals. Ying et al. analyze the 
privacy protection provided by the random perturbation ap­
proach [l3]. They formulate the confidence of an adversary in 
identifying a node in the anonymized network based on the 
degree of the target as background knowledge. 

Liu et al. propose an edge perturbation approach that pro­
vides k-anonymity for vertices based on their degrees. Initially 
a k-anonymized degree sequence for the graph is constructed, 
in which there exist at least k nodes of each degree and the 
total degree difference between the anonymized and the orig­
inal degree sequence is minimum. Then the problem reduces 
to realizing a graph with the anonymized degree sequence 
from the original graph. They propose two different algorithms 
to solve it. The Supergraph algorithm greedily perturbs the 
original graph until it reaches to the target anonymized degree 
sequence. Since such a greedy algorithm cannot guarantee an 
answer, a probing scheme is proposed by the authors that 
retries the procedure with slight modification of the degree 
sequence, until an anonymized graph is realized. The Edge 

Swap algorithm starts by constructing a random graph based 
on the anonymized degree sequence. It then modifies the 
graph to maximize its overlap with the original graph, while 
preserving the anonymized degree sequence. 

Thompson et al. propose a k-anonymity-based two phase 
clustering and perturbing approach [10). Vertices are clustered 
first into groups of size of at least k, and then edges are 
greedily inserted/deleted so that each vertex is anonymous 
to the vertices in its corresponding cluster. As the adversary 
background knowledge criteria, they consider an approach 
similar to vertex refinement queries for zero and one-level 
neighborhoods [2). As the parameter for clustering, the vertex 
degree, and a linear combination of a vertex and its neighbors' 
degree are used for zero and one-level neighborhood, respec­
tively. They propose two alternative clustering algorithms for 

this purpose. Bounded t-Means is a constrained version of 
traditional k-means algorithm that limits the number of nodes 
in a cluster to k. Union-Split is an alternative agglomerative 
clustering algorithm. It starts from each node as a cluster and 
in each step joins two nearest clusters. If the joint cluster size 
is more than 2k it is split into two cohesive clusters, each of 
size at least k. The iteration continues until all clusters have 
k or more members. Although the clustering approach seems 
promising, unfortunately their proposed greedy perturbation 
algorithm based on clusters does not guarantee an answer, 
despite the authors' claim. 

Zhou et al. propose a scheme to k-anonymize one-level 
neighborhood of every vertex in a graph that vertices carry 
labels as attributes. The neighborhood of each vertex is made 
isomorphic with at least k - 1 other neighborhoods. The iso­
morphic perturbation process greedily minimizes information 
loss in generalizing labels and inserting edges during per­
turbation. In this approach, since every node's neighborhood 
considered independently in the k-anonymization process, per­
turbation of one neighborhood can easily invalidate the k­
anonymity of an already anonymized node that falls inside 
the neighborhood. This results into recurring anonymization 
of such nodes, and therefore, an inefficient process with high 
graph distortion. He et al. propose a different neighborhood 
anonymization scheme [11). They first partition the graph into 
local structures, and ignore the inter-partition edges. Then the 
neighborhoods are formed in the groups of size at least k 
and the neighborhoods in each group are made isomorphic 
to each other using edge perturbation. In the last step the 
previously ignored inter-partition edges are put back in the way 
that it does not violate the isomorphisms. The authors leverage 
existing graph algorithms for local structure partitioning and 
grouping purpose. Although acceptable performance regarding 
preserving structural properties have been reported in the 
work, it is not clear if the results are generalizable as no 
comparison is provided with the related approaches in the lit­
erature. Furthermore, we believe that making every k-grouped 
partitions isomorphic and inserting back inter-partition edges 
in an isomorphic-preserving manner as adopted in [11] will 
create a very symmetric structure; considering the need for 
insertion of about k2 edges per original inter-partition edge, 
the result does not seem to maintain well its original structural 
properties in general. 

We take an enhancement approach in this paper, rather 
than offering alternatives to the perturbation algorithms in 
the literature. We believe that our approach is applicable to 
most of the perturbation techniques, and empirically show 
improvements over the original versions of some perturbation 
algorithms. 

VI. CONCLUSIONS AND FUTURE WORK 

Privacy is a huge concern when sharing social network 
datasets. Existing social network anonymization techniques 
usually do not perform well in terms of maintaining the utility 
of the final outcome; the distortions on the original datasets 
have drastic effects on their analysis. In this paper, we propose 



the first approach to preserve structural properties of social 

networks in an anonymization process, using the concept of 

roles in a network. We have presented generalized enhanced 

algorithms for social network perturbation. Our experimental 

results show significant improvement in preserving structural 

semantics of networks using our approach compared to the 

original techniques in the literature. 

There is a plausible vulnerability with our enhancement 

approach if an attacker can leverage the role structure of 

the network as background knowledge. Ideally the attacker 

can link the actors with the same role in the original and 

the anonymized network, and therefore potentially defeat the 

anonymization scheme. We believe that this is a reasonable 

concern when using perfect role structure preservation, for 

instance, as suggested by Theorem 2. However, as mentioned 

later in Section III, we need to use dissimilarity measures 

for role matching instead of perfect role match. We believe 

that this will introduce enough noise to the structure that will 

help preventing such an attack strategy. Note that even few 

imperfect changes in the network structure would result in 

completely different role structure identified by Algorithms 

such as CATREGE. We will investigate more formally such 

attacks as a future work. Moreover, we plan to conduct 

experiments on a more diverse set of datasets and techniques. 
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