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 Abstract—We foresee the need for dynamically 
clustering nodes in Wireless Sensor Networks (WSNs) 
according to a multitude of disparate co-existing contexts. 
To this end, we propose a distributed, low-overhead 
context-aware clustering protocol for WSNs. We employ 
Affinity Propagation (AP) for clustering nodes based on 
multiple criteria including location, residual energy, and 
contextual data sensed from the environment. We propose 
a novel approach for context representation based on 
potential fields. We discuss the integration of our context 
representation model with AP and demonstrate using 
simulation the effectiveness and proficiency of the 
proposed protocol in satisfying its intended objectives. 

Index Terms—affinity propagation, context awareness, 
distributed clustering, potential fields, wireless sensor 
networks. 
 

I. INTRODUCTION 
IRELESS Sensor Networks (WSN) are getting more 
popular everyday, and they are being deployed to serve 

an ever increasing number of applications. A single WSN can 
be responsible for monitoring events belonging to multiple 
contexts concurrently, and serve users with different roles.

 
Clustering is necessary in WSNs for improving scalability and 
for efficient use of resources. However, most of the current 
clustering algorithms for WSNs focus on a single aspect such 
as data aggregation (as in [1] and [2]), conserving energy, or 
security against threats [3]. A clustering algorithm equipped 
with a means for representing dynamic contextual data is 
needed. 

 The main contributions we present in this paper are: (1) a 
low-overhead, distributed, context-aware clustering protocol 
built around Affinity Propagation (AP) [4], and (2) a novel 
approach for representing spatiotemporal contextual events 
using potential fields. AP is a relatively new clustering 
technique that has been shown to possess several advantages 
over long-standing algorithms such as K-means, particularly 
in terms of quality of clustering and multi-criteria support [4]. 
The potential field representation allows us to quantify the  
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effect perceived by sensor nodes of nearby events, a crucial 
ingredient for successful integration with the clustering 
algorithm in order to achieve context awareness. 

 The objectives of the presented protocol is to achieve high 
quality clustering with low overhead, extending the network 
lifetime, and having the ability to accommodate concurrent 
events pertaining to different contexts. 

For a WSN operating in a complex environment where 
many contexts have to be catered for simultaneously, a 
flexible clustering algorithm capable of accommodating all 
such contexts is needed. AP possesses such capability, but its 
quadratic complexity and the fact that it is centralized by 
nature represent an obstacle to its employment in a WSN. 
Zhang et al [5] propose a modification to AP that removes 
both restrictions. The proposed algorithm (Hi-WAP) works in 
a hierarchical manner by first dividing the data points (or 
sensors in our case) into subsets. AP is then executed on each 
subset individually, and the exemplars (cluster heads) of each 
subset are identified. Finally, only those points identified as 
exemplars contribute to the final weighted AP run. This results 
in a great reduction in execution time with a minimal toll on 
clustering quality. In our previous work [6], we studied the 
feasibility of Hi-WAP for clustering of wireless sensor nodes, 
and presented a location-aware adaptation for WSNs which 
we coined Location-aware Affinity Propagation (LAP). We 
extend our previous work here by presenting a concrete 
realization of an AP-based clustering protocol. 

As a possible application for our work, we consider a 
hypothetical border security system to detect and prevent 
illegal border crossings, drug trafficking, smuggling, and other 
similar criminal activities. The application relies on WSN 
comprised of a large array of sensors such as electro optical 
cameras, infrared cameras, vibration sensors and explosive-
material sensors. The initial mission of the WSN is to observe 
the deployment area and report any suspicious activities. 

For a more concrete scenario, consider that an infrared-
based vehicle recognition algorithm in the WSN detects that a 
human trafficking attempt is taking place using a minivan. The 
WSN alerts an agent with the Border Patrol Tactical Team, via 
his PDA. After an automated evaluation of a pursuit-and-
capture mission, a few members of the Special Response 
Team are assigned to the mission and instructed to use a High 
Mobility Multipurpose Wheeled Vehicle (HMMWV). The 
HMMWV is equipped with high performance computers and 
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high power communication devices. Moreover, a number of 
Unmanned Ground Vehicles (UGVs) are deployed to facilitate 
the mission. Meanwhile, a number of Unmanned Aerial 
Vehicles (UAVs) are detected while penetrating a section of 
the border, in one of many attempts by the perpetrators to find 
a vulnerable spot. The WSN tracks the UAVs and predicts 
their future locations, and guides a number of Counter-UAV 
Vehicles (CUAVV) to suitable locations where they can shoot 
down the UAVs. Finally, because the WSN indicates the 
possible existence of explosives and weapons, the Border 
Patrol Search, Trauma, and Rescue Team is contacted to 
ensure that an ambulance helicopter and a fire truck are called 
to be on site. As the team begins the pursuit-and-capture 
mission, under the constant attack on the WSN by the 
intruders to inhibit the network functionality, the WSN 
autonomously morphs its clustering in order to: (1) seamlessly 
assimilate the HMMWV, CUAVVs, the UGVs and the 
helicopter as new nodes with higher capabilities; (2) cope with 
the context of the new mission; (3) minimize the risk of being 
damaged by the intruders, and (4) In situations where the 
network has to deal with multiple concurrent events, the 
available resources are assessed and then assigned to handle 
them, or in case of resource deficiency, the events are 
prioritized and the network calls for more external resources. 

The remainder of this paper is organized as follows. In 
Section II we present the protocol in detail. In Section III, we 
discuss how the protocol objectives were achieved and 
provide performance figures. Finally, in Section IV, we state 
our conclusions and discuss future work. 

II. CONTEXT-AWARE AFFINITY PROPAGATION CLUSTERING 
PROTOCOL 

A. Overview 
The network deployment area in LAP is perceived as a 

square grid with k x k cells [6]. The algorithm has to be 
executed over a number of steps or phases depending on the 
depth of the hierarchy, where the area of each grid cell is 
squared in each new phase. A coordinator node (S) is 
responsible for initiating and concluding each phase. During 
each phase, nodes within each cell exchange messages with 
each other using geocasting. Then, an execution node Ei is 
selected in each cell to run AP over the data received from all 
other nodes in the cell. The results are then sent back to S, 
which initiates the next phase upon receiving the results from 
all execution nodes. Only nodes selected as cluster heads in a 
phase contribute in the next phase, and the algorithm 
terminates when the grid contains only one cell. Fig. 1 shows 
an overview of the process. 

B. Protocol Description 
In this section we provide a detailed description of the LAP 

protocol, where we discuss the different roles assumed by the 
nodes, the messages exchanged between them, and the actions 
taken by them upon receiving a message. Table 1 is a legend 
of the notation that will be used henceforth. 

 

 
Fig. 1. A sample run of LAP. Grid cell area is squared after each phase, and 
only nodes selected as exemplars in one phase participate in the next one. 

Symbol Meaning 

k 

Initial number of cells in each dimension in the grid. k is 
divided by two in each new phase until it is equal to 1. It 
also represents the hierarchy depth in the Hi-WAP 
algorithm. 

p Current phase number 

€ 

∈{1,..,1+ log2 k}  

kp
2 Total number of cells in the grid during phase p. 

S The coordinator node. 

Ep(i) Execution node in cell i during phase p.

€ 

i∈{1,..,kp
2}  

np(i) 
The set of nodes selected as cluster heads in grid cell i in 
the phase p-1. Initially, this includes all nodes in the grid 
cell. 

Table 1. Notation 

For the protocol to be executed correctly, we make the 
following assumptions about the underlying network: 

• Nodes are equipped with GPS hardware, or are 
otherwise aware of their locations, allowing them to 
determine the grid cell they lie within. 

• Each node knows its neighbors in the same grid cell. 
This can be achieved using any neighbor discovery 
protocol, such as [7], [8] or [9]. It is sufficient to run the 
protocol once after the sensors are deployed. Only 
neighbors within the initial cells need to be identified 
(i.e. during the first phase). 

• Like in [10] and [11], we assume that each cluster head 
broadcasts a TDMA schedule for its nodes to follow, 
and that Direct Sequence Spread Spectrum (DSSS) is 
used to mitigate collisions. 

The protocol consists of the following steps, which are all 
overseen by S. The initial selection of S is arbitrary. 

I. Phase Initialization Step: The protocol starts by S 

A final 
cluster head 

An 
intermediary 
cluster head 
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broadcasting a PhaseExecute message that contains 
the phase number, p, and the size of the grid cell that 
should be used in the phase. 

II. AP Matrix Acquisition Step: upon receiving this 
message, each node in np(i) collects the application-
specific parameters needed for clustering from all other 
nodes in the cell. This is achieved by having each node 
geocast these parameters to all other nodes in its cell 
encapsulated in an APValues message. Each node 
then waits until it has collected similar messages from 
all neighbors in its cell. If a neighbor fails to send a 
message within a certain timeout, possibly due to 
energy depletion, it is considered dead and isn’t waited 
for in any subsequent runs of the protocol. The exact 
parameters included in the message vary according to 
the application, and will be discussed in section IV. 

III. AP Execution Step: The APValues message includes 
application-specific data relevant to clustering, in 
addition to information about the residual energy in the 
source node. When all the nodes in np(i) have responded 
(or after the timeout has been reached), this information 
allows the node with the highest residual energy to 
identify itself, as it is responsible for executing the 
Weighted-AP algorithm on the collected data, which 
results in identifying cluster heads within the cell. The 
result is sent to node S as a PhaseDone message. 

IV. Phase Conclusion Step: Once S receives the 
PhaseDone message from all execution nodes (or 
after a timeout proportional to the number of nodes), the 
current phase is considered complete. If kp

2 is equal to 1, 
the algorithm is complete and the protocol proceeds to 
the next and final step, otherwise the grid cell size is 
doubled, p is incremented, and we start again from step 
I. Only nodes selected as cluster heads in the last phase 
contribute in the new one. The other nodes can simply 
ignore any messages until the global cluster heads are 
identified in the final step. 

V. Result Broadcasting Step: By now, S knows the global 
cluster heads, so it composes and broadcasts a 
Results message that identifies the cluster head of 
each node in the network. Once received by a node, it 
can immediately determine its role in the final 
clustering. 

C. Practical Considerations 

In order for the protocol to operate efficiently and 
deterministically, there are certain practical considerations that 
have to be made. For instance, the initial grid cell size is 
directly proportional to power utilization, while it’s inversely 
proportional to the number of phases. On the one hand, since 
nodes have to geocast messages within their grid cell, the cell 
size has to be small enough such that it allows each node to 
reach its same-cell neighbors without using too much power. 
On the other hand, the cell size shouldn’t be too small that it 
results in a high number of phases, which affects the clustering 

quality negatively as we have shown in [6]. In the following 
section we show that by using a suitable value for k, the 
geocasting overhead is mitigated, allowing LAP to outperform 
two other leading clustering protocols. 

Another important consideration is reliability. The 
coordinator node S in particular represents a single point of 
failure in the protocol. This, however, can be solved using 
several techniques, and it’s up to the specific application to 
choose which is more suitable: 

• S could be a special node with abundant energy 
and immunity to physical attacks. 

• It could be the base station itself, if it’s 
appropriately located relative to the other nodes. 

• S could be a group of nodes, with only one of them 
initially active, and the others being passive ranked 
replicas. Nodes contributing in the protocol would 
use multicasting to send data to S. All the replicas 
would store the data, but only the active node 
sends out LAP messages. All the nodes in the 
group periodically send heartbeat messages, and in 
case the active node fails, the next available node 
by rank is activated. 

III. PROTOCOL OBJECTIVES 
Attempting to tackle the problem of clustering in wireless 

sensor networks poses additional challenges that don’t 
manifest themselves in offline clustering. Nodes have to 
exchange messages between themselves and execute the 
clustering algorithm on the collected data. This could 
represent a major energy drain, adding more strain to the 
already limited power resources of wireless sensor networks.  

Moreover, the clustering protocol should utilize node 
resources as evenly as possible. Over utilization of resources 
on a subset of nodes results in a skew in node lifetime, 
shortening the longevity of the entire network and, depending 
on the application, could severely affect the network’s 
capacity to function correctly. For example, in an environment 
monitoring application, the overuse of nodes in a certain area 
in the deployment field could result in the lack of information 
about that particular area much earlier than other parts of the 
field. 

A paramount objective that we aim to achieve as well is 
generality. The solution we propose here is geared towards 
multi-context applications where the network has to fulfill 
different – even conflicting – goals simultaneously.  We 
achieve that by representing contextual data (events of interest 
to the sensor network) as potential fields, and interweaving 
them with the Affinity Propagation algorithm. This section 
discusses each of these objectives in detail. 

A. Protocol Overhead 

We have made use of certain properties of the AP clustering 
algorithm as well as of the underlying network in order to 
minimize the protocol overhead as much as possible. 
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A key property of LAP (and also of Hi-WAP) is the fact 
that the number of nodes contributing to each phase decrease 
exponentially as the algorithm progresses. In Weighted 
Affinity Propagation, nodes in a lower level in the hierarchy 
are represented by their exemplars in the upper level. This 
results in great reductions as the algorithm proceeds from one 
phase to the next, which translate into energy savings as the 
number of exchanged messages is also reduced. Almost no 
energy is exerted at all by any nodes except the exemplars and 
the nodes needed to route messages between them. Fig. 2 
shows the reduction in the number of contributing nodes as the 
phase number increases. 

The total number of messages generated by the protocol is 
another important overhead metric. Fig. 3 shows the ratio of 
the total number of messages to the total number of nodes. 
The ratio seems to follow a logarithmic curve, where the 
overhead relatively decreases as the number of nodes increase.

 
Fig. 2. A sample run with 1200 nodes and k=5. With the exception of phase 1, 
the percentage of nodes contributing to each phase is reduced by more than 
50% in each subsequent phase. 

 
Fig. 3. The total number of messages is inversely proportional to the total 
number of nodes. The curve is logarithmic with an asymptote of 1. These 
figures were obtained for k=4 and a deployment area of 1000x1000. 

Another factor that helps to limit the number of messages 
and aids in saving node energy is geocasting. By restricting 
the exchange of APValues messages to a single grid cell, 
nodes can use lower power levels to transmit messages within 
their own cells, resulting in better power efficiency and less 
network congestion. 

B. Network Longevity 
Optimal network lifetime is the result of two practices: the 

use of efficient algorithms, and unbiased utilization of node 
resources. The former has already been discussed in A. The 

latter, however, is achieved in our scheme by rotating the 
different roles in the protocol over the nodes according to their 
residual energy levels. The most power-demanding role in the 
protocol is that of execution nodes. 

In Step III of the protocol, nodes in each cell exchange 
APValues messages, which include information about the 
residual energy on the source node. Once a node receives all 
APValues messages from its cell neighbors, it can determine 
whether it is the one with the highest level of residual energy, 
and if it is, it immediately executes AP on the data it has. The 
next time the protocol is started, another node will probably be 
a better candidate to execute the algorithm, and as the process 
is repeated multiple times the variance between the residual 
energy levels is always kept at a reasonable level. The 
selection of the coordinator node S is also done similarly. 

 
Fig. 4. Network lifetime under different clustering protocols for different 
deployment sizes (k = 8). 

Fig. 4 shows a comparison between the network lifetime 
achievable using LAP and two other well-known clustering 
protocols: generalized LEACH [12], and Average Minimum 
Reachability Power (AMRP) HEED [10]. The simulation 
parameters are identical to those in [10] and are repeated in 
Table 2 for convenience. The sensors are deployed in a 
100x100 m2 area with a base station located at (50,175). 
During each TDM frame, each node collects data and sends a 
data packet to its cluster head, and each cluster head fuses 
those packets into one message and sends it to the base station. 
Clustering is triggered each round, where a round is 5 TDM 
frames.  The results show that LAP consistently achieves a 
longer network lifetime than both LEACH and HEED. 

Type Parameter Value 

Network 

Network grid 

Sink 

Initial Energy 

From (0,0) to (100,100) 
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Radio 
Model 

Eelec 

εfs 

εmp 

Efusion 

Threshold distance d0 

50 nJ/bit 

10 pJ/bit/m2 

0.0013 pJ/bit/m4 

5 nJ/bit/signal 

75 m 

Table 2. Simulation Parameters. Please refer to [10] for a detailed description 
of each parameter. 

C. Generality 
The primary target we consider for the utilization of this 

protocol are highly dynamic pervasive cyberspaces; physical 
environments with embedded information appliances that are 
gracefully integrated into and coordinated with the physical 
resources to better serve human users, and where events are of 
a dynamic spatio-temporal nature. We focus our attention on 
scenarios involving multiple concurrent events pertaining to 
different contexts. In such situations clustering must be based 
on multiple criteria, and conflict resolution has to be 
performed when concurrent tasks tax network resources in a 
conflicting manner. What is needed is a context representation 
model that satisfies the following criteria: 

• It should provide a means of quantifying network events. 
• It should simplify the process of conflict resolution 

between events belonging to different contexts. 
• It should be easy to integrate with the Affinity Propagation 

algorithm. 

Given the resource scarcity that characterizes most sensor 
networks, the network must utilize each individual node in the 
most efficient manner while performing its function as 
optimally as possible. This means that multiple events have to 
be dealt with differently according to their location, urgency, 
and possibly other attributes. It is important to choose a 
representation that allows individual nodes to efficiently 
choose the events to cover, form clusters with each other, and 
guarantee good coverage for the entire network. The potential 
field representation has several merits that would help us 
achieve these goals as we are going to show shortly. 

The term potential field refers to a force associated with 
each point of space-time. In physics, such fields exist as a 
result of the presence of certain objects, such as a magnet or 
an electron, and the strength of the force exerted on objects 
residing in the field is a function of the distance between the 
actor and the acted-upon objects. 

Potential fields have been used extensively in many areas, 
but particularly in electromagnetics and robotics. In wireless 
sensor networks, [13] shows how mobile sensor nodes can be 
represented as having similarly charged potential fields which 
guide their movement in order to achieve better coverage. In 
our work, however, our goal is to model events (contextual 
information) as potential fields acting on sensor nodes and 
affecting many aspects of their operation such as clustering, 
data aggregation, and so forth. 

Quantifying Events 

We perceive an event as an incident occurring at a certain 
location and which can only be detected by nodes within a 
certain range. Typically, the ability of a node to detect an 
event weakens as the distance separating them increases. This 
can be accurately represented as a potential field with a force 
that reaches its peak at the center of the area covered by the 
event and which decays until it becomes undetectable as we 
move away as shown in Fig. 5. The gradient of the force can 
be represented mathematically by a multitude of functions. We 
have chosen a parabolic curve that is a function of the square 
of the distance to the event location. The task of actually 
detecting the events, identifying their types, and tracking their 
locations is outside the scope of this paper, but [14] and [15] 
can be consulted for possible implementations of such 
functionality. 

Conflict Resolution 
In our proposed scheme, we would like each node to behave 

as independently as possible in order to minimize the 
communication overhead, but without compromising the 
functionality of the network as a whole. In other words, we 
would like to guide nodes to take local decisions that 
collectively serve global goals. This can be achieved by 
assigning different profiles to sensor nodes. Such profiles are 
mutable, and they change in reaction to external events or 
decisions taken by neighbor nodes. This allows each node to 
view its surroundings from its own perspective and take 
independent decisions, and also adapt itself to the feedback it 
receives from its neighbors in order to enhance the 
performance of the entire system. 

 
Fig 5: A normalized potential field: center at (0,0), coverage extends from (-
1,-1) to (1,1), and maximum strength is 1. The field strength is calculated as 
(1-d)2 where d is the distance between each point and (0,0). 

Node profiles determine which event types a node should be 
involved in servicing, which should be avoided, and the type 
of manipulation the node should perform on the potential 
fields representing the detected events to arrive at its 
decisions. Sensor nodes, each according to its profile, must 
calculate the force exerted on them by each interesting event 
they can detect. From that point, many operations are made 
possible thanks to the fact that a quantitative representation of 
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each event is now available. For instance, a node could choose 
the event to report according to its strength and to the weight 
assigned to the event type in the node's profile, or it could add 
all the force vectors it can detect, and depending on the angle 
of the resultant, decide which cluster to join, or which 
direction to move into if it's a mobile node. Events in the 
threat context can be represented as having negative potential, 
causing mobile nodes to move away from them. It can be seen 
that all such operations reduce to basic vector arithmetic that 
can be performed efficiently even by resource-limited nodes. 

Integration With Affinity Propagation 
The AP algorithm basically relies on the acquisition of a 

similarity matrix, where the value of a cell s(i,j) expresses how 
similar node i  is to node j. The similarities are computed by 
the execution node using the data it receives from the other 
nodes in the cell. The algorithm converges after a certain 
number of iterations, during which, two types of values are 
computed for each pair of nodes: the responsibility value r(i,k) 
represents the accumulated evidence for how well suited point 
k is to serve as an exemplar for point i, while the availability 
value a(i,k) reflects the accumulated evidence of how 
appropriate it would be for point i to choose k as its exemplar, 
given the support k has from other candidate cluster members. 
Another important piece of information that the similarity 
matrix holds is the self-similarity s(i,i), also called preference,  
which influences the number of clusters generated by the 
algorithm  (for a comprehensive description of the algorithm 
please refer to [4]). 

 
Fig. 6. Nodes laid out as a grid and clustered according to their proximity to 
events (represented by the circles.) Lines emanating from nodes lying within 
the potential fields represent the forces acting on them. 

While nodes cannot control the responsibility and 
availability values directly, they could influence the 
similarities through the values they encapsulate in APValues 
messages, and also set the preferences directly. Preferences 
are derived from the potential field strengths, and 

normalization is applied to make the values in the similarity 
matrix homogeneous. Usually, when the number of clusters is 
not known, preferences are set to the mean value of all 
similarities. By offsetting that value by the potential field 
strength, we effectively increase the chances of those nodes 
lying in the vicinity of events to become cluster heads. 
Equation 1 shows how the preference value is calculated. N is 
the total number of nodes, and force(i) is the vector sum of 
forces acting on node i. Fig. 6 shows the resulting clusters in a 
sample run of the protocol. 

€ 

µsim =
similarity(i, j)

N 2 − Nj=1, j≠ i

N

∑
i=1

N

∑ (1)

µ force =
force(i)
Ni=1

N

∑ (2)

similarity(i,i) = µsim − force(i) µsim

µ force

(3)

 

IV. CONCLUSION AND FUTURE WORK 
Context aware clustering allows us to group nodes in a 

WSN based on all of the information available to the network 
and not just according to predefined static parameters such as 
location or energy. We have made use of the modifications 
proposed for AP in [5]  that address the issues of centrality 
and high time complexity and adapted then extended the 
algorithm for WSNs. We presented a distributed protocol that 
coordinates the execution of the algorithm on the nodes, and 
incorporated context awareness into the algorithm by 
employing a novel context modeling tool enabling us to 
quantify the effect of events on sensor nodes. Our work is 
ongoing on testing this solution in various real-life application 
scenarios. Among the issues we are exploring is the definition 
of node profiles, where each node would have different 
sensitivities to different event types according to their 
capabilities. Such profiles could be dynamic, where nodes 
change their behavior according to the state of the network. 
Defining node behavior is another interesting area that we are 
exploring. One of the solutions we are studying is using fuzzy 
logic to determine the action a node should take. The 
representation of events as potential fields would be very 
convenient, as field strengths can be used as direct inputs to 
the fuzzy logic functions defining node behavior. 
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