
Collaboration by Passing Access Rights for
Personal Protected Web Resources

Yasushi Shinjo, Daisuke Kamikawa, Akira Sato
Department of Computer Science

University of Tsukuba
1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan

Abstract—This paper describes how users can collaborate
through sharing personal protected Web resources. Personal
protected Web resources are Web pages and services that are
typically password-protected. One example is a personal page on
an auction site. This paper introduces capability-based access
control to the World Wide Web without modifying existing
servers and clients. Access rights for personal protected Web
resources are represented as capabilities for the Web resources.
When users collaborate, capability-based access control on the
Web has two advantages over conventional access-control-list
based access control. First, a user can easily pass his/her own
capabilities to access Web resources to other users along with
delegating tasks. For example, a parent can ask a child to bid on
a PC on behalf of the parent by passing the capability to access
the parent’s auction page but not giving the child the password.
Second, restricted capabilities are useful in passing access rights.
For example, before a parent passes the capability to bid on a PC
to a child, the parent can create a restricted capability that allows
biding up to $100 on a PC from the original unlimited capability.
The proposed method has been implemented as Web applications
called CapaEdit and CapaGate in Java by using the Google
Web Toolkit. Using CapaEdit, a user can interactively create a
capability to access his/her personal protected Web resources with
access control to hyperlinks and form parameters. The receiver of
the capability can access the Web resources through CapaGate,
which enforces the restrictions. Experimental results show that
these Web applications perform well enough for interactive use.

I. INTRODUCTION

While the Internet contains a huge number of publicly
accessible Web resources, people have their personal protected
Web resources. Personal protected Web resources are Web
pages and services that can be accessed only by a specific
person or people. Examples of such resources include personal
pages on auction sites, personal schedules, and personal photos
on social network service (SNS) sites. To create personal pro-
tected Web pages, most Web servers adopt an access control
model based on access control lists (ACLs). ACLs are stored
in objects and contain subjects (principals) and their permitted
operations. In ACL-based access control, before the access
control mechanisms work, subjects must be authenticated,
typically by using usernames and passwords.

While people use personal protected Web resources, people
sometimes want to allow other persons to temporarily access
these Web resources. For example, a user sometimes wants to
show his/her personal photo albums to friends at home. In an
office, a project leader sometimes must show confidential Web
pages to a project member who does not have permissions to

see these pages. In such cases, it is common practice for a
person to access the protected Web resources on his/her PC
and show the PC’s display to others when they sit together.
However, when the resource owner and the others are sepa-
rated by distance and time, it become harder to allow limited
access to the resource while keeping privacy and confidential-
ity. Specifically, ACL-based access control has the following
problems. First, it is hard for a user to delegate his/her access
rights to other users. For example, if a project leader can access
a confidential Web page but does not own it, the leader cannot
pass his/her access rights to other project members. Second,
user registration is necessary, so if a temporary worker is not
allowed to have an account, the temporary worker cannot get
access right to the confidential page. Third, most existing Web
servers provide poor access control mechanisms about lengths
of time something is accessible and the maximum number of
times it can be used. For example, we cannot limit the number
of uses to 10. If we wish to allow users to access a Web page
within a day, we must change the ACL of that Web pager after
one day.

We are tackling these problems of ACL-based access control
on the Web. We use capability-based access control to solve
these problems because it has an advantage over ACL-based
one in terms of access rights delegation [13] [18]. We have
implemented capability-based access control in the Web with-
out modifying existing Web servers and browsers in the Web
application CaStor [14]. CaStor stands for capability store.
In CaStor, a user can create a capability to access his/her
password-protected Web pages and send it to another user.
A receiver of the capability can access the Web pages without
knowing the password. The receiver also can redistribute the
capability to the third user. A capability holder can create a
restricted capability from the original capability. Restrictions
include the maximum number of uses, expiration dates, and
allowed URL patterns in regular expressions.

However, CaStor-realized capability-based access control on
the Web has the following problems. First, CaStor cannot deal
with the Web resources that are created with the PUT method
in Hypertext Transfer Protocol (HTTP). Second, CaStor cannot
restrict HTTP parameters that are sent on the basis of HTML
forms. Third, CaStor provides poor user interface to configure
permitted hyperlinks and forms. Because of these problems,
we cannot, for example, create a capability to bid on an item
on an auction site up to $100.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.50

CarolBob

Eve

DaveAlice

confidential.html passwd

ch
a
n
g
e

re
ad &

write

Project

LeaderManager Member
Temporary

staff

g
ive

p
a
ssw

o
rd

ACL register

account

read &

write

Fig. 1. Colleagues collaborating using a confidential Web resource.

To solve these problems in CaStor, we have implemented
the second-generation tool to realize capability-based access
control on the Web. The tool consists of two Web applications:
CapaEdit and CapaGate. CapaEdit is an authoring tool to
make capabilities based on personal Web resources protected
with ACLs. CapaGate is a proxy to enforce the restrictions
of capabilities. In CapaEdit and CapaGate, we can create a
capability to bid on an item on an auction site that uses
the POST method with a maximum price limit. Using these
programs, we can use advantages of capability-based access
control on the Web, and users can collaborate by passing
capabilities among themselves.

The rest of the paper is organized as follows. Section II de-
scribes capability-based access control on the Web. Section III
and Section IV explain CaStor and CapaEdit plus CapaGate,
our first and second implementations of the capability-based
access control in the Web. Section V describes the performance
of CapaEdit and CapaGate. Section VI presents related work,
and Section VII summarizes the key points and takes a look
at future work.

II. CAPABILITY-BASED ACCESS CONTROL IN THE WORLD
WIDE WEB

In this section, we first describe the problems of ACL-based
access control in the World Wide Web. Next, we explain the
solutions by introducing capability-based access control to the
Web.

A. The problems of ACL-based access control in the Web

To protect Web resources, most Web servers adopt an access
control model based on ACLs. In ACL-based access control,
policies are stored in target objects, that is, Web resources.
An access control policy is described as a list of subjects
(principals) and their permitted operations. For example, a
list can say that Alice is allowed to read and write the
resource but Bob is allowed to only read the resource. In
many widely used Web servers, such ACLs can be modified
only by owners of resources or system administrators. In ACL-
based access control, subjects should be authenticated before
the access control mechanisms work. To authenticate users,

most systems use usernames and passwords, public keys in
public key infrastructure (PKI), biometrics, etc.

However, ACL-based access control in the Web has the
following problems.

1) Regular users cannot pass their access rights for Web
resources to other users. Changing access control poli-
cies, which include sensitive information, increases the
workload of the owners of Web resources or system
administrators.

2) User registration is required for user authentication. If a
user is not allowed to have an account on a Web server,
the user cannot use Web resources on the Web server.

3) Systems provide inadequate support for describing ac-
cess control policies that use time constraints.

We describe these problems by using an example in an
office. In this example, the following people work together,
as shown in Figure 1. Alice is the manager. Bob is the project
leader. Carol is a project member. Dave is a temporary member
of staff who joins the project for a month. Eve is a system
administrator who performs user registration. Alice owns the
Web resource “confidential.html”, which is protected with an
ACL. This ACL allows Alice and Bob read and write access.

Bob and Carol are working together. Bob’s work involves
accessing the Web resource, confidential.html. When busy, he
wishes to temporarily delegate the task that requires reading
confidential.html for one week to Carol. However, he cannot
give the read permission because he is not the owner of the
Web resource. He needs to ask Alice to give the read permis-
sion to Carol. Alice must change the ACL of confidential.html
for the temporary delegation. When Carol finishes the task that
requires reading confidential.html, Bob asks Alice to again
change the ACL of confidential.html, so Alice must restore the
ACL. Since the ACL contains sensitive information, changing
the ACL increases the workload of the owner of the Web
resource. In ACL-based access control, Bob cannot help Alice.

To accelerate the project completion, Bob hires a temporary
member of staff, Dave. Bob wants to allow Dave to read
confidential.html, just like Carol. To achieve this, Dave needs
a user account on the Web server. Sometimes, the system
management policy prohibits Dave from having an account.
In Web server Apache httpd [8], for example, Web resources
can be protected with the statement require valid-user
in the file .htaccess. This means that any user who has a valid
account can access the Web resources. If the system includes
Web resources with this statement, Dave is often not allowed
to have an account.

B. Solving the problem of ACL-based access control with
capabilities

To solve the problems of ACL-based access control, we
introduce capability-based access control to the World Wide
Web. Conceptually, a capability consists of an identifier of an
object and a set of access rights for that object. A capability
represents a self-authenticating permission to access a speci-
fied object in specified ways. It is like a ticket or door key:
possession of a capability is proof of the holder’s rights to

CarolBob

Eve

DaveAlice

Project

LeaderManager Member
Temporary

staff

read &

write

Crw Crw Cr
Cr

confidential.html passwd

read read

pass
pass

re
ad &

 w
rit

e

Fig. 2. Capability-based access control in the World Wide Web.

access an object. Without a capability for an object, a user
cannot access it. We realize capability-based access control to
protect Web resources.

Capability-based access control has an advantage over ACL-
based one in terms of access rights delegation. Users can
pass their holding capabilities to other users and delegate their
tasks. At this time, the owners of objects have to do nothing.
When passing capabilities, capability restriction is useful. A
restricted capability is a capability that refers to the same
object as a base capability but has fewer permitted operations
than the base capability. For example, if Alice has a read and
write capability for a Web resource, she can create a read-only
capability for the Web resource.

The problems in Section II-A are solved with capabilities
as follows (Figure 2).

1) Access rights delegation problem: Alice creates a read-
write capability for confidential.html and passes it to Bob.
When he becomes busy, he wishes to temporarily delegate the
task of reading it to Carol for one week with read access to
confidential.html. To achieve this, Bob has to do two things.
First, based on the read-write capability, he creates a read-
only capability for confidential.html that is valid for one
week. Second, he passes the restricted capability to Carol.
Carol then performs the task using the restricted capability
for confidential.html for one week. Alice does not have to do
anything in this task delegation.

2) User registration problem: To accelerate the project
completion, Bob hires a temporary member of staff, Dave.
Bob wishes to allow Dave to read confidential.html, just like
Carol. To achieve this, Bob has to do same things as in Carol’s
case: he creates a restricted capability and passes it to Dave.
At this time, if he passes the restricted capability with a
file in a USB drive or by using any method that does not
require user registration, Dave does not have to have a user
account. Alice, the owner of the Web resource, and Eve, the
system administrator, do not have to do anything in this task
delegation.

3) Time-related access control problem: When Bob creates
a restricted capability for Carol, he restricts the valid period of

ACL
Alice rw

Protected Web resources in unmodified servers

R1 R2

CaStor

Alice

C1 C2

Alice Bob

C3

Bob

pass

Browse
capabilities

Access
resources

ACL
Alice rw

C3

restrict

Refer URLs

Fig. 3. The CaStor Web Application.

the capability to one week. Alice does not have to do anything
in this task delegation.

III. CASTOR

As described in Section II, introducing capability-based
access control solves the problem of ACL-based access control
on the World Wide Web. However, most current Web servers
adopt ACL-based access control. To clarify the benefits of
capability-based access control on the current Web, we have
implemented a Web application named CaStor. CaStor stands
for capability store. In CaStor, a user can create a capability for
a protected Web resource without modifying any existing Web
servers and browsers. A user can also distribute capabilities to
other users. Capability Basket is another tool for capability
distribution running on a personal computer.

A. The design of CaStor

We have designed CaStor to achieve the following goals.
• Realize capability-based access control in the Web with-

out modifying existing servers and clients.
• Realize restricted capabilities.
• Enable users to manage capabilities safely.
CaStor provides the following operations of capabilities for

users.
1) Creating a base capability.
2) Creating a restricted capability.
3) Managing Capabilities.
A user creates a capability for accessing his/her own Web

resource in an unmodified Web server. We call this type of
a capability a base capability. To create a base capability,
a user sends CaStor the URL, the username and password.
While a base capability holds a username and password, it
does not expose them to capability holders. A base capability
can include a script to log into the Web server. In Figure 3,
Alice creates two capabilities, C1 and C2, for accessing her
own Web resources, R1 and R2, in unmodified Web servers.

A user can create a restricted capability from a base
capability. Restrictions include the maximum number of

uses, expiration dates, and allowed URL patterns in reg-
ular expressions. For example, a user can give a reg-
ular expression ˆ/dir1/(file2|file3)\.html$ to
CaStor. In this case, CaStor relays the GET request
/dir1/file2.html, while CaStor does not relay the GET
request /dir1/file4.html. Restricted capabilities can be
created from other restricted capabilities. For example, if a
user has a restricted capability that is valid from July 1 to
December 31, 2010, the user can create a restricted capability
that is valid from October 1 to October 31, 2010. In Figure 3,
Alice creates a read-only capability, C3, from the read-write
capability, C2.

A user can organize holding capabilities with hieratical di-
rectories and send these holding capabilities to other users. In
Figure 3, Alice has a directory that includes three capabilities
and sends the capability C3 to Bob’s directory.

The CaStor Web application consists of two components:
the CaStor site and the CaStor proxy. The CaStor site manages
directories, and the CaStor proxy enforces restrictions. Before
a user uses a capability, the user logs into the CaStor site,
browses directories, and finds the target capability. In the
CaStor site, the target capability is represented as a URL to the
CaStor proxy. A URL to the CaStor proxy includes a random
number to protect the capability.

When the user clicks the hyperlink with a URL to the CaStor
proxy in a Web browser, the request is sent to the CaStor
proxy. The CaStor proxy extracts the random number in the
URL and retrieves pieces of information to access the original
Web resource. These peaces of information include the URL of
the original Web resource, a username, a password, and a login
script. Using these peaces of information, the CaStor proxy
first logs into the original Web resource with the username,
password, and login script, and obtains session cookies. Next,
the CaStor proxy obtains the target contents usually in HTML
by sending the URL and these session cookies. Finally, the
CaStor proxy returns the contents to the Web browser.

The CaStor site is written in the Ruby language based on
the framework Ruby on Rails. The CaStor proxy is written in
the Java language.

B. Problems of CaStor in Collaboration

In CaStor, we have realized capability-based access control
on the World Wide Web. We can create capabilities to access
protected Web resources without modifying existing servers
and clients. We can also create restricted capabilities and pass
them to other users with whom we are collaborating. However,
the following problems remain.

1) CaStor cannot handle the POST method. In an HTML,
both the GET and POST methods are used to send data from a
Web browser to a Web server. The POST method is common
in Web resources with dynamic page generation. If a Web site
uses a form of the POST method, the CaStor cannot create a
capability to access the Web resource.

2) CaStor is limited by the expressive power of regular
expressions. It is hard for casual users to describe desired
restrictions in a regular expression. If there are two or

more <input> parameters, a user has to specify them in
several orders. For example, if a form has two parameters
<input name="a"> and <input name="b">, in a reg-
ular expression, we have to write both a=...&b=.... and
b=...&a=.....

3) CaStor provides a poor user interface as an authoring
tool. When a user creates a base capability from an unmodified
protected Web resource, the user has to give necessary pieces
of information in a Web page in CaStor, but the user cannot
see the unmodified protected Web resource. It is not simple to
specify allowed hyperlinks in a Web resource.

C. Capability Basket

In CaStor, a capability is exported as a URL to a Web page
in the CaStor proxy with a random number for protection. A
URL can be either temporary or long lasting. A temporary
URL expires when a user logged out from the CaStor site. A
long lasting URL can be passed to other users with various
methods, including encrypted e-mail.

Capability Basket is a capability distribution tool running
on a personal computer. It is designed to distribute capabilities
for e-mail inboxes to solve the false positive problem of spam
filters [21]. It can handle capabilities for Web resources as
well as those of e-mail inboxes. In Capability Basket, users
can send capabilities by using the overlay network with the
instant messenger Skype.

IV. CAPAEDIT AND CAPAGATE

In Sections II and III, we introduced capability-based access
control on the World Wide Web and described its implementa-
tion in the CaStor Web application. Although capability-based
access control is useful, its implementation of CaStor has
several problems: no support of the POST method, less expres-
sive power for regular expression, and being a poor authoring
tool. To solve these problems, we have implemented Web
applications CapaEdit and CapaGate, which mainly replaces
the function of the CaStor proxy. CapaEdit is an authoring
tool that enables users to add filters for forms and hyperlinks
to existing personal protected Web resources. CapaGate is a
proxy that enforces the filtering rules specified with CapaEdit.

A. Filters to hyperlinks and form parameters

In CapaEdit and CapaGate, we deal with the following
protected Web resources in unmodified servers, as shown in
the bottom of Figure 4.

• A capability allows users to access one or a group
of personal Web resources that are protected with a
username and password. A capability can have a login
script as an attribute.

• Web resources can be either static HTML files, images, or
dynamically generated ones in servers. An HTML page
can include simple JavaScript programs. See Section IV-F
for details.

• An HTML page can include hyperlinks to other inter-
nal protected Web resources. An internal protected Web
resource means a Web resource that can be accessed

Form2 Textarea1

Form1
Textarea1Link1 Link2

disallowdisallow allow

allow if < $100.00

An unmodified
protected Web

resource

A filter for the
protected Web

resource

Fig. 4. Filters to hyperlinks and form parameters in CapaEdit and CapaGate.

with the same session cookies and needs no extra user
authentication.

• An HTML page can include multiple forms. Each form
can contain several input fields, such as text boxes, text
areas, radio buttons, submit buttons, and hidden fields.
Both the GET and POST method are allowed.

In an HTML page, texts and in-line images are passed, and
all hyperlinks and submit buttons to internal protected Web
resources are disabled by default. A user can add the following
filters to hyperlinks and form parameters, as shown in the
upper layer of Figure 4.

• A user can enable a hyperlink to an internal protected
Web resource.

• A user can enable a submit button to an internal protected
Web resource.

• In a form, a user can add a filter to each input parameter.
For example, to a text box, a user can add a filter that
allows the form submission only if the value of the text
box is less than or equal to 100 as an integer.

• In addition to parameter range checking, a user also
overwrites a input parameter with arbitrary values. For
example, to a text box, a user can replace the value of a
text box with the string “hello”.

B. CapaEdit

CapaEdit is an interactive authoring tool that enables a
user to create a capability to access personal protected Web
resource (Figure 5). As described in Section III-B, the previous
Web application CaStor has three problems. CapaEdit along
with CapaGate solves these problems.

At first, a user of CapaEdit gives a URL of protected
Web resources to CapaEdit. CapaEdit shows the same content
of the protected Web resource in the same style with small
exceptions. An exception is the URL that appears in the Web
browser, which is a URL in CapaEdit. Another exception is
added context menus for hyperlinks, form submit buttons, and

Fig. 5. Adding a filter to a text box in CapaEdit.

form input parameters. In Figure 5, for example, a user is
adding a filter to a text box on the auction site, eBay.com. As
shown in this figure, the page layout is the same as the original
one on eBay.com. By showing a context menu of the text box,
the user can add a filter to the text box. When a user moves
the mouse pointer over a hyperlink, the user notices this fact
because the shape of the pointer cursor changes. At this time,
the user can enable the hyperlink with a context menu. Finally,
the user obtains an external representation of a capability for
the protected Web resource as a URL to CapaGate. We will
show the format of external representation of capabilities in
Section IV-E.

Since CapaEdit keeps the layout of unmodified protected
Web resources, a casual user can easily use CapaEdit. This
means that the user interface problem of CaStor has been
solved. CapaEdit also can add filters to the forms that submit
requests with the POST method. At runtime, CapaGate en-
forces these filters. This means that the POST method problem
of CaStor has been solved. In CapaEdit, a user can add filters
for input parameters and enable hyperlinks without regular
expressions. This means that the regular expression problem
of CaStor has been solved.

When a user finishes adding filters, CapaEdit saves the
following pieces of information that are associated with a
capability.

• The URL of the start page and the following allowed-to-
be-seen internal pages.

• The list of allowed forms.
• Filters for form input parameters.
• A username, a password, and a login script.
• The maximum number of uses
• Expiration dates

These pieces of information are also associated with the
external representation of the capability.

ACL
Alice rw

R1

CapaEdit
(Java)

Alice Bob
pass

HTTP

CapaEdit
(JavaScript)

CapaGate
(Java)

CapGate
(JavaScript)

HTTP

HTTP
(Ajax) URL URL

URL,
user name,
passwordApplication

server

HTTP
(Ajax)

capabilitysave
retr
ieve

Protected Web
resources in an
unmodified server

Fig. 6. Authoring and accessing protected Web resource through CapaEdit
and CapaGate.

C. CapaGate

CapaGate is a Web application that runs in conjunction with
CapaEdit (Figure 6). When CapaGate receives an external
representation of a capability as a URL from a browser,
CapaGate performs as follows.

1) CapaGate extracts a random number for protection.
2) By using this random number, CapaGate retrieves the

saved information and validates the capability.
3) CapaGate reads the necessary information to access the

unmodified protected Web resources.
4) CapaGate logs into the unmodified protected Web server

with the saved username, password, and login script.
5) CapaGate obtains the start page and returns its contents

to the client.
The user will see the start page in the unmodified protected
Web resources.

After that, CapaGate receives all the click events in hyper-
links and submit buttons. If they are not enabled by the capa-
bility, CapaGate does nothing. If they are enabled, CapaGate
performs appropriate actions. For a hyperlink, CapaGate goes
to the next page. For a submit button, CapaGate checks input
parameters to see if they are allowed by the filter. If they are
allowed, CapaGate submits the form to the unmodified Web
server. Otherwise, CapaGate shows an error page.

D. A usage example

Consider that a parent has protected Web resources on the
auction site eBay.com and wants a child to bid on a PC on
his or her behalf. It is a bad idea for the parent to pass his
or her username and password to a child. If the parent does
this, the child can access not only the target Web resource
in question but also other Web resources. This is potentially
very dangerous and usually unacceptable. When the parent
delegates the bidding task to the child, the parent may also
wish to limit the maximum price.

To achieve this, the parent first connects to CapaEdit. In
CapaEdit, the parent browses the auction site. When the parent
finds the target item, the parent enables a form as follows.

<form method="post"
action="http://offer.ebay.com/eBayISAPI?
MakeBid&item=280525128165">

<input type="text" name="maxbid">
<input value="Place bid" type="submit">
</form>

In CapaEdit, the parent enables the submit button
<input type="submit">. Next, the parent adds a filter
to the text box <input name="maxbid">, as shown in
Figure 5. The parent sets the maximum value of the parameter
maxbid to 100 as an integer. Finally, the parent obtains the
external representation of the capability and passes it to the
child.

E. Security Issues

The host of Web applications CapaEdit and CapaGate can
be as safe as regular Web sites that hold protected Web
recourses. Even if a user holds a capability for a protected Web
resource, the user cannot obtain secret information about the
capability. For example, the user cannot obtain the password
or login script of the capability.

In CapaEdit, a user can export a capability as an external
representation. This is a URL to CapaGate that includes
a random number for protection. The format of this URL
follows.
http://host/capa/gate/random
In this format, random is a random number to protect a

capability. Since it is hard for a non-holder of a capability
to estimate the URL, the Web resource described by the
URL is protected from attackers. This protection method of
capabilities is called a password-capability model [2] [4]. In
this model, the integrity of a capability is ensured through
the use of sparse random numbers (called passwords) in an
astronomically large space. This model is also used in other
capability-based systems [19] [9].

Since the safety of CapaEdit and CapaGate depends on the
safety of exported URLs with random numbers, the users of
CapaEdit and CapaGate must be able to handle capabilities.
First, the users should keep exported capabilities secret and
use secure channels to distribute capabilities to other users. If
e-mail is not considered secure, users should not use it to send
exported capabilities. We can protect HTTP communications
between a browser and the host of CapaEdit and CapaGate
with Secure Socket Layer (SSL) 1. In CaStor, users can
exchange capabilities within a site, and temporary exported
capabilities expire automatically when users logout. In Castor
and CapaEdit, exported capabilities can be distributed with
Capability Basket in a safe way because communications in
Capability Basket are automatically encrypted by the instant
messenger Skype.

Second, the users of CapaEdit and CapaGate should pass
their own capabilities to carefully selected people. This is

1In many Web sites including eBay, Facebook, and Twitter, SSL is used only
at login to protect usernames and passwords. When the user authentication
succeeds, a server typically sends back session cookies. Clients send these
session cookies over regular HTTP without SSL.

similar to giving a telephone number to others. People care-
fully give their telephone numbers to friends. Similarly, people
should carefully pass their capabilities to friends.

CapaGate enables accessing personal protected Web re-
sources with limited URLs and prohibits accesses to other
resources that can be accessed through predictable URLs. Con-
sider that a base Web resource in HTML includes predictable
hyperlinks. For example, a base HTML file index.html
includes two hyperlinks: and
. In CapaEdit, consider the
case when a capability sender allows the former hy-
perlink and disallows the latter hyperlink. The receiver
of the capability can easily guess there is a hyperlink
.

In this case, CapaEdit saves a list of allowed URLs with
the capability. This list includes the URLs index.html and
file1.html but not file2.html. Therefore, CapaGate
allows the access to the Web resources index.html and
file1.html and blocks the access to the Web resource
file2.html.

Although CapaGate allows accessing personal protected
Web resources with limited URLs and form parameters, pri-
vacy information can unintendedly leak through the allowed
Web resource. For example, if a base Web resource includes
advertisements that are generated from its owner’s preferences,
the capability receivers who access the page through CapaGate
can guess those preferences from the advertisements. We
plan to extend CapaEdit and CapaGate that remove such
subcomponents from an HTML resource.

It is hard for capability-based systems to realize account-
ability [18], meaning determining who delegated access to
a particular user, at least as part of an auditing (forensics)
process. Restricted capabilities realize a degree of account-
ability in CapaEdit and CapaGate. For example, consider
the case when Alice wishes to pass her capability to two
colleagues, Bob and Carol. First, Alice creates two restricted
capabilities based on the original capability. These restricted
capabilities identify the same Web resource as the original
one and have the same access rights in this case. Second,
Alice passes one restricted capability to Bob and the other to
Carol instead of passing the original capability, which Alice
continues to use it. At this time, all three users (Alice, Bob, and
Carol) use individual capabilities. When an incident occurs, the
problematic capability is identified. If the capability is daily
used by Bob, Bob must deal with the incident.

F. Implementation of CapaEdit and CapaGate

Both CapaEdit and CapaGate are Ajax (Asynchronous
JavaScript and XML) Web applications based on the frame-
work Google Web Toolkit (GWT). In GWT, developers write
code in Java. A part of the written Java code runs as Java
Servlets in a server. Another is translated into JavaScript code
and HTML, and executed in a browser.

In the design of CapaEdit and CapaGate, we try to keep
the Web resource design unchanged. Specifically, we do not
add buttons and frames to a base Web resource, and we use

style sheets the same as those in the base Web resource. Most
functions of CapaEdit are available through added context
menus and pop-up windows.

Since CapaEdit and CapaGate are Ajax applications, there is
a limit to using JavaScript in the base protected Web resources.
If the JavaScript code of CapaEdit and CapaGate conflict
with that of the base protected Web resource, they do not
work. For example, Ajax programs of Google including Gmail
and Google Docs do not work in CapaEdit and CapaGate.
Since CapaEdit adds items to context menus, these items
can interfere with the base ones. In addition, the current
implementation prohibits the use of frames.

CapaEdit and CapaGate support the JavaScript code that
replaces a part of a HTML document or a tree structure in
Document Object Model (DOM). For example, CapaEdit is
compatible with the JavaScript code that changes the style
sheet to show a login window.

CapaEdit runs on Web sites including ebay.com, face-
book.com, and twitter.com.

V. EXPERIMENTS

If the performance of an access control mechanism is not
good, no one will use it. To show the practicality of CapaEdit
and CapaGate, we performed experiments.

Since both CapaEdit and CapaGate are Ajax applications,
they perform well while they run without communication to
backend servers. Therefore, in our experiments, we focus on
the cases when these applications perform communications to
backend servers.

A. Experimental setup

We measured the performance of CapaEdit and CapaGate
by using the environment shown in Figure 7 and Table I .
This environment consists of the local site and the remote
site. The local site has two machines: the client PC and the
server host. The client PC runs the Web browser Firefox along
with the Web testing tool Watir. The server host runs the Web
application server GlassFish. We use www.ebay.com as the
common remote Web site that provides unmodified protected
Web resources.

CapaEdit and CapaGate do not enforce accesses to ex-
ternal resources such as style sheets, images, analytics, or

TABLE I
HARDWARE SPECIFICATIONS AND SOFTWARE VERSIONS OF THE

EXPERIMENTAL ENVIRONMENT.

Item Specification or version
Client PC Apple MacBook Pro 17inch with CPU Intel

Core 2 Duo 2.93 GHz, Memory 8GB, Solid
State Drive (SSD), OS MacOSX 10.5.8

Firefox 3.6.8
Watir firewatir 1.6.5 and jssh 0.9
HttpFox 0.8.7
Server Host A PC with Intel Core i7, Memory 6GB, OS

Linux Kernel 2.6.27 SMP, 64bit, Ubuntu 8.10
GlassFish 3.0 running in NetBeans 6.9 and Java 1.6.0
LAN Gigabit Ethernet
Remote Base Site www.ebay.com

Client PC

Test
Script

in Ruby

Firefox

Watir HttpFox GlassFish

CapaEdit

CapaGate

Gigabit Ethernet Internet

Base Web Site

HTTP

CapaEdit

CapaGate

S

S

Web App Server

R R
LAN

HTTP

Fig. 7. The network configuration of the experimental environment.

JavaScript code. This is an intentional behavior for per-
formance. For example, www.ebay.com has external servers
{include,p,q,rtm}.ebaystatic.com to hold such resources. If an
HTML resource includes such external resources, they were
transferred from original servers to the browser without being
checked by CapaGate. Such external resources are static and
publicly accessible. In CapaEdit and CapaGate, transfer times
of external resources are the same as those in the direct access
case.

Using the Web testing tool Watir, we can repeat the same
Web browser operations. For example, we can repeat opera-
tions: click the hyperlink, fill the text box with a parameter,
click the submit button, etc.

CapaEdit and CapaGate consist of the JavaScript code and
Java code. The JavaScript code runs in the Web browser, and
the Java code runs on the Web application server. Since the
JavaScript code and the Java code communicate with each
other in an Ajax style, it is not simple to measure the execution
times. Although the Web testing tool Watir provides a simple
synchronization mechanism, this is not enough to measure
the execution times because of the asynchronous behavior of
the JavaScript code. To overcome this problem, we used the
extension HttpFox of Firefox. With HttpFox, we can record
the communication logs that include the start times, elapsed
times, and URLs. A typical Web resource consists of not
only the main HTML resource but also in-line images, style
sheets, and JavaScript programs. In a sequence of HTTP
requests, we measured browser load times on the basis of
HTTP communication times:

• The start time of loading the main HTML resource.
• The finish time of loading the last non-HTML resource.

We repeated the same experiments more than ten times by
stopping and restarting the Web browser to clear caches
and obtained the minimum browser load times. Using the
minimum times can remove the fluctuation of communication
delays between the local site and the remote base site.

B. CapaEdit

Figure 8 shows the browser load times with and without the
Web application CapaEdit. As a remote base Web resource, we
used an auction item page in www.ebay.com.

In a direct access case, loading of the HTML file, style
sheets, and images was finished in 1.14 seconds. With Ca-
paEdit, the same page was loaded in 1.73 seconds. CapaEdit
added 0.59 seconds in a Gigabit Ethernet environment. This

0.0 ! 0.5 ! 1.0 ! 1.5 ! 2.0 !

CapaEdit!

Direct!

[seconds]!

Browser load time Browser load time (auction item page)!

Fig. 8. The browser load times of a CapaEdit case and a direct access for
an auction item page.

delay is acceptable for daily Web browsing on the Internet.
We must emphasize that the JavaScript part of CapaEdit runs
on the Web browser. This part responds promptly in the
interactive use without communication.

C. CapaGate

Figure 9 shows the browser load times with and without the
Web application CapaGate. We used the same auction page as
in Section V-B with authorization. In CapaGate, we accessed
the page with the exported URL by CapaEdit as described in
Section IV. In the direct access case, we performed normal
operations: viewing the auction item page, clicking the sign-
in link, typing the username and password, and clicking the
sign-in button. After signing-in, the first auction item page was
shown again.

As shown in Figure 9, the browser load times of CapaGate
and direct access cases were almost the same. In CapaGate, the
signing-in process is done by the Java code in the server, and
the browser showed only the single page after authorization
with the capability. On the other hand, in the direct access
case, the browser showed three Web pages with images. The
first and third pages shared many images and style sheets. As
a result, the browser load times of both cases were the same.

Next, we show the execution times of bidding. If the bidding
is not allowed, this is quickly blocked by CapaGate within a
LAN environment, as described in Section IV. Therefore we
measured the bidding time in an allowed case.

Figure 10 shows the browser load times with and without
the Web application CapaGate for an auction bidding page. In
CapaGate, the maximum price was set to $0. In both cases,
we bid $0 on an item, and this caused an error. In a direct

0! 1! 2! 3! 4! 5! 6!

CapaGate!

Direct!

[seconds]!

Browser load time (auction item page)!

unauthorized! sign-in! authorized!

Fig. 9. The browser load times of a CapaGate case and a direct access case
for an auction item page.

0.0 ! 0.5 ! 1.0 ! 1.5 ! 2.0 !

CapaGate!

Direct!

[seconds]!

Browser load time (auction bidding page)!

Fig. 10. The browser load times of a CapaGate case and a direct access case
for an auction bidding page.

access case, loading of the HTML file, style sheets, and images
was finished in 1.20 seconds. With CapaGate, the same page
was loaded in 1.56 seconds. This delay is acceptable when
compared with daily Web browsing on the Internet.

We compared the CapaEdit result in Figure 8 and the
CapaGate result in Figure 10. Although these two graphs show
the same tendency, CapaGate was faster than CapaEdit. This
is because the auction bidding page included a smaller number
of hyperlinks and forms than the auction item page.

VI. RELATED WORK

Capability-based access control was used in early mul-
tiprocessors and distributed operating systems. Hydra [26]
uses capabilities as references for objects, Mach [1] uses
capabilities to control access to communication ports, and
Amoeba [19] enables user processes to pass capabilities us-
ing general interprocess communication. Symbian OS [7],
a recently developed operating system for mobile phones,
uses capabilities to protect resources in a single-user system.
Capability-based access control is used not only in distributed
operating systems but also global database and file systems.
HomeViews [9] uses capabilities to access views of databases
that are in remote PCs, and CapaFS [20] uses capabilities
to access files that are in remote PCs. Our prior reports
have described the implementation of capability-based access
control in egress network access [22], in components of XML
Web services [16], in e-mail spam filters [21], in wireless LAN
access [17], and in networked devices [15]. In this paper, we

describe the implementation of capability-based access control
in regular Web resources.

In some distributed file systems, authorization certificates
are used for passing access rights, and they resemble capabil-
ities [18]. In WebFS, for example, if a user has access rights
for files, the user can create a certificate for another user to
pass on a subset of the access rights. An access right transfer
certificate is usually digitally signed by the public key in the
sender’s certificate. Some systems enable transitive delegation
by chaining certificates. To realize authorization certificates on
the World Wide Web, we have to modify existing servers. Our
implementations of capability-based access control require no
modifications to existing servers.

Several access control models have been proposed in ad-
dition to ACL-based and capability-based models [23]. In
role-based access control (RBAC), a user has multiple roles,
each with its own access rights. In task-based access control
(TBAC), each task step is bound to a task and access right.
When a user starts working on a step in a task, he or she
can use the access right bound to the task step. In a context-
based model, access rights of a user are determined on the
basis of context information, such as access times, places,
and network conditions. In RBAC, TBAC, or a context-based
model, a user cannot pass his or her role, task step, or context
to other users. Furthermore, a user must be authenticated by
the system before the system performs access control. In our
implementation of capability-based access control on the Web,
users can create new rights and pass them to other users.

Several protocols provide single sign-on (SSO) facilities to
the Web [12] [6] . In SSO, if a user is authenticated by the
first Web server, the user can log in to the next federated
Web server without duplicated user authentication. In these
systems, access tokens are passed among Web servers, and
they resemble capabilities. However, they differ in that an
access token belongs to a single person while a capability
belongs to no one. A capability can be passed from one user
to another.

Several APIs and protocols provide authentication services
to external XML Web services components. Flickr API [11],
Google AuthSub [10], and OAuth Protocol [5] allow an exter-
nal Web services component to access protected resources by
using tokens. In these APIs and protocols, when a user tries to
access a protected resource in a base server through an external
server, the external server prompts a user to visit a Web page in
a base server. When a base server authenticates the user with
his or her ID and password, the base server sends a token
to the external server. The external Web services component
accesses the user’s protected resource in the base component
with the token. That base server permits the external server to
access the protected resources on the basis of the token. While
Flickr API, Google API, and OAuth Protocol allow a user to
pass his or her access rights for a protected resource to an
external server, they do not allow users to pass access rights to
other users. In our implementation of capability-based access
control on the Web, a user who does not own a protected
resource can create a new access right and distribute his or

her access rights to other users.
In 2010, Google Docs introduced a new access control

setting: “Anyone with the link” [3]. In this setting, users can
pass access rights for their Web resources in Google Docs
to others with URLs. These URLs act like our capabilities.
However, our implementation of capability-based access con-
trol in the Web has several advantages over Google Docs.
First, our implementation enables users to export protected
Web resources on any Web servers. Second, our implemen-
tation enables restricted capabilities to be created from base
capabilities. Third, our implementation provides better time-
related access control.

With CapaEdit, users can publish a new Web resource
on the basis of existing Web resources. This activity resem-
bles a mashup by end-users [25] [24]. Unlike these end-
user mashups, CapaEdit deals with personal protected Web
resources.

VII. CONCLUSION

In this study, we introduced capability-based access control
to the World Wide Web. This enables users to pass access
rights to other users along with delegating tasks, and makes
collaborations easier than in the current Web, which uses ac-
cess control based on access control lists (ACLs). Furthermore,
restricted capabilities are useful in passing access rights.

In this paper, we described the implementation of capability-
based access control on the Web in two Web applications:
CaStor and CapaEdit plus CapaGate. In CaStor, users can
create a capability from a personal protected Web resource and
distribute it on a server. However, CaStor was not good enough
because it did not support POST method, its expressive power
using regular expressions was weak, and it provided a poor
user interface. CapaEdit and CapaGate solved these problems.
CapaEdit is an authoring tool running as an Ajax (Asyn-
chronous JavaScript and XML) application and provides a bet-
ter user interface. CapaEdit enables a user to write restrictions
about hyperlinks and form parameters interactively. CapaGate
is also an Ajax application and enforces the restrictions set
by CapaEdit. These programs realized capability-based access
control on the World Wide Web without modifying existing
servers and clients. Experimental results show that the Web
applications CapaEdit and CapaGate perform well enough for
interactive use if a browser and these Web applications runs
in a LAN environment.

Since CapaEdit and CapaGate are Ajax applications, they
cannot deal with other Ajax applications. In a future, we
would like to support Ajax applications in CapaEdit and
CapaGate. We also plan to add filtering facilities to CapaEdit
and CapaGate that remove unintendedly released information.

REFERENCES

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,
and M. Young. Mach: A New Kernel Foundation for UNIX Develop-
ment. In Proceedings of the 1986 Summer USENIX Conference, pages
93–113, 1986.

[2] M. Anderson, R.D. Pose, and C.S. Wallace. A Password-Capability
System. The Computer Journal, 29(1):1–8, 1986.

[3] Official Google Enterprise Blog. New Sharing Settings in
Google Docs. http://googleenterprise.blogspot.com/2010/06/new-
sharing-settings-in-google-docs.html, June 2010.

[4] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing
and Protection in a Single-Address-Space Operating System. ACM
Transactions on Computer Systems (TOCS), 12(4):271–307, 1994.

[5] E. Hammer-Lahav (ed.). The OAuth 1.0 Protocol, 2010.
[6] S. Cantor (ed.). Shibboleth Architecture Protocols and Profiles.

http://shibboleth.internet2.edu/, 2005.
[7] L. Edwards and R. Barker. A guide for Symbian OS C++ developers.

Pearson Higher Education, 2004.
[8] The Apache Software Foundation. Apache HTTP Server Version 2.2

Documentation. http://httpd.apache.org/docs/2.2/, 2009.
[9] R. Geambasu, M. Balazinska, S. D. Gribble, and H. M. Levy.

HomeViews: Peer-to-Peer Middleware for Personal Data Sharing Ap-
plications. In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pages 235–246. ACM, 2007.

[10] Google. Authentication and Authorization for Google APIs.
http://code.google.com/apis/accounts/, 2010.

[11] C. Henderson, A. S. Cope, E. Costello, S. Moura-
chov, and S. Butterfield. Flickr Authentication API.
http://www.flickr.com/services/api/auth.spec.html, 2008.

[12] S. Landau and J. Hodges. A Brief Introduction to Liberty. Sun
Microsystems, Inc. TR-2002-113, 2002.

[13] H.M. Levy. Capability-Based Computer Systems. Digital Press, 1984.
[14] M. Mabuchi, S. Ikejima, S. Kawasaki, J. Yoshino, K. Matsui, Y. Shinjo,

A. Sato, D. Kamikawa, and K. Kato. CaStor: A Web Server for
Management and Distribution of Capabilities to Access Web Resources.
IPSJ Journal, the Information Processing Society of Japan, 50(8):1856–
1869, 2009.

[15] M. Mabuchi, Y. Shinjo, K. Hasebe, A. Sato, and K. Kato. CapaCon:
Access Control Mechanism for Inter-Device Communications through
TCP Connections. In Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 706–712, 2010.

[16] M. Mabuchi, Y. Shinjo, A. Sato, and K. Kato. An Access Control Model
for Web-Services That Supports Delegation and Creation of Authority.
In Proceedings of the Seventh International Conference on Networking
(ICN 2008), pages 213–222. IEEE Computer Society, 2008.

[17] M. Mabuchi, S. Takada, T. Ozawa, H. Toyooka, K. Matsui, A. Sato,
Y. Shinjo, and K. Kato. Implementation of a Network Control Mecha-
nism that Enables Passing Access Rights among Users. IPSJ Journal,
the Information Processing Society of Japan, 51(3):974–988, 2010.

[18] S. Miltchev, J. M. Smith, V. Prevelakis, A. Keromytis, and S. Ioanni-
dis. Decentralized Access Control in Distributed File Systems. ACM
Computing Surveys, 40(3):1–30, 2008.

[19] S. J. Mullender, G. Van Rossum, A. S. Tananbaum, R. Van Renesse,
and H. Van Staveren. Amoeba: A Distributed Operating System for the
1990s. IEEE Computer, 23(5):44–53, 1990.

[20] J.T. Regan and C.D. Jensen. Capability File Names: Separating Au-
thorisation from User Management in an Internet File System. In
Proceedings of the 10th conference on USENIX Security Symposium-
Volume 10, page 17. USENIX Association, 2001.

[21] Y. Shinjo, K. Matsui, T. Sugimoto, and A. Sato. An Anti-Spam Scheme
Using Capability-Based Access Control. In Proceedings of IEEE 34th
Conference on Local Computer Networks, 5th IEEE LCN Workshop on
Security in Communication Networks (SICK), pages 907–914, 2009.

[22] S. Suzuki, Y. Shinjo, T. Hirotsu, K. Itano, and K. Kato. Capability-Based
Egress Network Access Control for Transferring Access Rights. In Third
International Conference on Information Technology and Applications
(ICITA), pages 488–495. IEEE Computer Society, 2005.

[23] W. Tolone, G.J. Ahn, T. Pai, and S.P. Hong. Access Control in
Collaborative Systems. ACM Computing Surveys, 37(1):41, 2005.

[24] G. Wang, S. Yang, and Y. Han. Mashroom: End-User Mashup Program-
ming Using Nested Tables. In Proceedings of the 18th international
conference on World Wide Web, pages 861–870, 2009.

[25] J. Wong and J. I. Hong. Making Mashups with Marmite: Towards End-
User Programming for the Web. In Proceedings of the ACM SIGCHI
conference on Human factors in computing systems, pages 1435–1444,
2007.

[26] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack. HYDRA: the Kernel of a Multiprocessor Operating System.
Commun. ACM, 17(6):337–345, 1974.

