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Abstract-

Offering personalized services through dynamically formed 

ecosystems is essential to personal well ness management. In this 

paper, we present the design of a cloud-enabled platform to 

facilitate the collection and delivery of evidence for personalization 

in a multi-provider ecosystem environment. In addition, the 

platform also provides essential building blocks of personalization 

services: smarter analytics for active personalization and dynamic 

provisioning. While the former common service takes charge of 

inferring user well ness risks from multiple data sources on the fly 

and making risk-driven recommendations, the latter common 

service determines optimal platform pricing and resource 

allocation given the constraint of acceptable quality of service. 

Index Terms-computer-tailored lifestyle intervention, cloud 

computing, personalization, dynamic pricing, active learning, 

feature selection, sample selection 

I. INTRODUCTION 

W
ELLNESS management is essential for keeping aging 

populations for years to come. Large-scale national 

studies have presented evidence of the importance of lifestyle 

intervention (e.g., dietary intake planning and exercise) on 

chronic disease management and health promotion programs. 

For example, the Finland National Type II Diabetes Prevention 

Programme (FIN-D2D) (Saaristo et aI., 2007) is a 5-yr study 

across 1.5 million subjects, which tests whether lifestyle 

intervention can prevent Type II diabetes from onset or at least 

delay its progress in high-risk subjects. Shortly before the 

FIN-D2D study, the Center of Disease Control (CDC) has also 

initiated a Diabetes Prevention Program (DPP, 2002) to trace 

the effect of lifestyle intervention on high-risk subjects who are 

obese or have pre-diabetes. Both studies yielded positive 

evidences of lifestyle intervention in high-risk subjects. 

However, there exists a danger in believing that lifestyle 

intervention can be structured in a way that is universally 
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applicable. The planning of lifestyle interventions in each step 

of the wellness management process can vary among 

individuals. While existing providers are expanding service 

choices to cover various user needs, there is still a long tail of 

demand unsatisfied. The success of the previous intervention 

studies often relies on some sort of user-tailoring. For one, the 

delivery of lifestyle intervention in DPP relies on intensive 

individual counseling and motivational support on diet, exercise, 

and behavior modification. Moreover, there also exist dangers 

in applying universal standards on self-motivation, screening 

high-risk subjects, and early diagnosis and treatment. Take the 

Medical Research Council study (Alderman et aI., 1993) as an 

example. Researchers compared the effectiveness of using a 

universal threshold (e.g., systolic pressures at 135 rum Hg) and a 

personalized threshold on determining the need of 

antihypertensive therapies. The results suggested that the 

personalized threshold would prevent 53 events per 1,000 

persons treated, yielding a treated-to-benefited ratio 44 times 

better than the universal threshold. 

Despite all the positive evidence on the need of attending to 

individual differences, personalizing services has remained as a 

concept. The large number of variations in risk thresholds and 

lifestyle interventions pose challenges to existing providers. 

Recently computer-tailored programs have been introduced. 

Initial evidence has been on the positive side, especially for 

weight reduction (Lee & Lustria, 2009; Kroeze et aI., 

2008). However, previous computer tailoring methods are 

often limited to computer-generated reminders for caregivers or 

tailored education materials. 

Meanwhile, there are more and more information about a 

person's wellness conditions, e.g., monitoring vital signs, are 

available electronically. Consumer reports show a growing 

trend in the market of mobile patient monitoring, which is 

predicted to reach $1.9 billion by 2014 (Juniper Research, 

2010). Previously, these records are left unanalyzed and 

therefore led to ill-informed decision making. In some cases, the 

analytical decision could have foreseen problems and 

introduced appropriate interventions. To put personalized 

intervention services to work, this paper sets out to understand 

the design and enablement requirements of personalized 

services in a multi-provider environment like wellness 

management. 
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II. WELLNESS ECOSYSTEM IN THE CLOUD ENVIRONMENT 

A. Ecosystem design /or personalization services 

Unlike healthcare services which center around large 

organizations, most of the wellness service providers are small­

or mid-size businesses (SMBs) (such as fitness centers, nutrition 

clinics, and physical exam centers). To provide a total solution 

of health promotion - from physical examination to follow-up 

interventions and feedbacks - it is necessary for them to work 

together. Therefore, being able to share service information in a 

standard way is important. 

The creation of personalization services has taken the need of 

sharing and standardization to a new level. Take the following 

scenario as example. A diabetic patient came to the physical 

exam center for her check-up through her family physician's 

referral. She has also been advised to participate in a health 

promotion program (including fitness and dietary suggestions). 

Now, her case manager has to help her create an intervention 

plan that suits her wellness risk profile. First, her wellness risk 

profile is created by scanning through population wellness 

records to identify risk groups that match her wellness status and 

risk factors. Second, her feedback reward is determined by 

comparing her progress with cohorts who started with similar 

wellness status. Finally, follow-up suggestions for monitoring 

and interventions are created according to the outcomes of the 

identified cohorts. 

To support such a scenario, we need to engage many 

distinctive types of participants other than service providers, 

e.g., end users, health promotion enablers and sponsors, data 

providers, and wellness risk researchers. 

The concept of ecosystem, therefore, comes into the center 

stage. An ecosystem, in this context, is an economic community, 

which produces goods and services of value to customers, who 

are themselves members of the ecosystem (Moore, 1996; WEF, 

2008). Previous examples in government services and global 

integrated enterprise services have demonstrated the 

effectiveness and efficiency of IT-facilitated ecosystems on 

resource allocation. In this study, we then further extend the 

concept of ecosystem into the domain of wellness management. 

B. Ecosystem enablement 0/ personalization services 

The formation and management of ecosystems require 

support from an on-demand service integration platform. To 

achieve this, the common services provided on the platform 

need to satisfy the following criteria: (a) accessible from 

anywhere, at anytime (such that participants in the ecosystem 

can leverage each other's services); (b) standardized interface 

(such that pre-structured service template of one participant can 

be shared and reused by others in their own context); (c) 

scalable and elastic (such that ecosystem participants can 

guarantee in-time services to a large number of users when they 

are in need); (d) rapid prototyping of ecosystem services; and (e) 

ecosystem service provisioning and management. 
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In this paper, we design a wellness cloud, which is a dynamic 

infrastructure pattern that follows service-oriented approaches 

to deliver services of multiple ISVs, service providers, and other 

stakeholders in the domain of wellness management. We follow 

the dynamic business application SaaS (Software-as-a-Service) 

model of software deployment (Forrester Research, 2008), 

where an application is hosted as a service provided to 

customers across the Internet and shared in a multi- tenant 

environment that comes with dynamic orchestration and 

provisioning capabilities. (See Section III for detailed 

descriptions of its building blocks.) 

In addition, personalized service providers need to 

dynamically select and compose user-specific service plans 

from the pre-structured service templates offered by multiple 

providers. The development of such personalized services 

typically involves two major tasks: (1) tailoring user-specific 

lifestyle interventions from pre-structured applications or 

services according to the user's need and (2) ensuring smooth 

service delivery in dynamically formed ecosystems. 

This has incurred requirements beyond current cloud 

platform support. Specifically, the platform needs to provide 

common services that are essential to personalization. For Task 

(1), the platform needs an analytics service that is capable of 

learning user needs and adapting services to users and a data 

service to handle pre-population and data exchange between 

services. For Task (2), this platform needs a dynamic 

provisioning common service to determine the optimal resource 

allocation and platform pricing. 

C. Roadmap to the provisioning o/ personalization services 

Having identified the requirements of ecosystem design and 

enablement, we need to put these into the context of wellness 

management for consideration. The remaining of the paper is 

then organized as following. In Section III, we describe our 

cloud-based platform support for dynamically composing 

wellness services in a multi-provider wellness management 

ecosystem. Then,in Section IV and V, we introduce the two 

common services needed for the development and the 

provisioning of personalized services. Finally, in Section VI, 

we summarize the needed support from wellness cloud and 

explore future directions. 

The end goal is to construct a personalization engine that can 

allow ISVs, service providers or stakeholders, with permission 

from the target users, to plug in the analytical model of personal 

wellness risks and to learn what to recommend to users based on 

the user's wellness risks. Because a personalized wellness 

management ecosystem encompasses many distinctive types of 

participants, it is also important to identify pricing strategies 

that can be used to streamline the process and redistribute 

revenues. 



III. WELLNESS CLOUD: OPEN PLATFORM SUPPORT ON 

GREENOLIVE 

As discussed in Section II, wellness management entails 

some unique requirements on the platform, such as 

standardization, knowledge sharing, dynamicity support, and 

scalability. Existing publicly available cloud platforms, such as 

Amazon Web Service and Force.com, are not designed to meet 

the needs in this domain. In order to tackle these challenges, we 

propose GreenOlive cloud platform (as depicted in Fig. 1), 

which consists of three layers: (i) infrastructure layer, (ii) 

platform layer, and (iii) application layer. 
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Fig 1. GreenOlive Cloud Platform for Wellness Management 

(i) The infrastructure layer is designed to distribute 

computational resources, including processing time, storage 

space, and networking bandwidth, over web services. The 

services are named as infrastructure-as-a-service (laaS). 

(ii) The platform layer offers Platform-as-a-Service (PaaS). 

This layer contains an application runtime environment dubbed 

Jomo, a collection of knowledge and data repositories, and a 

collection of common services that run on top of Jomo and use 

the knowledge/data stored in the repositories. Each of the 

common services provides a set of APls that allow independent 

software vendors (lSVs) to develop new services on their own. 

The common services cover a wide area of functionalities, 

including those that are essential to personalization, e.g., 

wellness analytics services which generate new guidelines or 

new insights of existing guidelines for wellness management; 

ecosystem provisioning services which optimize resource 

allocation and platform pricing. 

Other common services include security and privacy services 

which protects the integrity of user data and privacy, data 

transformation services which transform data/events from 
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different sources to a standard format (like Clinical Document 

Architecture, abbreviated CDA), data store services which 

provide APls for accessing knowledge and data repositories (for 

instance, Personal Wellness Record, abbreviated PWR), event 

processing services which process events in a real-time 

fashion (like Monitor as a Service, abbreviated MaaS), queuing 

& pub/sub services which provides communication channels 

between services, and user services which manage user identity. 

(iii) The application layer adopts the single-app SaaS model 

(Forrester Research, 2008). Applications are developed using 

the open APls of the common services on the platform layer. 

Finally, with support from all the three layers, the platform 

provides ecosystem-as-a-service, which is an application 

composition/mash-up mechanism that can facilitate service 

integration in an ecosystem. 

IV. SMARTER ANAL YTICS FOR ACTIVE PERSONALIZATION 

One of the personalization-essential common services on the 

Platform layer is the wellness analytics service. Over the past 

years, we have seen tremendous interest and urgent need in data 

analytics in various domains. Despite the plethora of 

commercial software in the market, there are still challenges on 

the accessibility, reusability, scalability and efficiency of these 

well developed statistical algorithms. 

Many believe that Cloud computing is a compelling new 

paradigm that can lead to IT revolution and reshape the entire 

ICT industry. In Section III, we presented the three layers of 

support on the cloud platform. In this section, we introduce a 

cloud-based implementation of wellness analytic services, i.e., 

the Open Analytics Services (OAS), using the IBM Research 

Compute Cloud (RC2). To fulfill the requirement of 

accessibility and standard interface for knowledge sharing, we 

adopt the RESTful (REpresentational State Transfer) HTTP 

protocol to deliver analytical functionalities for personalization. 

In addition, we follow a standard that is commonly accepted by 

the vendor-independent data mining consortium, i.e., the 

Predictive Model Markup Language (PMML 4.0) standard 

(Guazzelli et aI., 2009). The standardization effort has enforced 

compatibility of the learned models, making it possible to 

exchange these models between services or applications. 

A. Grab-and-Build Open Analytics Services 

OAS offers an agile, flexible, and robust framework for 

online data analytics. The goal of this framework is threefold: (1) 

to support the dynamic requirements of online wellness risk 

analytics for both wellness domain experts and developers; (2) 

to allow the interoperability of models between different 

applications and platforms; and (3) to enable the publishing and 

sharing of valuable models. 

To support online analytics, the OAS functions serve as a 

common service on the PaaS layer, providing various statistical 

functionalities and data mining algorithms. As we do not expect 

personalized service developers to be domain experts who are 



necessarily highly tech-savvy in programming, we need to 

provide easy access to the analytics tool over web services in a 

cloud environment. The analytics engine in OAS is thus 

wrapped with a RESTful API for easy access. RESTful HTTP 

protocol aim to express every service delivered over the web as 

a set of resources using universal resource identifiers (URI). By 

following the REST architectural principle, HTTP methods can 

be used to create, read, update, and delete the OAS resources. 

Together with JSON (JavaScript Object Notation), which is a 

lightweight data-interchange format, the client application can 

easily interact with OAS to present analytics results, or acquire 

information for further processing (e.g., visualization). 

Once the analysis is done and the analytics model is built, we 

face the issue of how to allow models to be interoperable 

between different analytics applications and platforms. Here we 

adopt the PMML 4.0, which is a XML-based markup language 

and has been broadly supported by data mining community and 

industry, to alleviate the interoperability problems. Once the 

trained predictive models are expressed in PMML and deployed 

on cloud, users can again invoke a RESTful-based web service 

to acquire the learned model and apply it to the applications of 

their interest, with a different set of testing data. This is to say, if 

a company wants to switch from one analytical model to another, 

vendor lock-in or system migration costs would not be an issue. 

The combination of RESTful analytics API and PMML open 

standard provides the opportunity for domain experts to deliver 

wellness risk models as a cost-effective service, i.e., 

Analytics-as-a-Service (AaaS). AaaS allows domain experts or 

data owners to publish and share their research results freely, 

benefiting from an environment in which flexibility and 

interoperability are truly attainable. General users who are not 

domain experts can also join any dynamically formed 

ecosystem and leverage the latest wellness evidence made 

available by ecosystem partners on the cloud. 

B. Smarter analytics for active personalization 

In the last version of Green Olive platform design, we have 

presented several wellness analytics services needed for chronic 

disease management (GreenOlive, 20 lO). In this study, we 

further equip the platform with common services of smarter 

personalization analytics that are essential to personalization, 

i.e., suggesting lifestyle interventions with respect to users' 

need. Specifically, we offer personalization services over the 

OAS framework to complete the two tasks in Section II.B: (1) 

Profiling the target user's wellness risks from personal wellness 

records, and (2) match-making recommendable services and 

adapting services according to the user's wellness profile. 

This involves addressing the following challenges. First, 

because a person's wellness risk is often multi-fold, we need to 

infer the multi-faceted characteristics of wellness risks for 

further mitigation. One possibility is to position the target user 

into various risk groups by scanning through the target wellness 

records and identifying relevant risk factors. However, this 

entails another question. As the wellness records are coming 

from various sources and the diagnosis of some of the wellness 
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risks can be uncertain, it is dangerous to make wellness- related 

decisions based on the records alone. Finally, because new data 

records can be added at anytime, we need to handle the constant 

online update of wellness risk profiles given the new records. 

Multi-faceted wellness profiling 

The first challenge is to filter statistical noises from the vast 

number of irrelevant features and diagnosis results that can 

preempt the signals from true risk factors. With the expansion of 

personal wellness record (PWR) and corresponding feature 

space, it is now imperative to develop an automatic mechanism 

that can identify risk factors, i.e., a portion of features that are 

correlated strongly with patients' wellness status, for future 

monitoring and intervention. 

However, prior data mining research focuses on finding 

common risk factors for common diseases and yields limited 

success due to the statistical noise problem. It is thus essential to 

develop PWR-wide risk stratification services that can scan 

across the selected PWR databases to further narrow in on a 

subset (or subsets) of high-risk subjects and the risk factors 

associated with each subset. Each grouping of a subset of cases 

(including the information of relevant risk factors) then 

composes one risk group. 

In fact, many feature/sample evaluation, subset section, and 

ensemble modeling algorithms have been developed in the field 

of machine learning and pattern recognition. For example, 

feature filter (Das, 2001) and wrapper (Kohavi and John, 1996) 

for feature selection; bagging (Sutton et aI., 2005) and boosting 

(O'Sullivan et aI., 2000) for ensemble modeling. Our design 

does not assume any specific algorithm to be used. Instead, we 

present a summarization framework (as shown on the left side of 

Fig.2) to identify the most representative risk groups, which 

minimize the overall distance between the predicted and 

diagnosed risk level of the target wellness risk. 

At run-time, when a target user's wellness record is available 

for wellness risk profiling, the PWR-wide risk stratification 

service will be activated to compare the user's records against 

the various risk groups', so that the user's wellness risks can be 

profiled, and follow-up interventions can be recommended by 

making changes on the most important risk factors. 

Subset 

Selection 

lasso Random 
RlgreUion For .. ' 

Logistic Decision 
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Fig 2. Active Characterization of Personal Wellness Status 
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Health risk assessment quality control 

Having identified user-relevant risk groups from population 
PWR, the second challenge is to provide data quality assurance 
by quantifying the sources of deviation of risk prediction. To 
achieve this, we have designed a data quality monitor to 
determine what risk groups are safe to be included for the 
prediction task. Similar to Hsueh et at. (2009), we characterize 
data- and case-based prediction errors in three ways: risk group 
noise, case ambiguity, and noise-adjusted case ambiguity. 
1) Risk group noise quantifies data-based errors, e.g., the 

average deviation of the prediction results obtained with 

one target risk group. Ref. Formula (1), wherein gi refers 

to the ith risk group, R�k(gJ and Risk (g_iJ are the 

predicted and actual diagnosed risk level (between -1 and 
1), and N is the number of cases whose risk levels this risk 
group has predicted on, 

A 

N 
. ( ) 

-f I Risk(gJ - Risk(gJ I 
olse gi = L., 

n=1 N 

(1) 

2) Case ambiguity quantifies case-based errors, e.g., the 
average deviation of all predictions yielded on one single 
case, based on all relevant risk groups. Ref. Formula (2)-(5), 
wherein B+ (Case) is the proportion of positive predictions 

and B_ (Case;) is that of negative predictions. 

Risk(case) 
Amb(case) = . J H(B(Casej» . RISkmax 

H(B(Casej» = -(B+(Case)log( B+(Case)) 

(2) 

+B_(Case)log(B_(Case))) (3) 

B+(Case) = Risk+(Case)/ Risk(Case) (4) 

B_CCase) = Risk_CCase)/ Risk(Case) (5) 

3) Noise-adjusted case ambiguity is the case ambiguity score 
reweighted with respect to the noise level of each risk group 
involved in the determination of case ambiguity. Ref. 
Formula (6)-(7) wherein w(casej) is the aggregated nose 
level of all the risk group predictions made on the target 
case, and 9(ij) is an indicator function of whether the 
prediction of a case agrees with its diagnosis. 

With the aid of the data quality monitor, it is now possible to 
design a pro-active learner to request for more cases or more 
features to be included, based on the data monitoring results. 
Fig. 2 has demonstrated the combination of the risk 
stratification and the data monitoring mechanism. 
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Online monitoring of risk profiles 

The recommender monitors the quality of the risk predictions 
using the three different quality metrics, i.e., risk group noise, 
case ambiguity, noise-adjusted adjustment. Previous 
experiments in crowd sourcing data quality have shown that 
selecting annotations based on a simple linear combination of 
data quality metrics will yield better learner performance than 
considering each of the metrics alone. 

When moving to an online setting, there are new 
requirements being introduced into the scene. The system needs 
to collect annotations to establish a pool of cases with ground 
truth labels. Then, with each risk group found, the quality 
metrics in the risk model pool will be updated once. Based on 
the new information, the system needs to determine which case 
to be selected "next" for analysis and which risk model to 
annotate the chosen example on the fly. 

The above requirements call for an online learning algorithm, 
which can dynamically update the weightings of the different 
quality metrics while maintaining the best learner performance 
on the target risk prediction task. We take a sliding window 
approach. At time t and t + 1, we will extract summary statistics 
and save them into information vectorsX(lj andX(t+ 1). Given a 
state pair <y(t-l),y(t», the scoring function is then defined as 
follows, i.e., Formula (8). 

g«Y,_I'Y, » =A,Qnois/X"X'+I)+�Qalffb(X"X'+I) (8) 

+ �QalffbaiX"X'+I)' 

where the weights of the matrix, A =< AI ,A2,A3 >E iRn' needs to 

be learned by the system. The task can then be cast as fmding the 
state Y(t+ 1) that optimizes the scoring function g. 

V. PLATFORM SERVICE PRICING 

Another personalization-essential common service on the 

Platform layer is the dynamic provisioning service. 

"Personalization" allows users to dynamically customize their 

wellness services (monthly or weekly, depending on 

granularity). On the one hand, personalization has created a 

dynamic resource allocation issue, since SaaS providers' 

demands for platform resources are constantly changing. On the 

other hand, as the wellness service users come and go and the 

industry is still in the inception phase, the SaaS providers are 

expecting increasing but dynamic usage of the services. 

Therefore, among the pricing schemes, Pay-as-you-go 
(Sandholm, 2002) has become the main one for the open 

platform services, for that it resonates with the core concept of 

Cloud computing such as utility computing (Sandholm, 2002). 
Unfortunately, while multiple SaaS providers are competing 

for the platform resources, it is often difficult to guarantee 

Quality of Service (QoS). Imagine the following scenario. 

Multiple SaaS providers issue virtual machine (VM) resource 

requests at the same time, and the platform service provider is 

unable to fulfill the requests due to resource shortage. This 

failure may cause serious QoS problem if the wellness service is 

time critical, for instance, an alerting service of hypertensive 



conditions. 

It is sometimes assumed that Cloud has unlimited resources, 

but in reality, the resources are bounded. It is important for SaaS 

providers to allocate enough resources to ensure QoS at SaaS 

level. Although it is also possible to delegate the responsibility 

of determining the right quantity of bounded resources to the 

platform service provider, the complexity of QoS at platform 

level is often unmanageable due to the wide varieties of parties 

and services on the platform. 

In this study, we assume the responsibilities of ensuring QoS 

at SaaS level are delegated to SaaS providers and allow them to 

"lock" platform resources. Therefore, some pricing mechanisms 

must be included in the platform to support resource locking. 

Before performing detailed analysis of the pricing 

mechanisms, we should revisit the defmition of the levels of 

platform services in Fig and Fig. 3. The IaaS provider provides 

VMs to PaaS and SaaS, while PaaS provider provides common 

wellness services, such as PWR, CDA accelerator, AaaS and 

monitoring service, to SaaS providers. Each end user basically 

faces one or more SaaS providers. However, some SaaS 

providers, like provider B in Fig. 3, are capable of delivering 

services via integrating many other SaaS providers. 

e 

PaaS Service Provider 

laaS Service Provider 

Fig 3. Layers of Service Provision 

In sum, the problems to be solved in the context of platform 

service pricing include: 

1. What is the appropriate pricing structure and mechanism 

for the proposed open platform? 

2. In some critical cases, PaaS/IaaS computing resources 

need to be locked by some SaaS providers to ensure QoS 

at SaaS level. What is the pricing mechanism for the 

resources locked? 

Wellness 
services 

Medical 
services 

Fixed pricing, centralized scheduling 
for resource optimization, paid by 

consumers 

Fixed pricing, centralized scheduling 
for resource optimization, all or 
partially paid by government or 

insurance companies 

OoS based on shared 
resources 

Dynamic pricing, highest bids gel 
dedicated resources, paid by 

consumers 

Fixed pricing, guaranteed resources 
for 'decent minimum' healthcare, 
all or partially paid by government 

or insurance companies 

OoS depending on 
dedicated resources 

Fig 4. Pricing Structure and Resource Allocation 
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To justify the pricing mechanism used in the open platform, 

we must first analyze the context in which pricing is needed. As 

shown in Fig. 4, payers of the services could be an important 

factor to distinguish wellness services from medical services. 

Wellness services are mainly paid by consumers, while medical 

services are often partially paid by government or insurance 

companies to guarantee tax payers a "decent yet minimum" 

healthcare measure. Given that wellness services are mostly 

self-paid, people willing to pay high prices to wellness services 

thus are expected to get high QoS. Under this assumption, 

pricing mechanisms like auctions or automated negotiations 

could then provide incentive-compatible optimization of pricing 

and resource allocation (locking). Its consequence is dynamic 

pricing, meaning that the price changes according to the level of 

demand. 

Table 1 SLA Contents 

SLA contents (example): 

1. All events are processed by MaaS within N seconds, 

compliance rate R%. 

2. All analytic services will respond to requests within 

N seconds, compliance rate R%. 

3. PWR data warehouse services will respond to 

requests within N seconds, compliance rate R%. 

4. Each CDA conversion transaction must be 

completed in N seconds 

5. Each CDA transfer transaction must be completed in 

N seconds 

6. All allocated VMs are equipped with X gigabytes 

memory and Y gigabytes disk space. 

7. Platform must guarantee successful VM allocation 

requests for a total number of Z VMs. 

8. Inbound bandwidth p mega bytes 

9. Outbound bandwidth q mega bytes 

Given the number of user SUbscriptions to a certain SaaS, the 

SaaS provider could bid for dedicated PaaS/IaaS resources 

monthly, allowing the PaaS/IaaS provider to commit to an SLA 

(Service Level Agreement) that ensures preferred QoS at SaaS 

level. However, SLA negotiations are multi-issue negotiations 

(Klein et aI., 2003; Lin and Chou, 2004), and when multiple 

SaaS providers are negotiating for SLAs monthly, it becomes a 

complex multi-party multi-issue negotiation. Since auctions 

often refer to single-issue (price) negotiations, a multi-issue 

negotiation mechanism is considered much more difficult than 

auctions. The following SLA contents (Table 1) has shown that 

multiple variables (issues) need to be negotiated and settled 

before an agreement can be reached. Some of the issues shown 

in Table 1 are from PaaS level, and some of the others from IaaS 

level. In the following paragraphs, we will first analyze the 

pricing mechanisms at both IaaS level and PaaS level and then 

discuss the required technology components supporting 

multi-party multi-issue negotiations. 



Table 2 shows available pricing mechanisms at IaaS level. 

Since the fundamental "products" provided by IaaS are virtual 

machines, the related QoS issues in Table 1 are issue 6 and 7. If 

dedicated VM resources are required to ensure QoS at the SaaS 

level, a dynamic pricing mechanism will be invoked to 

determine QoS at the IaaS level. The negotiation-based resource 

optimization approach allows SaaS providers to "lock in" a 

number of Z base VMs. In other words, once the QoS is agreed, 

the platform must grant VM allocation requests up to a number 

of Z. The platform does not guarantee successful VM requests 

beyond this level. The dynamic allocation of VMs is supported 

by the Jomo technology described in Cramton et al. (2006). 

Table 2 IaaS Pricing Mechanisms 

� 
Pricing policy Resource allocation Quality assurance 

Description policy 

Pricin 

mechanis s 

Fixed pricing Fixed price per VM First come first served May fail to acquire 
new VMs 

Fixed pricing, Fixed price per VM Resource requests May fail to acquire 
centralized resource are queued, high new VMs 
optimization priority VM requests 

(loading high priority 

services) served first 

Dynamic pricing, Dynamic price for Resource requests Guaranteed allocation 
negotiation-based base VMs, fixed (for base VMs) are for base VMs, may 
resource optimization price for extra VMs queued, resource fail to acquire extra 

allocations are VMs 
optimized by auctions 
or negotiations 

The platform will support two service levels in the future. 

Standard service level: At this service level, all computing 

resources are shared. The pricing mechanism is pay-as-you-go. 

However, the platform does not guarantee successful resource 

allocation. In other words, SaaS providers will experience 

delays or denial of services during peak periods. 

VIP service level: Dedicated computing resources will be 

allocated to SaaS providers at this service level. Therefore, the 

system would enforce stricter time and space constraints to 

ensure QoS at SaaS level. However, the SaaS providers must 

compete and negotiate for the dedicated computing resources. 

Prices of the resources are dynamically determined: During 

off-peak periods, services are priced at the standard service 

level; the prices can be raised during peak periods. 

At the PaaS level, several common services are provided to 

SaaS providers. Each service can be priced differently with 

respect to its characteristics. As shown in 

Table 3, Personal Wellness Record (PWR) service is used to 

store personal wellness records, and the price will be 

determined by the usage of disk space. In addition, data services 

like the conversion and transmission of CDA and AaaS are 

charged per use. Finally, MaaS is charged per message. 

However, there can be extra payments for the same service if 

SaaS providers request for dedicated computing resources. 

Dynamic pricing mechanisms are used to ensure optimized 

pricing and resource allocation. 
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Table 3 Pricing at PaaS level 
Standard SLA with share resources VIP SLA with dedicated resources 

PWR Pay per storage unit, fixed price Pay per storage unit, fixed price 

Extra payment for dedicated computing power, 
dynamic pricing 

CDA Pay per use, fixed price Pay per use, fixed price 

Extra payment for dedicated computing power, 
dynamic pricing 

AaaS Pay per use, fixed price Pay per use, fixed price 

Extra payment for dedicated computing power, 
dynamic priCing 

MaaS Pay per message, fixed price Pay per message, fixed price 

Extra payment for dedicated computing power, 
dynamic pricing 

One advanced topic in resource-allocation negotiation is 

combinatorial negotiation and auction (Sandholm, 2002; 

Cramton et aI., 2006). For the SaaS providers who are in need of 

computing resources, they may be willing to pay the premium 

rate. Take the scenario in Fig. 5 for example, the marketing 

campaign will only be executed if four week-day computing 

"shifts" in August are secured. Losing any week-day allocation 

will risk its QoS and therefore intolerant. If an SaaS provider is 

willing to pay more than the rest of SaaS providers to secure the 

resources, the platform should be able to allow the negotiations. 
Computing 'shifts' in a week, light color box for 

August MaaS computing resource shifts 
day shifts, dark color box for night shifts 

,------"------

�--------------- ----------------� 
� 

SaaS provider A is considering to provide free trials of 

heallh monitoring service to all falhers (or age 30-40 

male users) in August to celebrate Father's Day. 

This is a marketing campaign, A will only execute the 

plan if the above resource allocations are sucoessful. 

Fig 5. Combinatorial Negotiations/Auctions 

Table 4 summarizes five levels of resource optimization, 

SLA and pricing. It also shows the corresponding technologies 

to support the pricing mechanism. The ultimate goal of the 

platform is to optimize and dynamic pricing. Developing 

technology components for multi-party multi-issue negotiation 

is especially challenging since it requires the knowledge of 

game theory (Harsanyi and Selten, 1988). The field of research 

is known as mechanism design (Naor et aI., 1999; Feigenbaum 

and Shenker, 2002; Parkes et aI., 2008). Since all SaaS 

providers will devise their best strategies to compete for 

resources, how the platform elicits private information and 

aggregates various preferences by designing a "strategy-proof' 

negotiation mechanism is then the next main research question. 

One fmal issue is how to guarantee end-to-end QoS, 

especially when multiple parties are involved in providing an 

integrated service to end users. Since it is assumed that SaaS 

providers must ensure QoS at SaaS level, the responsibilities of 

ensuring end-to-end QoS by confirming propagated QoS 

requirements of collaborating partners are delegated to SaaS 

integrators (for instance, provider B in Fig. 3). 



T bl 4 P 
. .  

a e ncmg an dR esource o . .  Jptlll1lzatlOn L eve s 
Level description Technology required 

(pricing. SLA. and resource optimization) 

Level 5 Pay-as-you-go, dynamic price for base VMs, Jomo, multi-party multi-

supporting VIP SLA, fine-grained combinatorial issue negotiation given 

resource optimization fine-grained issues and 

issue-interdependency 

Level 4 Pay-as-you-go, dynamic price for base VMs, Jomo, multi-party multi-

supporting VIP SLA, combinatorial resource issue negotiation given 

optimization issue-interdependency 

Level 3 Pay-as-you-go, dynamic price for base VMs, Jomo, multi-party multi-

supporting VIP SLA, negotiation-based resource issue negotiation 

optimization 

Level 2 Pay-as-you-go, fixed price, standard SLA, centralized Jomo, queuing and 

resource optimization scheduling 

Level 1 Pay-as-you-go, fixed price, standard SLA, first come Jomo 

first served 

VI. CONCLUSION & FUTURE WORK 

Wellness management ecosystems encompass distinctive 

types of participants, e.g., end users, health promotion program 

operators and sponsors, wellness service providers, data 

providers and researchers. To support the formation and 

management of personalized services, in this study, we design 

wellness cloud to operate across three distinctive layers, 

including infrastructure, platform, and application. It provides 

virtualization and elastic computing capabilities on the IaaS 

layer, common services on the PaaS layer, and an ecosystem 

application mash-up mechanism on the SaaS layer. 

One important decision to be made is to what extent the 

platform should be opened - i.e., structured to encourage 

participation (Eisenmann et ai., 2008). Currently, the 

GreenOlive platform is designed to open to developers/domain 

experts. It is expected to spur adoption by harnessing network 

effects, reducing concerns of lock-in, and encouraging 

differentiated services that meet the long tail of demand. 

In particular, we focus on two open common services: 

smarter analytics for active personalization and dynamic 

provisioning. While the former service is taking charge of 

inferring user wellness risks and making risk-driven 

recommendations, the latter service determines optimal 

platform pricing and resource allocation given the constraint of 

acceptable quality of service. What is the best way to integrate 

these common services remains as the main challenge to this 

work. The ultimate goal is to construct a personalization engine 

that can allow any provider to plug in their analytics model and 

data, which are likely to be provided by their preferred 

ecosystem partners, and develop their personalized services that 

are easily accessible, scalable, and elastic in no time. 
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