
BMI CyberWorkstation: a Cyberinfrastructure

for Collaborative Experimental Research on

Brain-Machine Interfaces

Prapaporn Rattanatamrong, Student Member, IEEE, Andrea Matsunaga,

and Jose A. B. Fortes, Fellow, IEEE

Abstract-This paper describes the design and implementation

of an improved version (2.0) of a computational cyber­

infrastructure for neuroscience research, called

CyberWorkstation (CW). CW can provide to neurophysiology

laboratories the following: (1) data storage for large volumes of

neural signals, experimental parameters and computational

results, (2) integration of necessary experimental equipment,

powerful computational resources and robust software

mechanisms that enable users to conduct online and offline BMI

experiments, (3) a Web-based interface that permits users to

conveniently setup, monitor and review their experiments and

collaborate with others in analyzing and developing their

research findings. The capabilities of the CW in enabling

collaborative BMI research are demonstrated using forward

models based on neural networks that predict positions of an

agent in 2D movement control.

Index Terms-Brain-Machine Interfaces, Collaborative

Computing, Cyberinfrastructure, CyberWorkstation.

I. INTRODUCTION

T
HE objective of Brain-Machine Interface (BMI) research

is to understand the mapping from a brain's neural activity

to the subject's intention to control an external device. BMIs

are a key technology for assisting people who have lost their

neurological capabilities (e.g., paraplegics) to regain their

abilities by utilizing their thoughts. In addition, BMIs have the

potential to enable many kinds of cognitive control

applications, e.g., virtual worlds, video games, active car

safety systems, and mental text entry systems [1], [2].

Experimental BMI research is also essential for the

Manuscript received August 20, 2010. This work is supported in part by
the National Science Foundation under Grant No. CNS-0540304, CNS-
0821622 and the Defense Advanced Research Projects Agency (DARPA)
Defense Sciences Office under the auspices of Dr. Geoffrey Ling through the
Space and Naval Warfare Systems Center, Pacific Contract No. N66001-
1 0-C-2008. The authors also acknowledge the support of the BellSouth
Foundation. The views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and should not be
interpreted as representing the official views or policies, either expressed or
implied, of the Defense Advanced Research Projects Agency, the Department
of Defense, the NSF or the BellSouth Foundation.

Distribution Statement "A"
P. Rattanatamrong, A. Matsunaga and J.A. B. Fortes are with the Electrical

and Computer Engineering Department, University of Florida, Gainesville,
FL, 32611 USA (email: {rattanat, ammatsun, fortes}@ufl.edu)

understanding of how the brain recovers from injury and

repairs itself to enable people with severe head injuries to

regain their lost neurological abilities.

An infrastructure that provides sufficient computational

capacity to facilitate real-time modeling of interactions

between multiple brain subsystems, learning, and behaviors

must meet several requirements, including timing constraints,

highly concurrent execution of system components and

operation through simple and intuitive user interfaces.

Our prototyped computational infrastructure for supporting

experimental research on BMIs, called CyberWorkstation

(CW) 1.0 is described in [3], [4], and [5]. It proves the concept

of BMI control schemes, such as Recursive Least Square

(RLS) and Reinforcement Learning-based BMI (RLBMI),

being implemented and tested in online and offline closed-loop

experiments on a campus network setting. One of the CW 1.0

goals was to enable faster computation (and experimentation)

than possible in typical neurophysiology labs [4].

Feedback from users of CW 1.0 indicated that major

limitations of CW 1.0 are its lack of support for BMI models

implemented in languages other than C++ and the tight

coupling between client and server sides of CW. In this paper,

the design and implementation of CW 2.0 to address these

needs are presented. CW 2.0 enables users to rapidly move

from concept to real-time experimentation by providing

support for BMI models implemented in MA TLAB, the most

commonly used language by the computational BMI research

community. Throughout the rest of this paper, the term "CW"

refers to CW 2.0, unless stated otherwise.

Case Study: Research towards the creation of realistic

computational models of the sensorimotor system and

implementation of in silica/biological co-adaptive symbiotic

systems is complex, and involves a multidisciplinary

collaboration of scientists and engineers from educational

institutions across the country. A collaborative research

platform is much needed to enable efficient synchronous and

asynchronous collaboration among researchers. CW is being

designed and implemented to allow participants to share

resources and [mdings, conveniently develop research ideas

into sensible computational models, mutually conduct real­

time closed-loop BMI experiments combining geographically

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.42

In Vivo .• '
Data Acquisition l

\. ..
......... "

..
pr����;�:c ���. _ ...

...........
.

L

(a)Onlinem�
In

D
���o {...........

........................
• ••.•••.

•

Acquisition ����

• ' . .
......

prc���;�:c � ��.

-+ (b) offline mode

Neurophysiology Laboratory Computational Resource Provider Computational Resource Provider

Fig. I. High-level view of a closed-loop BMl experiment.

distributed resources, store collected neural signals and

experimental results in an easy-to-retrieve manner, and

perform post-experiment analysis.

The remainder of this paper is organized as follows. In

Section II, background on BMI experimentation and related

work on experimental research systems are provided. Section

III explains the challenges and requirements in providing an

efficient cyberinfrastructure for collaborative BMI research.

Section IV describes the design and implementation of CWo

Section V demonstrates capabilities of CW 2.0 when running

an ensemble of forward models. Finally, conclusions are

provided in Section V.

II. BACKGROUND AND RELATED WORK

A. Closed-Loop BM] Experimentation
In a typical closed-loop BMI (Fig. 1) experiment, there are

three main functional phases: data acquisition, data processing

and prosthetic control.

In the data acquisition phase, in-vivo brain signals are

sensed from a live subject, and converted from analog signals

to digital signals. The signals are then processed by an online

digital signal processing (DSP) system that detects spikes, and

sorted by an algorithm that uses waveform shapes to

distinguish neural activities of one or more neurons from

background electrical noise. The complexity of real-time spike

sorting can vary quite drastically depending on the types of

neural data and research purposes [6]. The fusion of

multimodal data may also be necessary if there are multiple

sources of neurophysio logical data.

The data processing phase turns the sorted spike sequence

into the appropriate motor-control commands using a neural

decoder that recognizes meaningful patterns of neural data.

When studying complex neurological tasks, such as arm and

hand movements in 3-dimensional space, an ensemble of

concurrent trajectory decoding models may be used instead of

a single complex model [7], [8]. Such an approach enables

real-time neural decoding by requiring only the computation of

a subset of the simple models in the ensemble.

Next, the results of neural decoding (i.e., control

commands) are sent to control the prosthetic device according

to the subject's intended actions. Signals that capture the

behavior of the prosthetic device (e.g., its trajectory and end

position) and, in some cases, resulting environment changes

(e.g., displacement of an object) are provided as feedback to

the live subject and the ensemble of neural decoders. The

feedback information enables the subject to decide on future

actions and the brain models to adapt, completing a cycle of

the online closed-loop BMI experiment.

Overall, the time taken by each BMI cycle includes the time

taken by the above-described three tasks plus the time needed

for the communication among tasks. The communication phase

of the closed-loop BMI refers to the time required for such

data exchanges - between the end of data acquisition phase

and beginning of neural data processing, between the end of

data processing phase and the beginning of the prosthetic

device control phase - to take place (the transfer of

information between the prosthetic control and the subject

occurs in parallel with the prosthetic control phase). Based on

observed acceptable action-to-perception time lags in humans

and other mammals, the time spent from the data collection to

the subject's feedback must be within 100 ms [4].

Experimentation can take place in two modes: online and

offline. An online experiment (Fig. la) has high priority - the

computation provider must meet all user-specified deadlines to

avoid unacceptable delays with a live subject. In addition,

users can evaluate the progress of models in real-time during

the online experiments. An offline experiment (Fig. 1 b) has

low priority due to the absence of hard deadlines, and it is

typically intended to try new signal processing techniques on

existing data.

B. Development of Neural Prosthetic Systems
There exist various commercial and free solutions providing

generic frameworks, systems and software toolkits for the

development of Brain Computer Interfaces (BCls), of which

BMls are particular cases. These solutions utilize modularity

and abstraction to enable the flexible development of each key

component in neural prosthetic systems and the sharing of

neural decoding algorithms among researchers. Examples of

MA TLAB-based solutions include BioSig [9], Virtual

Integration Environment (VIE) framework [10], gTec's

g.BClsys [11], and BCILAB [12]. C++-based frameworks that

also support execution of MA TLAB code include BCI2000

[13], Bio-Feedback Software Development Kit (BF++) [14],

BCI++ [15], and OpenVibe [16].

CW offers users a generic framework for the development

of BMI ensembles, and a MA TLAB-based environment to

develop and run customized BMI models on remote resources.

Some of the existing comprehensive toolkits that are

compatible with CW framework with the respect to model

development can also be integrated into CW to expedite the

model development even further. In addition, CW goes beyond

previous work by allowing parts of the system to be distributed

across wide area networks and by providing users the

capability to run BMI experiments that uses mixtures of

parallel BM! models in a shared pool of resources.

C. Collaborative Experimental Research Systems

Cyberinfrastructures for collaborative experimental research

have been previously proposed, especially in the field of

biomedical science [17], [18]. The emphasis of these systems

is mainly on secure data sharing and data-intensive

experiments that integrate applications and database queries.

The Biomedical Informatics Research Network (BIRN) [19]

promotes large-scale collaborations in brain imaging studies of

human neurological disease and associated animal models by

providing data sharing, query and analysis tools. The cancer

Biomedical Informatics Grid (caBIG) [20] provides access to

information infrastructure to share data and analysis algorithm

among collaborators in order to build new approaches to

detect, diagnose, treat and prevent cancer in patients. The

Integrative Biology (IB) [21] project offers a grid

infrastructure specifically designed to support collaborative

research for heart and cancer modeling.

While our goal is partially similar to the goal of these

systems in terms of using cyberinfrastructure to foster

collaborative research, to the best of our knowledge, CW is the

first cyberinfrastructure specifically designed for BMI

research, handling an additional requirement that was not

addressed in other collaborative systems - the ability to

support online experiments involving closed-loop operation

with live subjects and prosthetic devices.

III. CYBERINFRASTRUCTURE FOR COLLABORATIVE

EXPERIMENTAL RESEARCH ON BMIs

In general, the term "cyberinfrastructure" denotes "an

integrated engineering infrastructure with powerful computer

resources; well-preserved collections of scientific data; online

experimental instruments; convenient software toolkits for

modeling and interactive visualization; and support for

collaborative work by physically distributed team members

using all of these capabilities" [22]. The goal of this work is to

build a cyberinfrastructure that leverages and integrates

existing resources, services and applications to meet the

unique requirements of BMI research. Challenges in building a

cyberinfrastructure for collaborative experimental research on

BMIs are summarized in the following subsections.

A. Research Data and Model Repository

A variety of BMI models and ensembles have been

proposed by distinct research groups. When these groups

collaborate, it becomes essential for participants to share not

only the models (code) and the ensembles (code combining

models), but also the configuration of such experiments (e.g.,

initial values of model parameter, formats of input data or

neuron activity data, expected output, metadata about acquired

data, and variables that should be monitored).

To facilitate the sharing of data, foster code reuse, and allow

easy reproducibility of experiments, the cyberinfrastructure

needs to provide a systematic way for users to publish their

models, ensembles and data for use by other researchers. The

research data warehouse is responsible for tracking the flow of

information among users, possibly offering versioning control

features.

B. Customizable BMI Models

Provided that models are reused by different experiments

and ensembles, the cyberinfrastructure needs to be generic,

supporting the creation of new experiments and ensembles

without manual reconfiguration of the underlying

infrastructure. Furthermore, interfaces for easy extension and

redefinition of models need to be provided.

C. Real-Time Communication of BMI components

In a typical neurophysiological lab setting, the time taken by

communication among components of closed-loop BMI

experiments (as shown in Section ILA) is negligible since all

components are collocated. In a more generic setting, the

locations of the data acquisition, data processing and

prosthetic control can be distinct and geographically

distributed, potentially introducing significant network

communication delays, which can violate the real-time

requirements of experiments.

In addition to satisfying the real-time requirements of the

closed-loop experiments, sequential ordering of data delivery

needs to be guaranteed and data loss must be minimized. Most

neural decoding algorithms involve feature extraction and

translation that require analysis of time-series data; loss of data

samples or out-of-order data samples incurred in

communication from the data acquisition component to the

data processing component can cause undesired effects on the

neural decoder. Similarly, commands from the data processing

component to the prosthetic control component can be lost, or

be delivered out-of-order, which could potentially result in

misleading feedback to live subjects or undesired movements

of prosthetic devices.

D. Flexible Experiment Composition and Control

The cyberinfrastructure must provide convenient ways for

users to compose their BMI experiments using their models

and available models from others. Workflow representation

can be used to describe and share experiments description

among BMI researchers. At the same time, workflow

representation can provide detailed specifications for the

underlying infrastructure to manage data movement and model

execution.

E. Integrated Analysis Platform

When experimenting with new BMI modeling approaches,

usually not much is known about the nature of the collected

brain-activity signals, and therefore, also not much is known

about how to choose model parameters. The

cyberinfrastructure should provide parameter visualization in

real-time to help experimenters in tuning their parameters and

validating the experiments' neurophysiological plausibility.

F. Parallel Processing Capability

There is strong evidence that different brain areas are

involved in the computation of motor control commands [23].

Several BMI publications [24]-[26] emphasize the advantage

in using ensembles of decoder models in providing superior

performance in brain decoding over single-model BMIs.

Since the concurrent execution of many BMI models can

require large amounts of computing power and storage

capacity, proper allocation of underlying resources and run­

time management to ensure timely processing of models are

also considered essential aspects of the cyberinfrastructure.

G. Collaborative Communication Capabilities

Communication is one of the most important features for

any collaborative research environment. Users need to

communicate with each other and discuss their ideas to reach a

consensus or come up with a solution to an existing problem.

In such environment, communication can be divided into

synchronous and asynchronous communication, referring to

any real-time communication taking place between two parties

(e.g., audio/video conferencing, instant messaging) and those

with no timing requirement (e.g., calendars, emails, and

discussion lists), respectively.

The reproducibility of BMI experiments and analysis are

desirable features for collaborative research. Reproducibility

allows researchers to reuse BMI techniques, and analysis

methods validate each other's hypothesis, provide

scientifically similar results for establishing known truths and

developing incremental research from the established results.

The cyberinfrastructure should provide a unified environment

to collect and track all information exchanged among

researchers in a variety of locations and forms.

H. Simple and Powerful Graphical User Interfaces (GUIs)

The cyberinfrastructure's GUI must be designed to hide

complexity of its underlying mechanisms and present to users

easy-to-use interfaces for setting up, conducting, monitoring

and reviewing BMI experiments with minimal intervention

from CW system administrator. The system should minimize

or at least mitigate serious user errors and misunderstandings

by providing reasonable default values, tooltips, warnings and

proper assistance in usage, and by making common tasks in

BMI experimentation simple enough for typical users.

IV. PROPOSED DESIGN AND IMPLEMENTATION

CW was designed to support BMI experiments with

resources physically dispersed and connected through the

Internet. The motivation for such architecture comes from the

strong desire of research laboratories owning different types of

expensive resources (e.g., live subjects, computers, and robotic

arm) to collaborate and rapidly advance research. In particular,

CW considers the collaboration case between

Neurophysiology laboratories and computational resource

providers. While Neurophysiology laboratories have live

subjects (e.g., monkeys and rats), instrumental resources (e.g.,

electrode implants, sensors, and DSP devices) and prosthetic

control devices, computational resource providers have a farm

of computing resources (machines, storage, and network)

capable of running applications much faster than in

Neurophysiology laboratories.

In this context, CW clients run on Neurophysiology

laboratories and are responsible for data acquisition and

prosthetic control. Through the network, the brain-activity and

sensory data collected by a CW client are transferred to the

CW server, which is responsible for processing the data and

returning the result in a timely fashion. To run on a collection

of resources, a series of middleware components need to be

designed and integrated (Fig. 2). The CW is divided into a

user interface layer, a service layer, and a physical resource

layer. The user interface layer is composed of port lets made

available through a web portal that allow users to share data,

models and ensembles, manage and monitor experiments,

visualize results, and communicate with other researchers. The

resource layer is composed of computational hardware

(processors, network, and storage). The service layer contains

modules that allow the use of the computational facility in a

controlled manner, namely:

- Experiment Engine: launches and manages the execution

ofBMI models during online and offline experiments.

- Model/Ensemble Registry: facilitates the addition of newly

developed models and ensembles into CWo

- User Manager: maintains information about users and

controls access for authenticated and authorized users.

- Monitor: provides real-time statistics and information

about jobs and resources.

- Resource Manager and Scheduler: maintains information

about the resources and assigns work to resources, efficiently

utilizing the underlying computing resources.

- CW Network Library: enables reliable data communication

between CW clients and the CW experiment server.

- Data Manager: organizes safe and easy-to-retrieve data

storage of models, ensembles, and experiments, including

experiment results for post-processing.

- Machine virtualization: all components of CW are

deployed in virtual machines to facilitate replication and

migration of the services.

- Shared File system: all virtual machines have access to a

single file system to facilitate data access from various

services.

In the following subsections, the design and implementation

of the main aspects of the architecture are presented.

A. Modular Model Development

CW middleware components are designed to be reused by

different types of BMI experiments without the overhead of

rebuilding the software infrastructure for every BMI research

experiment. The key is to allow flexible and efficient

reconfiguration of the CW so that different models can be

easily "plugged in" for new BMI ensembles and experiments.

CW offers a "plug-and-play" experiment engine and enables

the generalization of models by using a BMI-model template.

The BMI model template, defmed in MATLAB, allows

users to implement different BMI models, which may require

different inputs and outputs, in a standard manner. The

User Interfaces

M odel/Ensem ble

Editor

Collaboration

Tools

Middle\ivare

Visualization &
AnalysisTools

Job & Resource

Monitor

Model/Ensem ble

Registry
Experiment Engine Monitor

(WNetwork

Library

User

Manager

Resource

Manager

Authentication & Authorization

Shared File System Machine Virtualization

VI

(lJ
u
�

:J
o
VI

(lJ

Network

c:: Disk Storage Computing Servers

Fig. 2. Conceptual architecture of the server-side BMI CyberWorkstation. CW portal and services, hosted by computational resources providers, offer a

collection of user interfaces and middleware modules that allow the parallel execution of MAT LAB-based BMI ensembles for online and offline experiments on

a set of shared computational resources. CW users develop BMI models, define ensembles, control experiments, analyze data, and collaborate with other

researchers through the CW web portal.

template provides hooks for the user to implement

initialization, algorithm and clean up routines. The template

also promotes the specification of model-specific parameters

to be separated from the model code, in parameter files, to

facilitate the comparison of BMI model performance under

different parameter settings. Similar to CW 1.0, these models

can be easily combined as an ensemble in CW by defining the

ensemble according to a generic abstraction. In addition, CW

2.0 provides a web interface for users to defme the ensemble

and does not require the server engine to be manually rebuilt

every time a new model is created.

CW allows developers to share not only BMI models and

ensembles, but also subroutines and toolboxes that can be

reused across several experiments. For example, users could

reuse previously developed signal processing algorithms and

toolboxes. Details about the experiment engine can be found in

[5].

B. CW Network Libra y (CNL)

To support communication between CW clients and server,

data formats were defmed and a software library called CW

Network Library was developed. The goal of these data

formats is to decouple the implementation of network

communication APIs from the BMI models allowing faster

integration of new models into the system. The CNL,

developed as a MA TLAB class, provides mechanisms for

transferring data over networks through wrapper functions of

the published TCP/UDP/IP toolbox [27]. In addition, the

library handles necessary data marshalling and demarshalling

from one format to another. An example provided later in this

section gives an overview of the communication performed in

CWo More details about this library can be found in [28].

In the client program and in the model processing code

residing in CW server, the models' input and output are

represented in the Internal Representation (IR) formats. A

Mashalling/Demarshalling Procedure (MDP) carried out by

CNL is responsible for transforming the input and output

structures of Brain-Machine Interfaces (BMI) models in any

specific IR format to an External Data Representation (EDR)

suitable for transmission at the sender end and reversing this

transformation for reconstructing data in the IR formats

required by the receiving end (e.g., models and instruments).

Each MDP is equipped with a MarshallingiDemarshalling

Procedure Format (MDPF) to indicate how the MDP should

perform data marshalling or packet demarshalling. The CW

can automatically create basic input MDPF (iMDPF) and

output MDPF (oMDPF) for users. On the other hand, the user

can specify custom MDPFs which allow the MDP to achieve

more efficient data communication by removing unnecessary

repetitive data transfers for parameters that are shared by

multiple BMI models.

Fig. 3 provides an example scenario of how CNL can be

used for communication between a CW client and the CW

server. The Model Collection Specification(MCS) file contains

information about the input and output of models available in

CW; there are five BMI models available in this example (as

shown in the 'Total' line). The users develop a client program

to implement their experiment using two existing models in

CWo This client program calls the constructor method of the

CNL's class to setup necessary network connection to the CW

6

Client (using IR) Network CW (using IR)
(using fDR)�=--___ ...",-_____________ ---,

NC = NetworkConnector(mcsFile. explnfo. conlnfo);

% explnfo = {[1.21 •...• imdpf. omdpf}

� ModellDs
while (-experimentEnded)

[binData. sdatal = dataAcquisition();

%binData = [00 1 1 ... 1 01. sdata = 1

elUnputlr = packData(binData. sdata. adata);

eli_outpullr = NC.runRemoteProcessing(elUnpullr);
�

rObotContrOI(eli_O

'

����
'
; ; ; '):"""""""""'!'

...........
end

N C. elose ClientConne ction()

The CW's MCS File

% Model name

Inputs:2 % # of input fields

uint8.modeFlag % Data type & name

uint32[32],binNums

Outputs:l % # of output fields

double[4],rCmds % Data type & name

Model:2

Name:BM B

6) clUnputlr = {{1. [0011 ... 1 OJ}, (f0 0 11 ... 1 OJ)}

O inputlr = {l, [0011 ... 1 OJ}

eoutputlr = {f0.11.3 00.7J}

G outputlr = {f0 -0.58]. 1}

Inputs: 1

uint32[32],nData

Output:2

double[2],commands

int8.flag

G inputfr = {f0 0 11 ... 1 OJ} o cltoutputfr = {([0.11.3 0 O.l}}, {f0 -0.58]. 1}}

D Code provided by model developer ---+ Input IR •.••••. l> Output IR

Fig. 3. CW Network Library usage for typical BMI closed loop experiment. A client program uses an Internal Representation (IR) to format acquired data and

submits them to be processed remotely (A). The MashallingiDemarshalling Procedure (MOP) packages/unpackages data as needed to be transported in the

network. The CW server splits data for processing by different BMI models (B, C) as specified by ensembles created Model Collection Specification (MCS) file.

Result from models are aggregated (D, E) by the CW server and returned to the client.

server and configure an experiment consisting of the BMI

models 1 and 2.

During the experiment loop, the client program uses the

runRemoteProcessing method of the library to send the input

data (i.e., cli_inputlr) in the users' choice of IR formats. Four

types of IR formats were designed to accommodate CW's

basic to advanced usage, namely full-format, name-value,

value-only and MDPF-based IR. The full IR allows users to

specify the experiment input or output data fields with full

flexibility; there is no restriction in the order of data fields.

With the name-value IR, users have flexibility in specifYing

the data field within each model in any order, but have to

specify each model' s data according to the specified order of

models in the experiment configuration. The value-only IR

provides less flexibility in terms of data field order, but it

offers a concise and straightforward format for users to use.

The last format, MDPF-based IR presents another simple and

condensed format, but requires a strict order of data fields

according to the associated MDPF.

From Fig. 3, the CW client MDP uses an iMDPF to serialize

data values from the experiment's input IR into EDR which is

subsequently packaged as part of the network packet. On the

server side, the MDP transforms the content of received

network packet from the EDR format into the experiment input

IR expected by CW server. The server acts as a splitter which

distributes data in the input IR to each participating model.

Once model processing is fmished, the server aggregates the

output data from all models into the output IR. By using the

specified oMDPF, the experiment's output IR can be packaged

into and extracted from the network packet using procedures

similar to those used for input data. User-specified code can

also be called by the aggregator when fusion of the output data

fields or complex decision algorithm is needed. After the

output packet is received by the client program, MDP restores

data in the packet into the IR format required by the

robotControl function.

The example in Fig. 3 uses basic MDPFs and, duplicated

copies of binData are used in the data transfer from the client

to the server. If the users specifY their own input MDPF, the

second copy can be avoided and results in more efficient data

transfer. Similarly, the basic oMDPF packages every output

data from all participated models back to the client program

(i.e., cli_ outputIr). Users are allowed to leave out some data

fields or combine multiple models' outputs when they specifY

their own oMDPFs and aggregation functions.

C. Parallel Execution ofBMl Experiments
As shown in Fig. 4, users can create and configure an

experiment through the CW portal, which subsequently creates

a proper job submission script and a directory to hold related

files of the newly created experiment. These files include input

files (model data files for offline experiments and static or

dynamic parameter files), output files and an experiment

configuration file.

CW uses virtualization technology to provide the execution

environment of BMI models and supports concurrent

execution of BMI models using the Message Passing Interface

(MPI). Each experiment consists of mUltiple MPI processes,

each of which executes an individual BMI model. These MPI

processes are managed via a cluster management system [29]

in the experiment submission server. The cluster management

7

•• 0

CW Portal
Create an

Experiment #K

(Model#1,3, M)

Experiment Directory (1)

o Virtual machine

... Mounted file system

••••• MPI Communication
.......... Network Communication

� @ � ••• � @ �
Inputs Outputs Exp Config Inputs Outputs Exp Config

Network File System

Fig. 4. Parallel execution ofBMl ensembles. Users initiate the execution of an ensemble ofBMl models in parallel through CW portal, which in turn requests

reservation ofa pool of resources using a resource manager (Torque) and a scheduler (Maui). Once the ensemble starts to run, master and workers

communicate through MP!, model parameters and outputs are stored on a network file system, and online neural data is exchanged using the CW Network

Library (CNL).

system provides queuing and scheduling of job executions on a

cluster of virtual machines. All worker nodes are mounted on a

single Network File System (NFS) holding model codes and

experiment directories.

Both modes of operation (online and offline, see Fig. 1) are

supported in CWo For online experiments, the neural data is

sent from the client to the server using calls to functions in

CNL. The master node implements a splitter, which distributes

required data to each model, and an aggregator, which

combines results from models, as mentioned in Section IV.B.

Since an online experiment has strict timing requirements for

the model computation, a set of computational resources is

reserved in advance to prepare a cluster of virtual machines for

the online computation. For offline experiments, virtual

machines allow the model computation to share resources with

other jobs in an isolated manner. The master node loads the

experiment data from the model data files and buffers it in

memory before the experiment begins. The experiment data is

then distributed in the same manner as in the online. Priorities

of VMs participating in online and offline experiments can be

manually controlled to give preference to online experiments.

D. Authentication and Access Control

Distributed systems require a complex security subsystem to

grant access only to authorized users. Each system component

may use different authentication and authorization mechanisms

making the integration a challenging task. Security

mechanisms also consume resources and processing time,

which is in many cases not affordable when real-time

requirements need to be met. CW 1.0 made the following

assumptions to simplify its security design and

implementation: (1) users are registered in the portal, which

authenticates users using username/password pairs; (2) users

only interact with the portal, and system components

communicate on behalf of users when necessary; (3) resources

and data are shared among all registered users, requiring users

to trust each other, and (4) cost of authentication and data

encryption during online closed-loop experiments is high.

While the listed assumptions allowed for a simple

implementation of CW 1.0, early users experience raised the

need for a more elaborate authentication scheme. For example,

different groups need isolated environments for their

experiments, calling for improvements in CWo

CW places all resources in a private network, making only

certain services available to the public. Most CW services are

provided to users through portlets as part of a web portal. The

portal authenticates users and authorization is defmed on a per

portlet basis. For example, the file manager and editor portlet

enables the sharing of BMI ensembles and models, neural

activity data, experimental setup, and MA TLAB toolboxes

using role-based access control, while the experiment portlet

allows all users to run and manage the execution of BMI

experiments. Trade-offs between security and processing

latency in online experiments are still under investigation.

E. Web Portal

CW provides a user-friendly interface via a portlet-based

portal. Port let technology allows modular development of Web

interfaces and it makes it easy for the user to customize the

portal layout by selecting only the web interfaces that are

pertinent to a particular use case of CW. The Liferay portal

framework [30] was selected amongst the open source portal

frameworks available because of its clean architecture based

on Java 2 Platform Enterprise Edition. Asynchronous

JavaScript and XML (AJAX) technologies are used in CW's

port lets to provide asynchronous and independent content

updates. This technology allows for example to display

balloon-style messages when defming BMI models that

provide tooltip information for new users.

The experiment management port let enables users to

dynamically configure and control online experiments as well

as offline studies. It interacts with other components of CW to

manage the entire closed loop experiment setup. Users can

monitor the status of their BMI jobs and check the availability

of resources through the job and resource monitoring portlet.

The code editor portlet provides a simple web-based

MA TLAB code editor that allows users to quickly implement

their models, possibly starting from a BMI model template, by

automatically formatting code. Model developers may also

include existing MA TLAB routines from the public code

library into their model implementation.

Various electronic communications are offered by CW

portal. For asynchronous communication, each user has a

personal message box for communication with peers.

Additionally, users share a storage space and a forum that

allows the exchange of information and data. Sharing of

experiment results is another CW feature to promote sharing of

findings among researchers. For synchronous communication,

CW provides instant messenger port let for real-time chatting

while working through the portal.

F. Timing in Virtualized Environment

Accurate timekeeping in virtualized environments is known

to be problematic due to virtualization of timing devices and

the need for virtual machine monitors to serve several VMs in

a single physical host [31], especially in fully-virtualized

environments (e.g., VMware products). Due to the time

sensitive nature of online experiments, applications need

accurate time readings. When VMs can access a hardware time

source without device virtualization overheads, it is possible to

get time accuracy comparable to that of physical machines. An

example of such time source is the Time Stamp Counter

(TSC), a 64-bit register incremented every CPU clock cycle.

VMs running tick-counting kernels depend on interrupt-based

timer devices, and applications cannot depend on timing

system calls - instead, they need to be modified to use the

TSC. VMs running tick less kernels use TSC for timekeeping,

and applications can run unmodified. CW uses tickless kernels

8

whenever possible, and run modified applications, reading

from TSC when the execution environment requires tick­

counting kernels.

Current Position
(x ,y)' and

r.---,-. (x',y')'."

Gating

Predicted
next
position
(x',y')t+!

Fig. 5. Example experiment where an ensemble of forward models predicts
next positions of an agent in a 2D agent movement control application.

function outpucIr = processing(PI, inputIr)

% Get input data out from the input IR

[mode, CU[POS, command, tt:ainPos, 3tepSize] = inputlr{l: end};

if (mode == 0)

else

% T:ralning mode

% Sta t:e a new training sample In a batch window

PI. scoreSamp1eTJnd (curPos, command, trainPos, -1);

if (PI.trainTJndSize() == PI.nTrainSamp1es)

end

% tJhen the windoT.t.T is full, train the model's weights

[expercInpuc, desir edOucpuc) = PI. gecTrainD acaTJnd () ;

P I. train (expe rcInpu t, des iredOu tput) ;

PI. c1earSamp1eTJnd();

% ere ate the output IR

outputIr = (trainPos);

% Tesclng mode (tJith online adaptaclon)

if (P I. trainTJndSi ze () = = 1)

% Adapt the weight per sample using delta rule

[expertInput, exper tOutpu t, step) =

PI. getTrainDataTJnd () ;

.nd

end

PI. adapt(step, expe:rclnput, expertOutput, tt:ainPo3);

PI. c1earSamp1eTJnd();

% Calculate predicted agent's next posltlon

expertInput = [curPos command);

nextPos = PI.ca10utput(expertInput);

% Ct:e ate the output IR

oucputIr = (nextPos);

% Save the data S 8lXLple fot: next adaptatlon

PI. sto[eSampleld'nd (CU[POS, command, nextPos, stepSize);

FIg. 6. The forward model functIon used in the example experiment. The
input data sent by client programs is processed by a forward model and

predictions are returned to the client.

V. CW EVALUATION THROUGH AN EXAMPLE EXPERIMENT

This section presents an example of typical experiment in

BMI research where an ensemble of similar neural-network­

based models with different parameters/weights is used for

studying neural decoding in neurophysiological tasks. This

example demonstrates CW's abilities to run and visualize BMI

experiments collaboratively.

A. Example Experiment

Without loss of generality, consider an example in which

users need to run collaboratively an experiment with an

ensemble of lO forward models in an application of 2D agent

movement control. This experiment is based on the concept

from the motor control architecture in [32]. The ensemble is a

mixture-of-expert system [1] where experts implement

·1\0 Tracking of the agent's position

Y.m

·2010

·210

'29f!50 _ 1850 2900 _ _ 3050 3100 3150 _ _
x

_ 1
'"
�
=2
"

�3

•

09

08

07

06

os

03

oz

01

9

Fig. 7. Example experiment data visualization. Users can monitor the agent's next positions predicted by the ensemble and compare with the agent's actual

positions [top left], view grayscale maps of the forward models' neural-network weights between a 3-neuron input layer and a 2-neuron output layer [top

right], and observe a trace of gating responsibilities of all forward models [bottom] while running the experiment.

forward models responsible for predicting the agent's next

position when the system is in different contexts. A gating

component assigns responsibilities to these experts based on

the current context of the system. The system state is defmed

as an (x, y) coordinate of the agent's current position. The

predictions from experts with the top-2 responsibilities are

then weighted combined to generate the ensemble's prediction

of the agent's next position in the 2D space (Fig. 5).

B. Model Development Utility
For enabling the execution of the described experiment in

CW, a user needs to provide an implementation of the forward

model following the BMI model template (introduced in

Section IV.A) and register it in CW's repository. Fig. 6 shows

the implementation of the forward model's processing function

in this format. This processing function takes inputs in the

value-only IR format, processes them to produce the next-state

prediction, and returns its result in the value-only IR format.

The experiment engine calls this function when users run

experiments that include an instance of this model. The CW's

programming interface defmed for the implementation of the

processing function is simple and flexible enough to allow

model developers to implement their own models without

requiring manual intervention of CW administrators.

C. Experimentation in CW

Once the forward model is added to CW's Model

Repository, a user can create a new ensemble consisting of 10

forward models with the same initial network weights.

Different client programs can be developed, each with its own

specific purposes (e.g., solving the next-state prediction

problem under different system behaviors). To develop these

clients, users simply need to make use of the CW Network

Library (in Section IV.B) to communicate input and output

data with the CW experiment engine. As an example, the client

program can train these forward models to behave in different

ways according to the context they were associated with. The

ensemble can also be saved or registered as an ensemble

template, which can later be selected by other researchers in

the group to create a new experiment.

While rurming experiments, users can monitor progression

of their experiments (as shown in Fig. 7) via web browsers

from their workstations. Collaboration tools are also available

in CW for users to discuss experiment results and share ideas

to improve their findings in the experiments.

VI. CONCLUSION

This paper discusses the design and implementation of

CyberWorkstation that serves as an elaborate multidisciplinary

research testbed for acqumng essential understanding in

building highly-dependent BMIs. The procedure in setting up,

conducting and analyzing online BMI experiments was

generalized and a modular architecture was designed to enable

the automation of this procedure by CW's middleware using

virtualization technology and other adaptive management

mechanisms.

The modular design of CW allows users who are not cyber­

infrastructure experts to easily integrate and share new BMI

models. This significantly reduces the research and

development cycle by relieving the time consuming task of

manually integrating new BMI models into the system.

Another unique feature of CW is to allow experiments to

use resources distributed over wide-area networks. It allows

state-of-the-art equipment owned by different institutions (and

fields of study) to be combined into a powerful BMI system.

ACKNOWLEDGMENT

This work is supported by the grants listed on the first page.

In addition, the authors would like to thank the students Diego

Mesa and Pooja Raiturkar for their contributions to the web

portal and to the unit testing, respectively.

REFERENCES

[I] S. G. Mason, R. Bohringer, 1. F. Borisoff, and G. E. Birch, "Realtime
control of a video game with a direct brain-computer interface." Journal
of clinical neurophysiology : official publication of the American
Electroencephalographic Society, vol. 21, no. 6, pp. 404-408, 2004.

[2] B. Blankertz, G. Dornhege, S. Lemm, M. Krauledat, G. Curio, and K. R.
Muller, 'The berlin brain-computer interface: machine learning based
detection of user specific brain states," Journal of Universal Computer
Science, vol. 12,2006.

[3] M. Zhao, P. Rattanatamrong, J. DiGiovanna, B. Mahmoudi, R. J.
Figueiredo, 1. C. Sanchez, 1. C. Principe and J. AB. Fortes, "BM!
CyberWorkstation: enabling dynamic data-driven Brain-Machine
Interface research through cyberinfrastructure", Proc. Of the 30th Annual
International IEEE EMBS Conference, pp. 646-649, August, 2008.

[4] J. DiGiovanna, P. Rattanatamrong, M. Zhao, B. Mahmoudi, R. 1.

Figueiredo, J. C. Sanchez, J. C. Principe and J. AB. Fortes,
"CyberWorkstation architecture for computational neuroscience",
Frontiers in Neuroengineering, 2009.

[5] P. Rattanatamrong, A Matsunaga, P. Raiturkar, D. Mesa, M. Zhao, B.
Mahmoudi, 1. DiGiovanna, 1. C. Principe, R. J. Figueiredo, 1. C.
Sanchez and 1. AB. Fortes, "Model development, testing and
experimentation in CyberWorkstation for Brain-Machine Interface
research", Proc. Of the 32nd Annual International IEEE EMBS
Conference, 20 I O.

[6] M. S. Lewicki, "A review of methods for spike sorting: the detection
and classification of neural action potentials." Network (Bristol,
England), vol. 9, no. 4, November 1998.

[7] B. M. Yu, C. Kemere, G. Santhanam, A Afshar, S. I. Ryu, T. H. Meng,
M. Sahani, and K. V. Shenoy, "Mixture of trajectory models for neural
decoding of goal-directed movements," J Neurophysiol, vol. 97, no. 5,
pp. 3763-3780, May 2007.

[8] D. M. Wolpert and M. Kawato, "Multiple paired forward and inverse
models for motor control", Neural Networks, vol. II, issue 7-8, October
1998.

[9] A Schlagl and C. Brunner, "BioSig: a free and open source software
library for BCI research", IEEE Computer, vol. 41, issue 10, pp. 44-50,
October, 2008.

[10] W. Bishop, R. Armiger, 1. Burck, M. Bridges, M. Hauschild, K.
Englehart, E. Scheme, R. 1. Vogelstein, 1. Beaty and S. Harshbarger, "A
real-time virtual integration environment for the design and

10

development of neural prosthetic systems", Proc. of the 30th Annual
International Conference IEEE EMBS, 2008.

[II] g.BClsys: The g.tec BCI research platform
http://www.gtec.atiproducts/g.BClsvs/bci.htm.

[12] A. Delorme, C. Kothe, A. Vankov, N. Bigdely-Shamlo, R. Oostenveld,
T. O. Zander, S. Makeig, "MATLAB-based tools for BCI research",
Brain-Computer Interfaces, pp. 241-259, 2010.

[13] BCI2000 http://www.bci2000.org/BCI2000/Home.html.
[14] L. Bianchi, F. Babiloni, F. Cincotti, D. Mattia, M. G. Marciani,

"Developing wearable bio-feedback systems: the BF++ framework
approach", Proc. Of the I st International Conference on Neural
Engineering, March, 2003.

[15] L. Maggi, S. Parini, P. Perego, and G. Andreoni, "BCI++: an object­
oriented BCI prototyping framework," in Proceedings of the 4th

International Brain-Computer Intetface Workshop and Training

Course, Graz, Austria, September 2008.
[16] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O.

Bertrand and A Lecuyer, "Openvibe: an open-source software platform
to design, test, and use brain-computer interfaces in real and virtual
environments", Presence Teleoperators & Virtual Environments, vol. 19,
no. I, pp. 35-53,2010.

[17] L. D. Stein, 'Towards a cyberinfrastructure for the biological sciences:
progress, visions and challenges", Nature Reviews Genetics, vol. 9, no.
9, pp. 678-688, September, 2008.

[18] K. H. Buetow, "Cyberinfrastructure: empowering a third way", Science
Magazine in Biomedical Research, vol. 308, pp. 821-824,2005.

[19] 1. S. Grethe, C. Baru, A Gupta, M. James, B. Ludaescher, M. E.
Martone, P. M. Papadopoulos, S. T. Peltier, A Rajasekar, S. Santini, T.

N. Zaslavsky and M. H. Ellisman, "Biomedical informatics research
network: building a national collaborator to hasten the derivation of new
understanding and treatment of disease", Proc. Of Health Grid, 2005.

[20] A C. von Eschenbach and K. Buetow, "Cancer informatics vision:
caBIG", Cancer Inform, vol. 2, pp.22-24, February, 2006.

[21] S. Lloyd, D. Gavaghan, A Simpson, M. Mascord, C. Seneurine, G.
Williams, J. Pitt-Francis, D. Boyd, D. M. Randal, L. Sastry, S. Nagella,
K. Weeks, R. Fowler, D. Hanlon, J. Handley and G. d. Fabritiis,
"Integrative biology - the challenges of developing a collaborative
research environment for heart and cancer modeling", Future Generation
Computer Systems, vol. 23, no. 3, pp. 457-465, 2007.

[22] D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-molina, M.
L. Klein, D. G. Messerschmitt, P. Messina, J. P. Ostriker and M. H.
Wright, "Revolunizing science and engineering through
cyberinfrastructure", Report of the National Science Foundation, Blue
Ribbon Advisory Panel on Cyberinfrastructure, 2003.

[23] O. Hikosaka, K. Nakamura, K. Sakai and H. Nakahara, "Central
mechanisms of motor skill learning", Current Opinion in Neurobiology,
vol. 12, issue 2, April, 2002.

[24] 1. C. Sanchez, 1. M. Carmena, M. A. Lebedev, M. AL. Nicolelis, 1. G.
Harris and J. C. Principe, "Ascertaining the importance of neurons to
develop better Brain-Machine Interfaces", IEEE Transactions on
Biomedical Engineering, vol. 51, no. 6, June, 2004.

[25] N. Hatsopoulos, J. Joshi and J. G. O'Leary, "Decoding continuous and
discrete motor behaviors using motor and premotor cortical ensembles",
Journal of Neurophysiology, vol. 92, pp. 1165-1174,2004.

[26] S. Kim, J. C. Sanchez, D. Erdogmus, Y. N. Rao, 1. Wessberg, J. C.
Principe and M. Nicolelis, "Divide-and-conquer approach for brain
machine interfaces: nonlinear mixture of competitive linear models",
Neural Network, vol. 16, issue 5-6, pp. 865-871, June, 2003.

[27] P. Rydesater, MATLAB Central File Exchange - TCP/UDP/IP Toolbox
2.0.6, Copyright ©1997-2009.

[28] P. Rattanatamrong, A Matsunaga and J. AB. Fortes, "Data formats for
data marshalling and demarshalling in the BMI CyberWorkstation 2.0",
ACIS Laboratory, University of Florida. TR-ACIS-I 0-00 I, 20 10.

[29] Torque Resource Manager. URL:
http://www.c1usterresources.com/pages/products.php.

[30] Liferay portal framework. [Online]. http://www.liferay.com.
[31] VMware, Inc. Timekeeping in VMware Virtual Machines. White paper,

2008. URL: http://www.vmware.com/pdfi.vmware timekeeping.pdf.
[32] D. M. Wolpert and M. Kawato, "Multiple-paired forward and inverse

models for motor control", Neural Networks, II, pp. 1317-1329, 1998.
[33] R. A Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton, "Adaptive

mixture of local experts", Neural Computation, 3, pp.79-87, 1991.

