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Abstract-This paper describes the design and implementation 

of an improved version (2.0) of a computational cyber­

infrastructure for neuroscience research, called 

CyberWorkstation (CW). CW can provide to neurophysiology 

laboratories the following: (1) data storage for large volumes of 

neural signals, experimental parameters and computational 

results, (2) integration of necessary experimental equipment, 

powerful computational resources and robust software 

mechanisms that enable users to conduct online and offline BMI 

experiments, (3) a Web-based interface that permits users to 

conveniently setup, monitor and review their experiments and 

collaborate with others in analyzing and developing their 

research findings. The capabilities of the CW in enabling 

collaborative BMI research are demonstrated using forward 

models based on neural networks that predict positions of an 

agent in 2D movement control. 

Index Terms-Brain-Machine Interfaces, Collaborative 

Computing, Cyberinfrastructure, CyberWorkstation. 

I. INTRODUCTION 

T
HE objective of Brain-Machine Interface (BMI) research 

is to understand the mapping from a brain's neural activity 

to the subject's intention to control an external device. BMIs 

are a key technology for assisting people who have lost their 

neurological capabilities (e.g., paraplegics) to regain their 

abilities by utilizing their thoughts. In addition, BMIs have the 

potential to enable many kinds of cognitive control 

applications, e.g., virtual worlds, video games, active car 

safety systems, and mental text entry systems [1], [2]. 

Experimental BMI research is also essential for the 
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understanding of how the brain recovers from injury and 

repairs itself to enable people with severe head injuries to 

regain their lost neurological abilities. 

An infrastructure that provides sufficient computational 

capacity to facilitate real-time modeling of interactions 

between multiple brain subsystems, learning, and behaviors 

must meet several requirements, including timing constraints, 

highly concurrent execution of system components and 

operation through simple and intuitive user interfaces. 

Our prototyped computational infrastructure for supporting 

experimental research on BMIs, called CyberWorkstation 

(CW) 1.0 is described in [3], [4], and [5]. It proves the concept 

of BMI control schemes, such as Recursive Least Square 

(RLS) and Reinforcement Learning-based BMI (RLBMI), 

being implemented and tested in online and offline closed-loop 

experiments on a campus network setting. One of the CW 1.0 

goals was to enable faster computation (and experimentation) 

than possible in typical neurophysiology labs [4]. 

Feedback from users of CW 1.0 indicated that major 

limitations of CW 1.0 are its lack of support for BMI models 

implemented in languages other than C++ and the tight 

coupling between client and server sides of CW. In this paper, 

the design and implementation of CW 2.0 to address these 

needs are presented. CW 2.0 enables users to rapidly move 

from concept to real-time experimentation by providing 

support for BMI models implemented in MA TLAB, the most 

commonly used language by the computational BMI research 

community. Throughout the rest of this paper, the term "CW" 

refers to CW 2.0, unless stated otherwise. 

Case Study: Research towards the creation of realistic 

computational models of the sensorimotor system and 

implementation of in silica/biological co-adaptive symbiotic 

systems is complex, and involves a multidisciplinary 

collaboration of scientists and engineers from educational 

institutions across the country. A collaborative research 

platform is much needed to enable efficient synchronous and 

asynchronous collaboration among researchers. CW is being 

designed and implemented to allow participants to share 

resources and [mdings, conveniently develop research ideas 

into sensible computational models, mutually conduct real­

time closed-loop BMI experiments combining geographically 
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Fig. I. High-level view of a closed-loop BMl experiment. 

distributed resources, store collected neural signals and 

experimental results in an easy-to-retrieve manner, and 

perform post-experiment analysis. 

The remainder of this paper is organized as follows. In 

Section II, background on BMI experimentation and related 

work on experimental research systems are provided. Section 

III explains the challenges and requirements in providing an 

efficient cyberinfrastructure for collaborative BMI research. 

Section IV describes the design and implementation of CWo 

Section V demonstrates capabilities of CW 2.0 when running 

an ensemble of forward models. Finally, conclusions are 

provided in Section V. 

II. BACKGROUND AND RELATED WORK 

A. Closed-Loop BM] Experimentation 
In a typical closed-loop BMI (Fig. 1) experiment, there are 

three main functional phases: data acquisition, data processing 

and prosthetic control. 

In the data acquisition phase, in-vivo brain signals are 

sensed from a live subject, and converted from analog signals 

to digital signals. The signals are then processed by an online 

digital signal processing (DSP) system that detects spikes, and 

sorted by an algorithm that uses waveform shapes to 

distinguish neural activities of one or more neurons from 

background electrical noise. The complexity of real-time spike 

sorting can vary quite drastically depending on the types of 

neural data and research purposes [6]. The fusion of 

multimodal data may also be necessary if there are multiple 

sources of neurophysio logical data. 

The data processing phase turns the sorted spike sequence 

into the appropriate motor-control commands using a neural 

decoder that recognizes meaningful patterns of neural data. 

When studying complex neurological tasks, such as arm and 

hand movements in 3-dimensional space, an ensemble of 

concurrent trajectory decoding models may be used instead of 

a single complex model [7], [8]. Such an approach enables 

real-time neural decoding by requiring only the computation of 

a subset of the simple models in the ensemble. 

Next, the results of neural decoding (i.e., control 

commands) are sent to control the prosthetic device according 

to the subject's intended actions. Signals that capture the 

behavior of the prosthetic device (e.g., its trajectory and end 

position) and, in some cases, resulting environment changes 

(e.g., displacement of an object) are provided as feedback to 

the live subject and the ensemble of neural decoders. The 

feedback information enables the subject to decide on future 

actions and the brain models to adapt, completing a cycle of 

the online closed-loop BMI experiment. 

Overall, the time taken by each BMI cycle includes the time 

taken by the above-described three tasks plus the time needed 

for the communication among tasks. The communication phase 

of the closed-loop BMI refers to the time required for such 

data exchanges - between the end of data acquisition phase 

and beginning of neural data processing, between the end of 

data processing phase and the beginning of the prosthetic 

device control phase - to take place (the transfer of 

information between the prosthetic control and the subject 

occurs in parallel with the prosthetic control phase). Based on 

observed acceptable action-to-perception time lags in humans 

and other mammals, the time spent from the data collection to 

the subject's feedback must be within 100 ms [4]. 

Experimentation can take place in two modes: online and 

offline. An online experiment (Fig. la) has high priority - the 

computation provider must meet all user-specified deadlines to 

avoid unacceptable delays with a live subject. In addition, 

users can evaluate the progress of models in real-time during 

the online experiments. An offline experiment (Fig. 1 b) has 

low priority due to the absence of hard deadlines, and it is 

typically intended to try new signal processing techniques on 

existing data. 

B. Development of Neural Prosthetic Systems 
There exist various commercial and free solutions providing 

generic frameworks, systems and software toolkits for the 

development of Brain Computer Interfaces (BCls), of which 

BMls are particular cases. These solutions utilize modularity 

and abstraction to enable the flexible development of each key 

component in neural prosthetic systems and the sharing of 

neural decoding algorithms among researchers. Examples of 

MA TLAB-based solutions include BioSig [9], Virtual 

Integration Environment (VIE) framework [10], gTec's 

g.BClsys [11], and BCILAB [12]. C++-based frameworks that 

also support execution of MA TLAB code include BCI2000 

[13], Bio-Feedback Software Development Kit (BF++) [14], 

BCI++ [15], and OpenVibe [16]. 

CW offers users a generic framework for the development 

of BMI ensembles, and a MA TLAB-based environment to 

develop and run customized BMI models on remote resources. 

Some of the existing comprehensive toolkits that are 

compatible with CW framework with the respect to model 

development can also be integrated into CW to expedite the 

model development even further. In addition, CW goes beyond 

previous work by allowing parts of the system to be distributed 

across wide area networks and by providing users the 

capability to run BMI experiments that uses mixtures of 

parallel BM! models in a shared pool of resources. 



C. Collaborative Experimental Research Systems 

Cyberinfrastructures for collaborative experimental research 

have been previously proposed, especially in the field of 

biomedical science [17], [18]. The emphasis of these systems 

is mainly on secure data sharing and data-intensive 

experiments that integrate applications and database queries. 

The Biomedical Informatics Research Network (BIRN) [19] 

promotes large-scale collaborations in brain imaging studies of 

human neurological disease and associated animal models by 

providing data sharing, query and analysis tools. The cancer 

Biomedical Informatics Grid (caBIG) [20] provides access to 

information infrastructure to share data and analysis algorithm 

among collaborators in order to build new approaches to 

detect, diagnose, treat and prevent cancer in patients. The 

Integrative Biology (IB) [21] project offers a grid 

infrastructure specifically designed to support collaborative 

research for heart and cancer modeling. 

While our goal is partially similar to the goal of these 

systems in terms of using cyberinfrastructure to foster 

collaborative research, to the best of our knowledge, CW is the 

first cyberinfrastructure specifically designed for BMI 

research, handling an additional requirement that was not 

addressed in other collaborative systems - the ability to 

support online experiments involving closed-loop operation 

with live subjects and prosthetic devices. 

III. CYBERINFRASTRUCTURE FOR COLLABORATIVE 

EXPERIMENTAL RESEARCH ON BMIs 

In general, the term "cyberinfrastructure" denotes "an 

integrated engineering infrastructure with powerful computer 

resources; well-preserved collections of scientific data; online 

experimental instruments; convenient software toolkits for 

modeling and interactive visualization; and support for 

collaborative work by physically distributed team members 

using all of these capabilities" [22]. The goal of this work is to 

build a cyberinfrastructure that leverages and integrates 

existing resources, services and applications to meet the 

unique requirements of BMI research. Challenges in building a 

cyberinfrastructure for collaborative experimental research on 

BMIs are summarized in the following subsections. 

A. Research Data and Model Repository 

A variety of BMI models and ensembles have been 

proposed by distinct research groups. When these groups 

collaborate, it becomes essential for participants to share not 

only the models (code) and the ensembles (code combining 

models), but also the configuration of such experiments (e.g., 

initial values of model parameter, formats of input data or 

neuron activity data, expected output, metadata about acquired 

data, and variables that should be monitored). 

To facilitate the sharing of data, foster code reuse, and allow 

easy reproducibility of experiments, the cyberinfrastructure 

needs to provide a systematic way for users to publish their 

models, ensembles and data for use by other researchers. The 

research data warehouse is responsible for tracking the flow of 

information among users, possibly offering versioning control 

features. 

B. Customizable BMI Models 

Provided that models are reused by different experiments 

and ensembles, the cyberinfrastructure needs to be generic, 

supporting the creation of new experiments and ensembles 

without manual reconfiguration of the underlying 

infrastructure. Furthermore, interfaces for easy extension and 

redefinition of models need to be provided. 

C. Real-Time Communication of BMI components 

In a typical neurophysiological lab setting, the time taken by 

communication among components of closed-loop BMI 

experiments (as shown in Section ILA) is negligible since all 

components are collocated. In a more generic setting, the 

locations of the data acquisition, data processing and 

prosthetic control can be distinct and geographically 

distributed, potentially introducing significant network 

communication delays, which can violate the real-time 

requirements of experiments. 

In addition to satisfying the real-time requirements of the 

closed-loop experiments, sequential ordering of data delivery 

needs to be guaranteed and data loss must be minimized. Most 

neural decoding algorithms involve feature extraction and 

translation that require analysis of time-series data; loss of data 

samples or out-of-order data samples incurred in 

communication from the data acquisition component to the 

data processing component can cause undesired effects on the 

neural decoder. Similarly, commands from the data processing 

component to the prosthetic control component can be lost, or 

be delivered out-of-order, which could potentially result in 

misleading feedback to live subjects or undesired movements 

of prosthetic devices. 

D. Flexible Experiment Composition and Control 

The cyberinfrastructure must provide convenient ways for 

users to compose their BMI experiments using their models 

and available models from others. Workflow representation 

can be used to describe and share experiments description 

among BMI researchers. At the same time, workflow 

representation can provide detailed specifications for the 

underlying infrastructure to manage data movement and model 

execution. 

E. Integrated Analysis Platform 

When experimenting with new BMI modeling approaches, 

usually not much is known about the nature of the collected 

brain-activity signals, and therefore, also not much is known 

about how to choose model parameters. The 

cyberinfrastructure should provide parameter visualization in 

real-time to help experimenters in tuning their parameters and 

validating the experiments' neurophysiological plausibility. 

F. Parallel Processing Capability 

There is strong evidence that different brain areas are 

involved in the computation of motor control commands [23]. 



Several BMI publications [24]-[26] emphasize the advantage 

in using ensembles of decoder models in providing superior 

performance in brain decoding over single-model BMIs. 

Since the concurrent execution of many BMI models can 

require large amounts of computing power and storage 

capacity, proper allocation of underlying resources and run­

time management to ensure timely processing of models are 

also considered essential aspects of the cyberinfrastructure. 

G. Collaborative Communication Capabilities 

Communication is one of the most important features for 

any collaborative research environment. Users need to 

communicate with each other and discuss their ideas to reach a 

consensus or come up with a solution to an existing problem. 

In such environment, communication can be divided into 

synchronous and asynchronous communication, referring to 

any real-time communication taking place between two parties 

(e.g., audio/video conferencing, instant messaging) and those 

with no timing requirement (e.g., calendars, emails, and 

discussion lists), respectively. 

The reproducibility of BMI experiments and analysis are 

desirable features for collaborative research. Reproducibility 

allows researchers to reuse BMI techniques, and analysis 

methods validate each other's hypothesis, provide 

scientifically similar results for establishing known truths and 

developing incremental research from the established results. 

The cyberinfrastructure should provide a unified environment 

to collect and track all information exchanged among 

researchers in a variety of locations and forms. 

H. Simple and Powerful Graphical User Interfaces (GUIs) 

The cyberinfrastructure's GUI must be designed to hide 

complexity of its underlying mechanisms and present to users 

easy-to-use interfaces for setting up, conducting, monitoring 

and reviewing BMI experiments with minimal intervention 

from CW system administrator. The system should minimize 

or at least mitigate serious user errors and misunderstandings 

by providing reasonable default values, tooltips, warnings and 

proper assistance in usage, and by making common tasks in 

BMI experimentation simple enough for typical users. 

IV. PROPOSED DESIGN AND IMPLEMENTATION 

CW was designed to support BMI experiments with 

resources physically dispersed and connected through the 

Internet. The motivation for such architecture comes from the 

strong desire of research laboratories owning different types of 

expensive resources (e.g., live subjects, computers, and robotic 

arm) to collaborate and rapidly advance research. In particular, 

CW considers the collaboration case between 

Neurophysiology laboratories and computational resource 

providers. While Neurophysiology laboratories have live 

subjects (e.g., monkeys and rats), instrumental resources (e.g., 

electrode implants, sensors, and DSP devices) and prosthetic 

control devices, computational resource providers have a farm 

of computing resources (machines, storage, and network) 

capable of running applications much faster than in 

Neurophysiology laboratories. 

In this context, CW clients run on Neurophysiology 

laboratories and are responsible for data acquisition and 

prosthetic control. Through the network, the brain-activity and 

sensory data collected by a CW client are transferred to the 

CW server, which is responsible for processing the data and 

returning the result in a timely fashion. To run on a collection 

of resources, a series of middleware components need to be 

designed and integrated (Fig. 2). The CW is divided into a 

user interface layer, a service layer, and a physical resource 

layer. The user interface layer is composed of port lets made 

available through a web portal that allow users to share data, 

models and ensembles, manage and monitor experiments, 

visualize results, and communicate with other researchers. The 

resource layer is composed of computational hardware 

(processors, network, and storage). The service layer contains 

modules that allow the use of the computational facility in a 

controlled manner, namely: 

- Experiment Engine: launches and manages the execution 

ofBMI models during online and offline experiments. 

- Model/Ensemble Registry: facilitates the addition of newly 

developed models and ensembles into CWo 

- User Manager: maintains information about users and 

controls access for authenticated and authorized users. 

- Monitor: provides real-time statistics and information 

about jobs and resources. 

- Resource Manager and Scheduler: maintains information 

about the resources and assigns work to resources, efficiently 

utilizing the underlying computing resources. 

- CW Network Library: enables reliable data communication 

between CW clients and the CW experiment server. 

- Data Manager: organizes safe and easy-to-retrieve data 

storage of models, ensembles, and experiments, including 

experiment results for post-processing. 

- Machine virtualization: all components of CW are 

deployed in virtual machines to facilitate replication and 

migration of the services. 

- Shared File system: all virtual machines have access to a 

single file system to facilitate data access from various 

services. 

In the following subsections, the design and implementation 

of the main aspects of the architecture are presented. 

A. Modular Model Development 

CW middleware components are designed to be reused by 

different types of BMI experiments without the overhead of 

rebuilding the software infrastructure for every BMI research 

experiment. The key is to allow flexible and efficient 

reconfiguration of the CW so that different models can be 

easily "plugged in" for new BMI ensembles and experiments. 

CW offers a "plug-and-play" experiment engine and enables 

the generalization of models by using a BMI-model template. 

The BMI model template, defmed in MATLAB, allows 

users to implement different BMI models, which may require 

different inputs and outputs, in a standard manner. The 
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Fig. 2. Conceptual architecture of the server-side BMI CyberWorkstation. CW portal and services, hosted by computational resources providers, offer a 

collection of user interfaces and middleware modules that allow the parallel execution of MAT LAB-based BMI ensembles for online and offline experiments on 

a set of shared computational resources. CW users develop BMI models, define ensembles, control experiments, analyze data, and collaborate with other 

researchers through the CW web portal. 

template provides hooks for the user to implement 

initialization, algorithm and clean up routines. The template 

also promotes the specification of model-specific parameters 

to be separated from the model code, in parameter files, to 

facilitate the comparison of BMI model performance under 

different parameter settings. Similar to CW 1.0, these models 

can be easily combined as an ensemble in CW by defining the 

ensemble according to a generic abstraction. In addition, CW 

2.0 provides a web interface for users to defme the ensemble 

and does not require the server engine to be manually rebuilt 

every time a new model is created. 

CW allows developers to share not only BMI models and 

ensembles, but also subroutines and toolboxes that can be 

reused across several experiments. For example, users could 

reuse previously developed signal processing algorithms and 

toolboxes. Details about the experiment engine can be found in 

[5]. 

B. CW Network Libra y (CNL) 

To support communication between CW clients and server, 

data formats were defmed and a software library called CW 

Network Library was developed. The goal of these data 

formats is to decouple the implementation of network 

communication APIs from the BMI models allowing faster 

integration of new models into the system. The CNL, 

developed as a MA TLAB class, provides mechanisms for 

transferring data over networks through wrapper functions of 

the published TCP/UDP/IP toolbox [27]. In addition, the 

library handles necessary data marshalling and demarshalling 

from one format to another. An example provided later in this 

section gives an overview of the communication performed in 

CWo More details about this library can be found in [28]. 

In the client program and in the model processing code 

residing in CW server, the models' input and output are 

represented in the Internal Representation (IR) formats. A 

Mashalling/Demarshalling Procedure (MDP) carried out by 

CNL is responsible for transforming the input and output 

structures of Brain-Machine Interfaces (BMI) models in any 

specific IR format to an External Data Representation (EDR) 

suitable for transmission at the sender end and reversing this 

transformation for reconstructing data in the IR formats 

required by the receiving end (e.g., models and instruments). 

Each MDP is equipped with a MarshallingiDemarshalling 

Procedure Format (MDPF) to indicate how the MDP should 

perform data marshalling or packet demarshalling. The CW 

can automatically create basic input MDPF (iMDPF) and 

output MDPF (oMDPF) for users. On the other hand, the user 

can specify custom MDPFs which allow the MDP to achieve 

more efficient data communication by removing unnecessary 

repetitive data transfers for parameters that are shared by 

multiple BMI models. 

Fig. 3 provides an example scenario of how CNL can be 

used for communication between a CW client and the CW 

server. The Model Collection Specification(MCS) file contains 

information about the input and output of models available in 

CW; there are five BMI models available in this example (as 

shown in the 'Total' line). The users develop a client program 

to implement their experiment using two existing models in 

CWo This client program calls the constructor method of the 

CNL's class to setup necessary network connection to the CW 
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Fig. 3. CW Network Library usage for typical BMI closed loop experiment. A client program uses an Internal Representation (IR) to format acquired data and 

submits them to be processed remotely (A). The MashallingiDemarshalling Procedure (MOP) packages/unpackages data as needed to be transported in the 

network. The CW server splits data for processing by different BMI models (B, C) as specified by ensembles created Model Collection Specification (MCS) file. 

Result from models are aggregated (D, E) by the CW server and returned to the client. 

server and configure an experiment consisting of the BMI 

models 1 and 2. 

During the experiment loop, the client program uses the 

runRemoteProcessing method of the library to send the input 

data (i.e., cli_inputlr) in the users' choice of IR formats. Four 

types of IR formats were designed to accommodate CW's 

basic to advanced usage, namely full-format, name-value, 

value-only and MDPF-based IR. The full IR allows users to 

specify the experiment input or output data fields with full 

flexibility; there is no restriction in the order of data fields. 

With the name-value IR, users have flexibility in specifYing 

the data field within each model in any order, but have to 

specify each model' s data according to the specified order of 

models in the experiment configuration. The value-only IR 

provides less flexibility in terms of data field order, but it 

offers a concise and straightforward format for users to use. 

The last format, MDPF-based IR presents another simple and 

condensed format, but requires a strict order of data fields 

according to the associated MDPF. 

From Fig. 3, the CW client MDP uses an iMDPF to serialize 

data values from the experiment's input IR into EDR which is 

subsequently packaged as part of the network packet. On the 

server side, the MDP transforms the content of received 

network packet from the EDR format into the experiment input 

IR expected by CW server. The server acts as a splitter which 

distributes data in the input IR to each participating model. 

Once model processing is fmished, the server aggregates the 

output data from all models into the output IR. By using the 

specified oMDPF, the experiment's output IR can be packaged 

into and extracted from the network packet using procedures 

similar to those used for input data. User-specified code can 

also be called by the aggregator when fusion of the output data 

fields or complex decision algorithm is needed. After the 

output packet is received by the client program, MDP restores 

data in the packet into the IR format required by the 

robotControl function. 

The example in Fig. 3 uses basic MDPFs and, duplicated 

copies of binData are used in the data transfer from the client 

to the server. If the users specifY their own input MDPF, the 

second copy can be avoided and results in more efficient data 

transfer. Similarly, the basic oMDPF packages every output 

data from all participated models back to the client program 

(i.e., cli_ outputIr). Users are allowed to leave out some data 

fields or combine multiple models' outputs when they specifY 

their own oMDPFs and aggregation functions. 

C. Parallel Execution ofBMl Experiments 
As shown in Fig. 4, users can create and configure an 

experiment through the CW portal, which subsequently creates 

a proper job submission script and a directory to hold related 

files of the newly created experiment. These files include input 

files (model data files for offline experiments and static or 

dynamic parameter files), output files and an experiment 

configuration file. 

CW uses virtualization technology to provide the execution 

environment of BMI models and supports concurrent 

execution of BMI models using the Message Passing Interface 

(MPI). Each experiment consists of mUltiple MPI processes, 

each of which executes an individual BMI model. These MPI 

processes are managed via a cluster management system [29] 

in the experiment submission server. The cluster management 
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system provides queuing and scheduling of job executions on a 

cluster of virtual machines. All worker nodes are mounted on a 

single Network File System (NFS) holding model codes and 

experiment directories. 

Both modes of operation (online and offline, see Fig. 1) are 

supported in CWo For online experiments, the neural data is 

sent from the client to the server using calls to functions in 

CNL. The master node implements a splitter, which distributes 

required data to each model, and an aggregator, which 

combines results from models, as mentioned in Section IV.B. 

Since an online experiment has strict timing requirements for 

the model computation, a set of computational resources is 

reserved in advance to prepare a cluster of virtual machines for 

the online computation. For offline experiments, virtual 

machines allow the model computation to share resources with 

other jobs in an isolated manner. The master node loads the 

experiment data from the model data files and buffers it in 

memory before the experiment begins. The experiment data is 

then distributed in the same manner as in the online. Priorities 

of VMs participating in online and offline experiments can be 

manually controlled to give preference to online experiments. 

D. Authentication and Access Control 

Distributed systems require a complex security subsystem to 

grant access only to authorized users. Each system component 

may use different authentication and authorization mechanisms 

making the integration a challenging task. Security 

mechanisms also consume resources and processing time, 

which is in many cases not affordable when real-time 

requirements need to be met. CW 1.0 made the following 

assumptions to simplify its security design and 

implementation: (1) users are registered in the portal, which 

authenticates users using username/password pairs; (2) users 

only interact with the portal, and system components 

communicate on behalf of users when necessary; (3) resources 

and data are shared among all registered users, requiring users 

to trust each other, and (4) cost of authentication and data 

encryption during online closed-loop experiments is high. 

While the listed assumptions allowed for a simple 

implementation of CW 1.0, early users experience raised the 

need for a more elaborate authentication scheme. For example, 

different groups need isolated environments for their 

experiments, calling for improvements in CWo 

CW places all resources in a private network, making only 

certain services available to the public. Most CW services are 

provided to users through portlets as part of a web portal. The 

portal authenticates users and authorization is defmed on a per 

portlet basis. For example, the file manager and editor portlet 

enables the sharing of BMI ensembles and models, neural 

activity data, experimental setup, and MA TLAB toolboxes 

using role-based access control, while the experiment portlet 

allows all users to run and manage the execution of BMI 



experiments. Trade-offs between security and processing 

latency in online experiments are still under investigation. 

E. Web Portal 

CW provides a user-friendly interface via a portlet-based 

portal. Port let technology allows modular development of Web 

interfaces and it makes it easy for the user to customize the 

portal layout by selecting only the web interfaces that are 

pertinent to a particular use case of CW. The Liferay portal 

framework [30] was selected amongst the open source portal 

frameworks available because of its clean architecture based 

on Java 2 Platform Enterprise Edition. Asynchronous 

JavaScript and XML (AJAX) technologies are used in CW's 

port lets to provide asynchronous and independent content 

updates. This technology allows for example to display 

balloon-style messages when defming BMI models that 

provide tooltip information for new users. 

The experiment management port let enables users to 

dynamically configure and control online experiments as well 

as offline studies. It interacts with other components of CW to 

manage the entire closed loop experiment setup. Users can 

monitor the status of their BMI jobs and check the availability 

of resources through the job and resource monitoring portlet. 

The code editor portlet provides a simple web-based 

MA TLAB code editor that allows users to quickly implement 

their models, possibly starting from a BMI model template, by 

automatically formatting code. Model developers may also 

include existing MA TLAB routines from the public code 

library into their model implementation. 

Various electronic communications are offered by CW 

portal. For asynchronous communication, each user has a 

personal message box for communication with peers. 

Additionally, users share a storage space and a forum that 

allows the exchange of information and data. Sharing of 

experiment results is another CW feature to promote sharing of 

findings among researchers. For synchronous communication, 

CW provides instant messenger port let for real-time chatting 

while working through the portal. 

F. Timing in Virtualized Environment 

Accurate timekeeping in virtualized environments is known 

to be problematic due to virtualization of timing devices and 

the need for virtual machine monitors to serve several VMs in 

a single physical host [31], especially in fully-virtualized 

environments (e.g., VMware products). Due to the time 

sensitive nature of online experiments, applications need 

accurate time readings. When VMs can access a hardware time 

source without device virtualization overheads, it is possible to 

get time accuracy comparable to that of physical machines. An 

example of such time source is the Time Stamp Counter 

(TSC), a 64-bit register incremented every CPU clock cycle. 

VMs running tick-counting kernels depend on interrupt-based 

timer devices, and applications cannot depend on timing 

system calls - instead, they need to be modified to use the 

TSC. VMs running tick less kernels use TSC for timekeeping, 

and applications can run unmodified. CW uses tickless kernels 
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whenever possible, and run modified applications, reading 

from TSC when the execution environment requires tick­

counting kernels. 

Current Position 
(x ,y)' and 

r.---,-. (x',y')'." 

Gating 

Predicted 
next 
position 
(x',y')t+! 

Fig. 5. Example experiment where an ensemble of forward models predicts 
next positions of an agent in a 2D agent movement control application. 

function outpucIr = processing(PI, inputIr) 

% Get input data out from the input IR 

[mode, CU[POS, command, tt:ainPos, 3tepSize] = inputlr{l: end}; 

if (mode == 0) 

else 

% T:ralning mode 

% Sta t:e a new training sample In a batch window 

PI. scoreSamp1eTJnd (curPos, command, trainPos, -1); 

if (PI.trainTJndSize() == PI.nTrainSamp1es) 

end 

% tJhen the windoT.t.T is full, train the model's weights 

[expercInpuc, desir edOucpuc) = PI. gecTrainD acaTJnd () ; 

P I. train (expe rcInpu t, des iredOu tput) ; 

PI. c1earSamp1eTJnd(); 

% ere ate the output IR 

outputIr = (trainPos); 

% Tesclng mode (tJith online adaptaclon) 

if (P I. trainTJndSi ze () = = 1) 

% Adapt the weight per sample using delta rule 

[expertInput, exper tOutpu t, step) = 

PI. getTrainDataTJnd () ; 

.nd 

end 

PI. adapt(step, expe:rclnput, expertOutput, tt:ainPo3); 

PI. c1earSamp1eTJnd(); 

% Calculate predicted agent's next posltlon 

expertInput = [curPos command); 

nextPos = PI.ca10utput(expertInput); 

% Ct:e ate the output IR 

oucputIr = (nextPos); 

% Save the data S 8lXLple fot: next adaptatlon 

PI. sto[eSampleld'nd (CU[POS, command, nextPos, stepSize); 

FIg. 6. The forward model functIon used in the example experiment. The 
input data sent by client programs is processed by a forward model and 

predictions are returned to the client. 

V. CW EVALUATION THROUGH AN EXAMPLE EXPERIMENT 

This section presents an example of typical experiment in 

BMI research where an ensemble of similar neural-network­

based models with different parameters/weights is used for 

studying neural decoding in neurophysiological tasks. This 

example demonstrates CW's abilities to run and visualize BMI 

experiments collaboratively. 

A. Example Experiment 

Without loss of generality, consider an example in which 

users need to run collaboratively an experiment with an 

ensemble of lO forward models in an application of 2D agent 

movement control. This experiment is based on the concept 

from the motor control architecture in [32]. The ensemble is a 

mixture-of-expert system [1] where experts implement 
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Fig. 7. Example experiment data visualization. Users can monitor the agent's next positions predicted by the ensemble and compare with the agent's actual 

positions [top left], view grayscale maps of the forward models' neural-network weights between a 3-neuron input layer and a 2-neuron output layer [top 

right], and observe a trace of gating responsibilities of all forward models [bottom] while running the experiment. 

forward models responsible for predicting the agent's next 

position when the system is in different contexts. A gating 

component assigns responsibilities to these experts based on 

the current context of the system. The system state is defmed 

as an (x, y) coordinate of the agent's current position. The 

predictions from experts with the top-2 responsibilities are 

then weighted combined to generate the ensemble's prediction 

of the agent's next position in the 2D space (Fig. 5). 

B. Model Development Utility 
For enabling the execution of the described experiment in 

CW, a user needs to provide an implementation of the forward 

model following the BMI model template (introduced in 

Section IV.A) and register it in CW's repository. Fig. 6 shows 

the implementation of the forward model's processing function 

in this format. This processing function takes inputs in the 

value-only IR format, processes them to produce the next-state 

prediction, and returns its result in the value-only IR format. 

The experiment engine calls this function when users run 

experiments that include an instance of this model. The CW's 

programming interface defmed for the implementation of the 

processing function is simple and flexible enough to allow 

model developers to implement their own models without 

requiring manual intervention of CW administrators. 

C. Experimentation in CW 

Once the forward model is added to CW's Model 

Repository, a user can create a new ensemble consisting of 10 

forward models with the same initial network weights. 

Different client programs can be developed, each with its own 

specific purposes (e.g., solving the next-state prediction 

problem under different system behaviors). To develop these 

clients, users simply need to make use of the CW Network 

Library (in Section IV.B) to communicate input and output 

data with the CW experiment engine. As an example, the client 

program can train these forward models to behave in different 

ways according to the context they were associated with. The 

ensemble can also be saved or registered as an ensemble 

template, which can later be selected by other researchers in 

the group to create a new experiment. 

While rurming experiments, users can monitor progression 

of their experiments (as shown in Fig. 7) via web browsers 

from their workstations. Collaboration tools are also available 

in CW for users to discuss experiment results and share ideas 

to improve their findings in the experiments. 

VI. CONCLUSION 

This paper discusses the design and implementation of 

CyberWorkstation that serves as an elaborate multidisciplinary 



research testbed for acqumng essential understanding in 

building highly-dependent BMIs. The procedure in setting up, 

conducting and analyzing online BMI experiments was 

generalized and a modular architecture was designed to enable 

the automation of this procedure by CW's middleware using 

virtualization technology and other adaptive management 

mechanisms. 

The modular design of CW allows users who are not cyber­

infrastructure experts to easily integrate and share new BMI 

models. This significantly reduces the research and 

development cycle by relieving the time consuming task of 

manually integrating new BMI models into the system. 

Another unique feature of CW is to allow experiments to 

use resources distributed over wide-area networks. It allows 

state-of-the-art equipment owned by different institutions (and 

fields of study) to be combined into a powerful BMI system. 
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