
A Selective Encryption Approach to Fine-Grained 

Access Control for P2P File Sharing 

Aditi Gupta 
Department of 

Computer Science 

Purdue University 

aditi @purdue.edu 

Salmin Sultana 
Department of Electrical 

and Computer Engineering 

Purdue University 

ssultana@purdue.edu 

Abstract-As the use of peer-to-peer (P2P) services for dis
tributed file sharing has grown, the need for fine-grained access 
control (FGAC) has emerged. Existing access control frameworks 
use an all-or-nothing approach that is inadequate for sensitive 
content that may be shared by multiple users. In this paper, 
we propose a FGAC mechanism based on selective encryption 
techniques. Using this approach, the owner of a file specifies 
access control policies over various byte ranges in the file. The 
separate byte ranges are then encrypted and signed with different 
keys. Users of the file only receive the encryption keys for the 
ranges they are authorized to read and signing keys for the 
ranges they are authorized to write. We also propose an optional 
enhancement of the scheme where a file owner can hide location 
of the file. Our approach includes a key distribution scheme 
based on a public key infrastructure (PKI) and access control 
vectors. We also discuss how policy changes and file modifications 
are handled in our scheme. We have integrated our FGAC 
mechanism with the Chord structured P2P network. In this 
paper, we discuss relevant issues concerning the implementation 
and integration with Chord and present the performance results 
for our prototype implementation. 

I. INTRODUCTION 

File sharing systems based on peer-to-peer (P2P) networks 

are very popular because of their ability to distribute the 

burden of storage across a number of nodes. However, if 

they are to gain widespread adoption for enterprise systems 

and in contexts like social networks, proper access control 

frameworks must be defined. In existing file sharing applica

tions, access control is either absent or enforced at a coarse 

granularity, such as at the file-level. Such an all-or-nothing 

mechanism is inappropriate for sharing files containing sensi

tive data. There is a need for secure and efficient mechanisms 

to enforce fine-grained access control (FGAC) that protects 

portions of sensitive files while capitalizing on the strengths 

of P2P systems. 

As an example, consider a company with a number of 

government contracts. The company uses an internal P2P

based distributed database to organize highly sensitive infor

mation related to the employees assigned to these contracts. 

For instance, this database could include contact information, 

security clearances, and a history of previous projects. The 

nature of these contracts necessitates that access to information 

be assigned on a need-to-know basis. As such, employees 

should have access only to the records of others assigned to the 

same project. Furthermore, each employee must be allowed to 

Michael Kirkpatrick 
Department of 

Computer Science 

Purdue University 

mkirkpat@cs.purdue.edu 

Elisa Bertino 
Department of 

Computer Science 

Purdue University 

bertino@cs.purdue.edu 

modify portions of his own record (e.g., contact information), 

but restricted from modifying everything else. Consequently, 

read and write permissions to portions of the file must be 

handled carefully. 

Existing P2P access control mechanisms operate at a coarse 

granularity, typically only on the file itself. Proposed FGAC 

approaches for P2P systems either enforce access control con

straints at file block level or assume particular file structures, 

such as XML-based structures. We aim at a finer level of 

granularity where access control policies can be specified on 

arbitrary contiguous byte ranges of the file. We propose such 

a FGAC scheme based on selective encryption that allows 

content owners to specify fine-grained policies for unstructured 

files; under this scheme separate portions are encrypted with 

different keys. The owner can grant a user read access to 

a specific set of file byte ranges by providing him with the 

encryption key used for these ranges. Each of these portions 

is also signed with a different key. This signature is computed 

using a private key which is given to only to those users who 

have been granted write access. We use signatures to detect 

unauthorized modifications and ensure integrity of each file 

portion. Notice that, in our approach, it is not mandatory to 

encrypt the entire file. If a file portion can be made public, then 

the owner can use a special policy to permit all accesses. Thus, 

we selectively encrypt only the sensitive portions of a file, and 

leave the unprotected portions in the clear. Our FGAC design 

is flexible enough that it can be used to implement previous 

approaches that enforce access control at the level of files, 

blocks, or components in structured XML documents. 

Once encrypted, a file along with its signatures is stored 

on a node of a P2P system. Our approach requires some 

cryptographic meta-data (of limited size) which is also stored 

on a peer node in P2P. This meta-data information is used for 

derivation of encryption and signature keys by the authorized 

users. In our prototype implementation, we use Chord [1] as 

the underlying storage mechanism. 

As an additional level of security, we provide the file owner 

with an option to hide the location of a file. Anonymizing the 

location of a file defends against various attacks by adding 

an extra layer of protection. It protects against denial of 

service attack since the attacker does not know which peer 

stores a particular file, and hence does not know which peer 

node to attack. Hiding the file location also reduces the risk 

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.4



of intentional file corruption by a malicious attacker. This 

protection is enforced by introducing an indirection step in 

the look-up phase. The file location is hidden by storing it on 

a randomly selected peer node. Its location is revealed only to 

the set of authorized users. The location information is also 

stored in a secure manner in the meta-data file such that only 

authorized users can extract it. 

An important issue in our approach is represented by the 

key distribution mechanisms. The keys used to encrypt the 

portions need to be securely and efficiently distributed to 

the authorized users. To address this issue, we propose a 

variation of the access control vector key distribution technique 

proposed by Shang et al. [2]. Whereas such approach uses an 

individual's credentials for key distribution, our mechanism is 

based on public keys. A user must first register his public key 

with the file publisher to obtain a subscription secret. This 

secret is then used to derive the keys for the file portions 

to which the user is granted access. Each user is provided a 

unique secret, even if the policy grants identical permissions to 

multiple users. A nice feature of our design is that no further 

communication between the user and the file owner is required 

after the initial registration. Even if the file is updated or re

encrypted with a different key, the original subscription secret 

can still be used for key derivation. We compare our key 

distribution scheme with conventional light-weight directory 

access protocol (LDAP [3]) key distribution, and discuss the 

trade-offs incurred by adopting our scheme over LDAP. 

The main contributions of our paper can be summarized as 

follows: 

• We define a novel FGAC mechanism for secure file 

sharing on P2P that allows content owners to specify 

access control policies over arbitrary byte ranges in files 

with no assumptions regarding the file structure. 

• We provide a low-level architecture that can be extended 

to implement previous block- and file-level access control 

schemes. 

• We present details of our implementation and its inte

gration with Chord P2P along with experimental results 

about the performance of our prototype. 

The rest of this paper is organized as follows. Section II 

discusses previous related research. Section III introduces 

relevant background material. Section IV details our FGAC 

mechanism and key management schemes. We discuss issues 

and challenges encountered during our implementation in 

Section V, and present our prototype evaluation in Sections VI 

and VII. We conclude the discussion in Section VIII and 

propose directions for future work. 

II. RELATED WORK 

A number of approaches have been proposed that aim 

at developing access control mechanisms for file sharing. 

Sirius [4] is a file system built on top of untrusted P2P system 

that enforces only file-level access control. Plutus [5] enforces 

access control by using block-level file encryption. However, 

Plutus relies on a client-server architecture, rather than P2P, 

and requires the keys be obtained from file owners on demand. 

To minimize the number of keys, Plutus employs file groups. 

Unlike Sirius, our access control mechanism operates at a finer 

granularity by granting access to portions of a file. In contrast 

to Plutus, our key distribution scheme does not require users to 

contact file owners. Furthermore, rather than using file groups, 

we minimize keys for portions within a file. 

In the operating systems realm, several cryptographic file 

systems have been proposed. Some of these systems, DM

Crypt [6], TrueCrypt [7] and loop-AES [8], only support 

coarse-grained access control. In such systems, only per-mount 

point based encryption policies are possible which means 

that all data is encrypted, even if it is not sensitive. The 

Cryptographic File System [9] has the same shortcoming as 

the encryption granularity is the directory. In our work, we 

allow the file owner to specify access policies with very fine 

granularity. We encrypt only the sensitive data portions and 

avoid unnecessary encryption of insensitive data. 

eCryptFS [10], which is an encrypted stacked file system 

for Linux, uses a per-file key management which implies that 

the granularity of access control is the file. In this scheme, 

the cryptographic meta-data is stored in the file header which 

allows the file to be moved. Our scheme uses a similar 

approach for storing the cryptographic information (such as 

the access vectors for key derivation) together with the file 

which allows the file to be moved across various nodes of P2P 

without much overhead. While eCryptFS uses one encryption 

key per file, we use multiple encryption keys to encrypt 

different portions of the file and enforce FGAC. 

PeerStreaming [11] is P2P media streaming system for 

distributing media securely. An identical copy of encrypted 

media is delivered to all clients. The key distribution scheme 

for PeerStreaming is a PKI based approach which embeds the 

master key in a license and encrypts it with the public key of 

user. We use a more efficient key distribution scheme based 

on access control vector (ACV) approach which generates a 

unique ACV for distributing keys to all users. PeerStreaming 

does not define any policy-based FGAC framework. Anyone 

having a master key can decrypt the entire file. We perform 

encryption at application level based on the access control poli

cies and the users accessing the file, while in PeerStreaming 

encryption is at network layer. 

FireCoral [12] is a P2P web content distribution service 

which allows a user to specify his sharing policy by using 

whitelist and blacklist of domains and/or URLs. It uses signing 

services by a trusted third party to authenticate data so that 

its integrity can be verified by other peers. We specify sharing 

policies for users instead of domains, and support fine-grained 

resource sharing among peers. We do not employ any third 

party signing services. Instead, we allow any user with write 

access to sign the file portion and validate the signing key 

information by the content owner's signature. 

III. BACKGROUND 

In this section we first introduce some key aspects of Chord 

and then review the group key management scheme by Shang 

et al. [2], on which our scheme is based. 



A. Chord 

Chord [1] is a structured P2P system based on a distributed 
hash table (DHT). The fundamental structure of a DHT is 
that all objects (including keys and nodes) are assigned m-bit 
identifiers which are used to map keys to peer nodes. Chord 
constructs a logical ring (called Chord ring) consisting of the 
ordered identifiers from 0 to 2m-I. A key k is assigned to 
a node whose identifier is equal to or follows the identifier 
of k. This node is referred to as successor(k ). Each node 
must know the IP address of its successor node to perform a 
linear search. To improve search efficiency, each node (with 
identifier say n) maintains a finger table which has m entries. 
The ith entry contains the IP address and Chord identifier 
of successor (n + 2i-1). Thus, in steady state, each node 
maintains information about O(log N) other nodes. Using this 
finger table, a successor for a given key can be determined by 
contacting o (log N) nodes. 

B. Group key management 

The key management scheme by Shang et al. [2] has been 
proposed for supporting selective access to documents. In this 
scheme, the publisher (Pub) of a document D specifies access 
control policies (ACP) against sub-documents of D and a 
conjunction of identity attribute conditions to be satisfied by 
a subscriber (Sub) for accessing a sub-document. 

First, the subscriber Subi presents its certified identity 
attributes to the Identity Manager, which is a trusted third 
party, to obtain identity tokens. Subi then registers these 
identity tokens with Pub in order to receive a conditional 

subscription secret (CSS). To enable token registration, Pub 
chooses and publishes a l-bit prime number q, a cryptographic 
hash function H(.) with output length no shorter than [ and a 
semantically secure symmetric key encryption algorithm with 
key length [-bits. For each ACP that Subi wants to satisfy, 
Subi registers an identity token whose id-tag matches the 
attribute name in condition condj in ACP. Pub verifies the cre
dential and generates a K;-bit random value ri,j E IF q, where IF q 
is a finite field with q elements and K; is the security parameter 
chosen by Pub. This ri,j is the conditional subscription secret 
(CSS). It is sent to Subi using an OCBE [13] session. Pub 
maintains a table T of the delivered ri,/s along with nymi 
(unique pseudonym for Subi) and policy condition condj. 

All sub-documents which have same set of policies appli
cable to it are encrypted with same encryption key. Suppose 
that a sub-document Dl has a policy configuration PC = 
{acp1' ... , acp,J. Let each policy aCPk be a conjunction of 
conditions cond1/\ ... /\condmk• For each acp k' Pub constructs 
a set Uk = {nymik), ... ,nym�k,! } containing all those nymi's 
whose CSS records corresponding to attribute conditions are 
found in T. Then Pub chooses some 

N;::: L #Uk 
k=1 

where #Uk is the cardinality of Uk. 
For each unique policy configuration, Pub chooses a sym

metric encryption key K randomly from IF q and N random 

values ZI,··· ,ZN E IFp, for some prime p. Then Pub 
constructs matrix A as follows: 

1 (1) aI, 1 
(1) a1,2 

(1) a1,N 

1 (1) an"l (1) an,,2 
(1) an"N 

A= 

1 (0:) a1 ,1 
( 0:) a1,2 (0:) a1,N 

1 (0:) an""l ( 0:) an",,2 ( 0:) an"" N 

with a�� = H(r;�21Ir;�dll ... lld;;'kllzj ), where II denotes 
concatenation. 

Pub solves AY = 0 to get a nonzero (N + 1) dimensional 
column vector Y,  called the access control vector (ACV). For 
broadcasting Dl which is encrypted with symmetric key K, 
Pub constructs a vector X as 

X = (K,O,O, ... ,O )T + Y, 

where vT denotes the transpose of vector v. Pub then broad
casts the encrypted document D1 along with X, Zl, ... , Zn. 
To read a document, Subi derives the decryption key using 
the CSS issued to it. It selects a policy aCPk which it satisfies 
and derives the decryption key by computing 

K' = (1, a��2, a;�d, ... ,a��� ).X, 

One of the advantages of this scheme is that updates of keys 
do not require a secure cOlmnunication channel. 

IV. SYSTEM DESIGN 

In this section we describe our selective encryption-based 
FGAC approach for P2P file sharing. The files under consid
eration are unstructured, UNIX-like files. Based on the access 
control policies specified by the file owner, a file is divided into 
read portions which are encrypted with different keys. Access 
to read a file portion requires possession of corresponding 
decryption key. Based on the write access policies, each read 
portion is further divided into write portions which are signed 
using different keys. The keys for signing are given to users 
with write access so that they can generate valid signatures 
after modifying a file portion. Thus, minimization of the 
number of generated keys and key distribution play a very 
important role. 

A. Access control policies 

An access control policy is specified against the public keys 
of users and has the form 

acp = (id, R, K, P, D) 

where: id is the policy identifier which uniquely identifies each 
policy; D is the file on which access control is specified; R 

is a byte-range [s , e] in D, such that 0 ::; s ::; e < L, where 
L is length of D; K is the set of public keys of users who 
can access range R; and P is the privilege that is granted and 
can be one of read-only (r), read-write (rw) and write (w) . 



_ Noacp 

:L Auce,Bob (acpl: rw) 
r Bob (acp2: r) 

Tom,Harry (acp4: r) 

Public (acp7: r) 
Tom (acp8: w) 

Fig. 1. Access control policies for file F 

An access control policy, acp = (id, R, K, P, D), is said to be 
satisfied by a user with privilege P, if his public key is in K. 

A read-only privilege indicates that the user has read access 
to the specified byte range. A read-write privilege specifies 
both read and write accesses to a private file portion. To specify 
write access for a public portion, the write (w) privilege is 
used. Notice that we do not include a write-only privilege 
since it implies that a user can perform only plain-text insertion 
which destroys the confidentiality of private portions. 

The byte-ranges which have no policies associated with 
them are accessible only to the owner of the file. A special 
policy, called public policy, indicates which portions of the file 
are public. This policy is characterized by an empty K set. 

A policy set is defined as the set of all policies associated 
with a file. A minimal policy set is a policy set which only 
contains policies that are not subsumed by other policies. A 
policy aCPI = (idl, RI, KI, PI, D) subsumes a policy aCP2 = 

(id2, R2, K2, P2, D) if R2 <:;; RI, K2 <:;; KI and P2 <:;; Pl. 
A read policy configuration PC R for a byte-range R is de

fined as the set of all access control policies {acPI' ... , aCPn} 
where aCPi = (idi, Ri, Ki, Pi, D), i = 1, ... , n, is such that 
R <:;; Ri and Pi = {rlrw}. In other words, PC R for byte-range 
R includes all policies with read privileges that are specified 
on byte-ranges that include R. Similarly, a write policy con

figuration PC w for a byte-range R is the set of all access 
policies {acPl, ... ,acPn} where aCPi = (idi,Ri,Ki,Pi,D), 
i = 1, ... , n, is such that R <:;; Ri and Pi = {rwlw}. 

A read user group UR for a byte-range R is defined as the 
set of all users who satisfy some policy in the read policy 
configuration of R. Similarly, we define a write user group 

Uw for a byte-range R as the set of all users who satisfy 
some policy in the write policy configuration of R. 

For example, consider a file F (Fig. 1) owned by John which 
has the following policies associated with it: 

• aCPl = (1, [200,600), {PUAlice, PUBob}, rw, F) 

• aCP2 = (2, [350,450]' {PUBob}, r, F) 

• aCP3 = (3,[600,1000),{PUA�ce,PUTom},r,F) 

• aCP4 = (4, [800,1400), {PUTom,PUHarry},r,F) 

• aCP5 = (5, [1400,1800), {PUAlice, PUBob}, r, F) 

• aCP6 = (6, [1600,1800), {PUAlice}, rw, F) 

• aCP7 = (7, [1800,2500), {}, r, F) 

• acps = (8, [2000,2300), {PUTom}, w, F) 

Here aCP7 indicates that the range [1800,2500) is public and 
need not be encrypted. In order to construct a minimal policy 
set for F, we need to eliminate aCP2 since it is subsumed by 
aCPI' Thus, the minimal set of policies is as follows: 

Pmin = {acPl,acP3,acP4,acP5,acP6,acP7,acPS} 

For the file portion [800,1000), PCR = {acP3,acP4} and 
UR = {John,Alice,Tom,Harry}. For file portion [1600,1800), 

UR = {Alice,Bob,John} and Uw = {Alice,John}. 

B. Read and Write Permissions 

A user can access portions of a file with read-only, read

write or write privileges. These privileges are enforced by 
using separate keys for encrypting and signing file portions and 
are referred to as the read key and the write key respectively. 
Each write key has a corresponding verify key used to verify 
the signatures on file portions signed using this write key. 

The read key is used to encrypt the file portions and 
guarantees confidentiality. The read key for a file portion is 
given to only those users who have read privilege for that 
portion so that they can decrypt and read it. Also, in case of 
read-write privilege, the read key is used to encrypt the file 
portions after modification. The write key is used to sign the 
file portions and guarantees integrity. Only users with read

write or write privilege are given the write key for the file 
portion. Thus, only users with write access are able to generate 
valid signatures after file modification. The verify keys are 
public and can be obtained by any user from the cryptographic 
meta-data. Note that a symmetric key based integrity solution 
will not work in this case since it would imply that only a 
user with write access would be able to verify integrity, while 
a user with only read access would be unable to do so. 

C. File partitioning and key generation 

To enable selective encryption of a file, we first need to 
partition the file into non-overlapping file portions based on 
access control policies. These partitions are generated based 
on read and read-write policies. Each of these file portions is 
associated with a read-user group, which is the set of users 
with read access to that file portion, and need to be encrypted 
with a read key, except if it is a public portion. These file 
portions are called read partitions. Once all the read partitions 
have been generated, each read partition is further associated 
with a set of write partitions based on write access policies. 

We aim at minimizing the total number of read and write 
keys per file. To do this, we encrypt all read partitions which 
have the same associated read user group with the same read 
key. Similarly, we use the same write key for signing the write 
partitions associated with same write user group. Thus, while 
generating the keys for a file, we assign each unique read user 
group a different symmetric read key and each unique write 
user group a different pair of write-verify keys. 

The algorithm for file partitioning and minimal key genera
tion (see Fig. 4) takes a minimal set of policies as input. If the 
policy set associated with D is not minimal, a minimal policy 
set P min is first constructed. The algorithm returns a set of 



Byte Range 
[0,200) 

[200,600) 
[600,800) 

TABLE [ 
READ PARTITIONS 

User Group Read key 
John eKeYI 

John,Alice,Bob eKeY2 
John,Alice,Tom eKeY3 

[800,1000) John,Alice,Tom,Harry eKeY4 
[1000,1400) 
[1400,1800) 
[1800,2500) 

Write Partition 
WI 

John,Tom,Harry eKeys 
John,Alice,Bob eKeY2 

Public -
TABLE II 

WRITE PARTITIONS 
Byte Range User Group 

[0,200) John 

Write Partitions 
WI 
W2 
W3 
W4 
Ws 

W6,W7 
WS,W9,WlO 

Write key 
sKeYI 

W2 [200,600) John,Alice,Bob sKeY2 
W3 [600,800) John sKeYI 
W4 [800,1000) John sKeYl 
W5 [1000,1400) John sKeYI 
W6 [1400,1600) John sKeYl 
W7 [1600,1800) John,Alice sKeY3 
Ws [1800,2000) John sKeYl 
Wg [2000,2300) John,Tom sKeY4 

WlO [2300,2500) John sKeYI 

non-overlapping read partitions, and for each read partition, 
its associated user group and set of write partitions. 

Time complexity analysis: The file partitioning algorithm 
has two main parts - (1) generation of read partitions, and (2) 
generation of write partitions. Let n be the number of policies 
in the policy set which is given as input to this algorithm. 
Let kl and k2 be the total number of read and write partitions 
generated respectively as output. The first part of the algorithm 
requires processing all read policies one at a time. For each 
policy, it requires finding the first and last overlapping read 
partitions (which has logarithmic time) and process all the 
intervals lying between the first and last overlaps. These are 
the intervals which overlap with current ACP's byte range and 
can be O(kd in worst case. Thus the worst case running time 
of first part of the algorithm is O(kln). The second part of 
the algorithm requires processing all write policies one at a 
time. For each policy, it finds the overlapping read portions 
(which is logarithmic time). For each of these read portions, it 
updates the set of write portions associated with it. The worst 
case amortized cost for updating the write portions is O(k2) 
for each policy. Thus, the worst case running time for the 
second part of the algorithm is 0 (( k2 + log k1) n). The worst 
case running time of the entire algorithm is O((kl + k2)n). 

Executing the partitioning algorithm on the example in 
section IV-A would generate the partitions as shown in Tables I 
and II respectively. Note that the file owner, John, has access 
to the keys for all file portions. The file portions [200,600) and 
[1400,1800) are encrypted with same key eKeY2 since they 
have the same read user group {John,Alice,Bob} associated 
with them. Also, the file portions with no write policy specified 
for them are signed using the file owner's key. 

D. Key management 

The keys for the file portions need to be securely and 
efficiently distributed to the authorized users. Key distribution 
is accomplished by using a variation of the ACV-based group 
key management scheme (see Section III-B). In describing our 

approach, we use the term user instead of subscriber and file 

owner instead of publisher. Also, public keys are used instead 
of credentials, which is equivalent to each user (Sub) having 
exactly one credential of type Public-key. We now highlight 
the differences between Shang et al. [2]'s key management 
scheme and our approach. 

In our approach, each useri registers with file owner using 
its public key PUi. The file owner verifies the certificate 
corresponding to this public key and generates exactly one 
CSS ri per user. This CSS is sent to useri encrypted with 
PUi and can be retrieved by useri using its private key Pri. 
The file owner maintains a table T that contains nymi (unique 
pseudonym for useri) along with the corresponding delivered 
CSS ri for each registered user. 

The file portions which have the same associated read-user 
group will be encrypted with the same symmetric read key. 
This differs from the ACV approach where each sub-document 
with the same policy configuration is encrypted with the same 
key. To illustrate this, consider the example introduced in 
Section IV-A. The file portions [200,600) and [1400,1800) 
both have the same read user group {John, Alice, Bob} but 
different read policy configurations, namely: 

PCR,[200,600) = {acPl} and PCR,[1400,1800) = {acP5} 

Since we aim at minimizing the total number of read keys for 
a file, it is beneficial to use same read key for file portions 
with the same read user-groups. We use a similar approach for 
write keys wherein a unique write-verify key pair is generated 
for each write user group. 

Consider the key distribution for a file portion D1. Let 
D1's associated read-user group be U1 = {nyml' ... ,nymoJ. 
The file owner searches table T for each of these nym/s 
and constructs a set lC1 = {nymil' nymi2' ... ,nymi,'l } 
containing nym/s whose corresponding CSS is found in T. 

The file owner chooses a suitable value N � #lC1 where #lC1 
denotes the cardinality of set lC1. 

For U1 (or equivalently D1), the file owner chooses a 
symmetric read key K randomly from IF q and N random 
values Zl, . . .  , ZN E IF p, for some prime p. The matrix A 

constructed by owner will have only one row per registered 
user in the user group of D1: 

A� ( ; ail,l ail,2 a'"N ) 
ai2,1 ai2,2 ai2,N 

ain1,1 ain1,2 ain� 'N 

with ai,j = H(rillzj), where ri denotes the CSS for user with 
pseudonym nymi and II denotes concatenation. The remaining 
steps are the same as the steps of the ACV scheme (see 
section III-B). The write keys are also distributed in a similar 
manner using ACV s for each unique write user group. 

E. Managing Updates to Policies 

Modifying an access control policy can be considered as 
a two step process - deleting the policy followed by adding 
a new policy. We provide four operations for modifying the 



polices - Add policy, Delete Policy, Add User and Delete User. 

Although the last two operations are redundant, we include 
them for efficiency reasons. While add policy and add user 

grant access to file portions, delete policy and delete user 

revoke access. All of these may require re-partitioning and re
encryption for the file portions that overlap with the policy's 
byte range. In some special cases, re-partitioning can be 
avoided. For example, when Tom is added to policy acp5 (see 
Fig. 1), we only need to re-encrypt byte range [1400,1800] 
with a new key. In a scenario where policies change frequently, 
the file may become more and more fragmented over time. 
This requires that a merging effort be applied wherein the 

adjacent file portions with same associated user groups are 
merged into one portion. 

F. Integration with Chord P2P 

Our FGAC approach can be integrated with any structured 
P2P system. However, we chose Chord P2P as it provides 
a working implementation. Note that user is not tied to a 
particular node, as the policies are specified against public 
keys, not Chord node identifiers. This design choice makes 
our approach easily adaptable to alternative P2P systems. The 
shared file is selectively encrypted and stored at a peer node 
depending on its key identifier. We refer to this selectively 
encrypted file as the data file. The key-identifier for the data 
file is computed by taking a hash of its complete file name. As 
discussed later, if the file location is to be hidden, a random file 
name is generated for the data file which results in a random 
key-identifier that is revealed only to authorized users. 

The cryptographic data (see section IV-D) required to derive 
the keys and file location is stored in a separate meta-data file 
(refer Fig. 2). This file stores the following information: 

• Chord node-identifier of the node corresponding to the 
file owner. 

• Information for extracting the Chord key of the data file 
to determine its location (see section IV-G). 

• For each read key, the key extraction information (vector 
X and random z values (see section III-B)), and a 
mapping between the original byte-ranges and the byte
ranges in the encrypted file for all the portions encrypted 
with this key. 

• For each write key, the key extraction information (vector 

X and random z values as described in Section III-B), the 
byte-ranges in the original file for all the portions which 
are signed with this key and the corresponding verify key. 

The Chord node-identifier of the file owner is used when a 
user wants to register or needs to know his access rights. It 
is file owner's responsibility to keep this identifier correctly 
updated if it uses different P2P nodes at different times. 

In the basic approach where the file location is not hidden, 
the meta-data file is assigned the same key-identifier as the 
corresponding data file. This ensures that both the data and 
the meta-data file are stored on the same node and can be 
retrieved together. A trivial approach to storing meta-data and 
data together would be to combine them in one file. However, 
this would require the entire file to be changed every time a 

META-DATA FILE 

Chord Id of Owner 

Location Extraction Info 

Read Key Record 1 

Read Key Record NI 

Write Key Record 1 

Write Key Record N2 
--------------I I 

I Signature on meta data I 

: by owner I 
------------- _. 

•...•.. 
.., Key Extraction Information 

Byte Ranges in original file 

•..... � Byte Ranges in encrypted file 

READ KEY RECORD 

............ -----------. 

". '. '. 

Key Extraction Information 

Byte Ranges in original file 

Verify Key 

WRITE KEY RECORD 

Fig. 2. Structure of the Meta-Data File 

policy change occurs. Storing the meta-data as a separate file 
has the advantage that in some cases only the meta-data file 
has to be updated without affecting the data file. To illustrate 
this point, consider the example introduced in section IV-A. 
Suppose a new user Joe has to be added to policy aCP3' This 
change can be done by simply adding Joe to user groups for 
file portions [600,800) and [800,1000) and giving Joe keys 
eKeY3 and eKey 4' This policy change does not require re
encryption of the data file since keys for these portions are 
not used to encrypt any other file portion to which Joe does 
not have access. Thus, only the meta-data file needs to be 
updated. Clearly, in these scenarios, storing the data file and 
meta-data file separately is better approach. If the file location 
is to be hidden, then clearly the meta-data file and the data 
file cannot be stored on same peer node (see section IV-G). 

Only the file owner can modify the cryptographic meta-data 
associated with a file. If this was not the case, then anyone 
(even an authorized user) could modify or corrupt the meta

data and make it unusable for other users. The contents of the 
meta-data file are signed using the private key of file owner. 
This signature is stored with the meta-data file and can be 
verified by any user. Although this does not prevent anyone 
from corrupting the meta-data, it does help in detecting the 
corruption and seeking the correct file from alternative sources 
like the file owner node. 

While preparing the encrypted data file, the signatures 
are computed on the plain text file portions which are then 
encrypted. Another approach would be to first encrypt the 
file portions and then sign them. The latter approach is not 
desirable because it generates a higher number of partitions 
and if the adjacent byte ranges have the same read user 
group but different write user group, they will be encrypted 
separately. To illustrate this point, consider the byte range 
[1400,1800). While the first approach encrypts this range as 
a single file portion, the latter approach will require the range 
to be split into two portions, [1400,1600) and [1600,1800), 
since they have different write user groups and have to 
be encrypted and signed as two different portions. These 
signatures are computed using the write-key for the write user 
group associated with a file portion and can be verified using 
the corresponding verify key. 

To read a file portion, a user first needs to retrieve the 



corresponding meta-data file and verify its signature to ensure 

its integrity and authenticity. To retrieve the data file, its Chord 

key must be known which is the same as the meta-data in 

basic approach. In the case where file location is hidden, this 

information is securely stored in the meta-data file and can be 

successfully extracted only by authorized users. The user then 

extracts the required cryptographic information and derives the 

read key and write key (in case of write-access) for the file 

portion that he wants to read/modify. A successful derivation 

of these keys is possible only if the user is authorized with 

these privileges. The user also obtains the verify key for this 

file portion from the meta-data file. This verify key is public 

and can be obtained by anyone. The file portion to be read 

is first decrypted using the read key and then verified for 

correctness by using the verify key for signature verification. 

If a user has write access, he can modify the file (refer to 

section IV-H), re-compute the signature and encrypt the file 

portion again. The modified file is then inserted into P2P using 

the same Chord-key as earlier. 

The derivation of the keys and the decryption of content 

are performed on the user's node and not on any other node 

in the P2P system since the conununication channel and the 

other P2P nodes cannot be trusted to be secure. 

The access control policies associated with a file are stored 

in a separate file, called policy store, which is fully encrypted 

with a synunetric key available only to the owner of the file. 

Therefore, their confidentiality and integrity are assured. As 

the policy store is an encrypted file it can be stored either at 

file owner node or on any other node of the P2P system, just 

like any other encrypted file. 

G. Hiding file location in Chord P2P 

We propose an optional enhancement over the basic scheme 

by which we allow the file owner to hide the file location. This 

is enforced by introducing an extra indirection step in the look

up phase. The data file is assigned a randomly generated file 

name. The Chord insertion key is computed as a hash of this 

random file name. This ensures that the file location is decided 

at random and cannot be guessed by an attacker. 

This random file name is hidden inside an access control 

vector (section IV-D) which is similar to the access vectors 

used to hide the read and write keys. This vector is constructed 

using the subscription secrets of all those users who are 

authorized to know file location. This access vector is also 

stored in the meta-data file (refer Fig. 2) and the file location 

can be extracted from it only by authorized users. The location 

of the meta-data file is not hidden, since it is required to extract 

the information of the actual data file. Also, the meta-data 

does not reveal the location or contents of the protected file 

in public. It can only reveal the information on how a file is 

partitioned into portions. 

This approach is secure against a brute force search where 

an adversary attempts to retrieve files from all P2P nodes to 

determine the location of a particular file. This search will not 

succeed because as the data file is selectively encrypted and its 

file name is random, an attacker will be unable to determine if 

the file retrieved by him is correct. However, this is true only 

in the absence of public portions, since they may reveal some 

information about the file. 

H. File Modification 

Modifications to a file affect not only the file portions but 

also the access policies and the meta-data associated with 

it. File operations which change the length of a file portion 

cause other byte-ranges to shift, thus affecting other access 

policies and meta-data information. As discussed earlier, only 

file owner can modify the meta-data file. This restricts other 

users from performing file operations which modify the file

portion length since that would require changes in the meta

data file. We allow following modifications by users to a file: 

• Update: We refer to update as a write operation that over

writes existing bytes with new bytes without increasing 

length of a portion. This is handled by re-encrypting the 

modified portion with the same key as earlier. We do not 

support updates that increase the length of a file portion. 

• Append: Append operations add content to the end of 

a file. An append operation does not affect any existing 

file portions or policies. A new file portion is created 

and since no access policy applies to it, it is encrypted 

and signed with the owner's keys. Append operations can 

only be performed by the file owner. 

• Delete: Delete operations are handled differently depend

ing on whether they are issued by the file owner or 

other users. Deleting a range of bytes causes other byte 

ranges to be shifted and thus affects the access control 

policies and the meta-data. A file owner performs a delete 

operation by deleting the required bytes and adjusting the 

access control policies by a constant factor. There is no 

need of re-partitioning or re-encrypting other partitions 

except for the partition being modified. Also, the byte 

ranges information in the meta-data file will need to be 

adjusted. For other users, the delete operation is basically 

an overwrite operation where the deleted bytes are over

written by zero's and marked as deleted. These zeroed 

bytes can be actually deleted by file owner later in a lazy 

manner. 

V. IMPLEMENTATION ISSUES 

The implementation of our approach required addressing 

several challenging implementation issues, some of which also 

required extending the functionality of the underlying Chord 

P2P. We used the Open Chord [14] implementation as a basis 

for our prototype. 

The first extension was to introduce in Open Chord a 

register conunand which enables a user to register with the 

owner node to obtain the CSS. This functionality was not 

implemented at application level since Open Chord does not 

provide primitives for exchanging messages over which a 

registration protocol could be built. Also, this would require 

establishing a separate communication channel between the 

owner and user node. A low level implementation of the 

register functionality allowed us to make use of underlying 

P2P to carry out this protocol. 



3.5F.-O-.. -F""'FE-----9""-�-----, 
3 � FGE Data Set 1 (Public) 

_ -+- FGE Data Set 2 (Public) 
.g 2.5 -. - FGE Data Set 1 (Hidden) 

8 - • -FGE Data Set 2 (Hidden) , 

! 2 � . ¥ '" , 
� 1.5 �.-,+ " � . . 2 , 
� 1 ,ll 
.E ,.' 

.. ' 

10 15 
File Size (MB) 20 

if> 
g 2 
r �--------�--� 

" o 'E. 
� O.5 

w 

��----�----�10�--�1�5-----720· 
File Size (MB) ��----�-----1�0----�175-----720· 

File Size (MB) 
(a) Experiment I: Insertion time with varying file (b) Experiment 1: Encryption and Signing times with (c) Experiment I: Decryption and Verify times with 

varying file sizes sizes varying file sizes 

2.5 
" 0' FFD 

0.6 
� FGE Data Set 1 (Public) 

if> 2 -+- FGE Data Set 2 (Public) �O.5 
21 - • -FGE Data Set 1 (Hidden) 
0 - • -FGE Data Set 2 (Hidden) 8 
! 1.5 , '" 

,. ' � 0.4 
'" .# 

, '" 
E , E 
;= ;= " 

1 
1 25 0.3 

� � 
a: 0.5 � 0.2 

00 10 15 20 0.10 20 

V> 0.8 21 0 Ii �O.6 '" -E 
;= 

-to- FGE Data Set 1 50.4 
· · ·0 · ·  FGE Dala Set 2 .� 
'-'-FFE g 

W 0.2 

40 60 80 100 00 10 20 30 40 50 
File Size (MB) Percentage of encrypted portions Percentage of Overlap 

(d) Experiment 1: Retrieval time with varying file (e) Experiment 2: Encryption times for FFE and (f) Experiment 3: Encryption time for FGE with 
increase in policy overlap sizes FGE with varying size of public portions 

Fig. 3. Experiment results 

The second extension was to modify the cOlmnand to insert 
a file in Open Chord. Our scheme requires insertion of two 

files - the data file and meta-data file. The conventional 

approach which we implemented initially made the call to the 

Chord insert command twice, which required the search for 

responsible peer node to be executed twice. Since our basic 

scheme requires storing both these files on the same node, we 

modified the lower level insert command to insert both these 

files by determining the responsible node just once. 

The third extension was to add support for hiding the file 

location in Open Chord. This functionality could be imple

mented either at application level or at a low level within Open 

Chord. We decided to incorporate this at low level to make 

this process transparent to the user. This required modification 

of insert and retrieve cOlmnands which are now overloaded to 

perform insertion and retrieval operations with and without 

hiding file location. The Retrieve command now involves 

retrieving the meta-data, extracting the hidden location and 

then performing retrieval of the actual data file. 

Lastly, we extended Open Chord to support the modify 
command which allows users to update an existing copy of 

a file on a peer node instead of inserting a new file every time 

there is a change. 

VI. EXPERIMENTAL EVALUATION 

We performed three experiments to measure the time re

quired for insertion, retrieval and various cryptographic oper-

ations. They were performed on two different machines 1. In 

our tests, the insertion and retrieval times include the time 

for inserting and retrieving both data and meta-data files in 

Chord P2P. The encryption time includes the time required to 

generate file partitions, keys for each user group, meta-data 

file and to perform selective encryption of the data file. 

A. Experiment 1 
The goal of this experiment is to compare the performance 

of our approach, referred to as fine-grained encryption (FGE) 

with a conventional approach, referred to as full file encryption 

(FFE), which consists of signing the entire file and then 

encrypting it using a single key. We compare the times for 

insertion, retrieval and cryptographic operations (i.e., encryp

tion and signature) for files of varying sizes. We also study the 

impact of hiding the file location on the insertion and retrieval 

times. In these measurements, we do not include any public 

policy for the FGE approach. Graphs in Fig. 3a - 3d report 

the results of this experiment performed on two data sets. 

These two data sets are for encryption and signing us

ing one and ten keys (and ten partitions) respectively. We 

perform measurements on these data sets with and without 

location hiding. FFE forms the baseline for our comparison. 

We observe that our approach does not add any significant 

I Machine configurations: (1) Windows XP SP3 32-bit (Intel Core 2 Duo 
CPU, T5750, 2.0GHz, 3GB RAM); (2) Windows Vista SP2 64-bit (Intel Core 
2 Duo CPU, T5750, 2GHz, 4GB RAM) 



overhead to the conventional approach. The times for partition 

generation and creation of meta-data file are insignificant when 

compared to the actual encryption time. Fig. 3a and 3d report 

the insertion and retrieval times. Our approach introduces 

some overhead in insertions because of the insertion of the 

meta-data file. However, the modified insert command (see 

section V) significantly reduces this overhead. 

As shown by these graphs, location hiding is very efficient, 

especially for larger file sizes. It includes the extra overhead 

of doing the look-up twice, but as the file size increases, the 

insertion and retrieval times are dominated by the data transfer 

time. We observed that the time measurements for decryption 

and verification operations follow a similar trend as encryption 

and signature operations and have an insignificant overhead. 

B. Experiment 2 

In this experiment, we evaluate the advantage of the FGE 

scheme over the FFE scheme. As our approach supports the 

specification of a special policy to indicate the public portions 

of a file, we encrypt only the sensitive portions and leave the 

public portions as they are. The FGE scheme is more efficient 

when only a small portion of the file is sensitive as it reduces 

the amount of encryption. We compare the encryption and 

insertion times for FGE and FFE by varying the percentage 

of file portions which are encrypted. These measurements do 

not include the time taken for signing operations. 

We consider two data sets, one with two ACPs and another 

with twenty-one ACPs. The results of this experiment, per

formed on a 5MB file, is reported in Fig. 3e. We observe that 

our approach performs significantly better than FFE when only 

a small portion of the file has to be encrypted. The insertion 

times for FGE and FFE were observed to be comparable. 

C. Experiment 3 

In this experiment, we analyze the effect of various kinds of 

policy on the performance of our scheme. If the policies have 

overlapping ranges, then such policies may require splitting 

the policy ranges and generating many small partitions. In 

contrast, if the policy ranges are disjoint, then creating parti

tions does not require splitting ranges into smaller portions. 

We define the percentage of policy overlap as 

N umber of overlapping policies 
Overlap = 

1 b f 1· · Tota num er 0 po lCles 

. We consider different percentages of overlaps ranging from 

2% overlap to 50%. This experiment is performed on a 5MB 

file with 100 ACPs and 10 users. Fig. 3f shows that the 

encryption time changes only slightly with increasing overlaps 

in policies. This indicates that the actual encryption time is 

the dominant factor in the total processing time, and the extra 

processing required by our scheme has a very slight overhead. 

V II. ANALYSIS OF THE KEY DISTRIBUTION SCHEME 

In this section, we compare our key distribution approach 

with an LDAP-based approach and analyze the security of our 

approach. 

A. Comparison of key distribution scheme with a conventional 

LDAP approach 

An alternative approach for key distribution is based on 

LDAP directory. The LDAP directory stores one entry for each 

user, and contains all the keys for the user encrypted with the 

user's public key. PKI-based encryption and decryption have to 

be performed by the LDAP server for insertion and by the user 

for retrieval. These PKI-based operations are computationally 

expensive. Furthermore, they have to be executed every time 

a key is changed, and for each user. 

In contrast, in our key distribution scheme, only the user 

registration phase requires PKI-based operations for transmit

ting the CSS. This is a one-time process.The generation of 

key extraction information and retrieval of keys from the ACV 

vector requires only matrix-based operations which are much 

faster. Thus, our key distribution scheme is more efficient 

to use when a large number of users are involved and the 

access control policies are dynamic. However, our scheme 

incurs more storage overhead as compared to LDAP when the 

number of keys per file is large since a separate key record 

has to be created for each key which will contain the key 

extraction information. Thus, if the system has few users, then 

LDAP would be a better option. 

B. Security Analysis 

In this section, we discuss how the basic security re

quirements of confidentiality, availability, and integrity are 

addressed by our approach. 

1) Confidentiality: One possible attack to confidentiality 

is when an adversary attempts to derive a key from the 

information in the meta-data to access a file portion for which 

he is not authorized. To derive the key for a file portion, a 

user must possess a valid CSS for accessing such file portion. 

There are two kinds of adversary in this system. The first 

kind is an attacker who has not registered with the owner 

and attempts to read a file portion. Since this user does not 

have a valid CSS, he cannot extract any of the read keys. 

Also, he cannot obtain the CSS of some other legitimate user 

by eavesdropping since the CSSs are sent encrypted over the 

communication channel. A second kind of attacker is a user 

who possesses a valid CSS and attempts to access a file portion 

for which he has not been granted access. This user can only 

construct a row of matrix A (see section IV-D) for matrices 

corresponding to keys he has access to. Thus, he will be 

unable to derive any key for which he has not been granted 

access. Thus our scheme ensures that only users who have 

been granted access by the file owner can read a file portion. 

2) Availability: In our scheme, an attacker can disrupt 

availability by corrupting or deleting the meta-data file so 

that legitimate users are unable to obtain the correct keys. 

Many extensions to Chord support an underlying replication 

mechanism to increase availability. In our scheme, meta

data is replicated together with the data file and therefore 

it would automatically benefit from any replication strategy 

that is implemented by Chord. Moreover, our experiments 

show that the size of the meta-data file is not significant. 



GeneratePartition(P min,L) 
Input: Pmin: a minimal set of ACP 

L : File size in bytes 
Pmin is generated from the given set of ACPs P 

Output: j[J): a set of read partitions Di 
Partition Di = ([Si' ei], Ui, wPi) where 

- lSi, ei]: byte-range of a read partition 
- Ui: associated read user group 
- wPi: list of associated write partitions WPj 

Write Partition WPj = ([sj,ej],Uj) where 
- [Sj, ej]: byte-range of a write partition 
- Uj: associated write user group 

Assumption: 
Pmin does not contain conflicting policies. 
(That is, a byte range cannot be both public 
and access controlled at same time.) 
insert([s, e], U) executes only if S � e. 

/* Generate all read partitions */ 
1. insert ([O,L - 1], {Owner}) in j[J) 
2. for each P= ([sp,ep],Up, P, D) E Pmin s.t. P= {rlrw} do 
3. if (Up = ifJ) then 
4. /* Special public policy */ 
5. insert ([sp, ep], ifJ) into j[J) 
6. continue for 
7. end if 

8. Dj +-- findFirstOverlap(p,j[J)) 
9. Dl +-- findLastOverlap(p, j[J)) 
10. if (Dj = Dl) then 
11. remove D f from j[J) 
12. insert ([Sf, sp - 1], Uf) into j[J) 
13. insert ([sp, ep], Uf U Up) into j[J) 
14. insert ([ep + 1, e j], Uj) into j[J) 
15. else 
16. if (Up g Uj) then 
17. /* Split D f * / 
18. remove Df from j[J) 
19. insert ([Sf,Sp - l],Uf) into j[J) 
20. insert ([sp, e j], Uj U Up) into j[J) 
21. end if 

22. if (Up g Ul) then 
23. /* Split Dl */ 
24. remove Dl from j[J) 
25. insert ([sl,ep],UI UUp) into j[J) 
26. insert ([ep + 1,et],UI) into j[J) 
27. end if 

28. for each D = ([s, e],U) E j[J) s.t. (Df < D < Dl) do 
29. U +-- U UUp 
30. end for 
31. end if 
32. end for 

/* Generate all write partitions */ 
33. for each p=([sp,ep],Up,P,D) E Pmin s.t. P={rwlw} do 
34. Df +-- findFirstOverlap(p,j[J)) 
35. Dl +-- findLastOverlap(p, j[J)) 
36. insertWritePartition (([sp, ef], Up), D f) 
37. insertWritePartition (([sl,ep],Up),DI) 
38. for each D = ([s, e],U) E j[J) such that (Dj < D < Dl) do 
39. insertWritePartition (([s, e], U), D) 
40. end for 
41. end for 

Fig. 4. Algorithm for file partitioning based on ACP 

Hence, applying traditional replication strategies and keeping 

a copy of the meta-data with each replica of the data file 

can provide robust availability without imposing significant 

storage overhead. We also reduce the risk of data corruption 

by providing a mechanism to hide the file location. 
3) Integrity: We protect the integrity of the meta-data and 

the data-file by use of signatures. The meta-data file is signed 

by the file owner's private key and cannot be modified by 

other users. File portions of the data file are signed using 

different keys which are provided only to authorized users. 

Thus, any modification to the meta-data or the data-file by an 

unauthorized user can be easily detected. 

VIII. FUTURE WORK 

As future work, we plan to extend our approach by develop

ing key recovery mechanisms whereby the owner can recover 

the keys in case they are lost. Another interesting extension 

is to support delegation by the owner node to some trusted 

users to issue CSSs. This would result in a decentralized 

registration process. Also, in the current approach, we aim at 

minimizing the number of keys per file. As future work, we 

would like to study how to minimize the total number of keys 

per user. A possible approach would be to use a hierarchical 

key management scheme. 

ACKNOWLEDGMENTS 

The work reported in this paper was supported by the Na

tional Science Foundation (NSF) grant 0712846 IPS: Security 

Services for Healthcare Applications, and the MURI award 

FA9550-08-1-0265 from the Air Force Office of Scientific 

Research. 

REFERENCES 

[1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, 
" Chord: A scalable peer-to-peer lookup service for internet applications," 
in SIGCOMM'OI. New York, NY, USA: ACM, 2001, pp. 149-160. 

[2] N. Shang, M. Nabeel, F. Paci, and E. Bertino, "A privacy-preserving 
approach to policy-based content dissemination," in ICDE, 2010. 

[3] K. Zeilenga, "Lightweight Directory Access Protocol (LDAP): 
Technical Specification Road Map," RFC 4510 (Proposed Standard), 
Internet Engineering Task Force, Jun. 2006. [Online]. Available: 
http://www.ietf.org!rfc/rfc4510.txt 

[4] E. jin Goh, H. Shacham, N. Modadugu, and D. Boneh, "Sirius: Securing 
remote untrusted storage," in NDSS Symposium'03, 2003, pp. 131-145. 

[5] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, "Plutus: 
Scalable secure file sharing on un trusted storage;' in FAST '03, Berkeley, 
CA, USA, 2003, pp. 29-42. 

[6] "Dm-crypt: A device-mapper crypto target," www.saout.de/misc/ 
dm-crypt. 

[7] "Truecrypt: Free open-source on-the-fly disk encryption software for 
windows 7/vistalxp, mac os x, and linux," www.truecrypt.org. 

[8] "Ioop-aes," http://sourceforge.net/projects/loop-aesl. 
[9] M. Blaze, "A cryptographic file system for unix," in CCS '93. New 

York, NY, USA: ACM, 1993, pp. 9-16. 
[l0] M. Ha1crow, "ecryptfs: a stacked cryptographic filesystem," LimlX J., 

vol. 2007, no. 156, p. 2, 2007. 
[11] J. Li, Y. Cui, and B. Chang, "Peerstreaming: design and implementa

tion of an on-demand distributed streaming system with digital rights 
management capabilities," Multimedia Syst., vol. 13, pp. 173-190,2007. 

[l2] J. Terrace, H. Laidlaw, H. E. Liu, S. Stem, and M. J. Freedman, 
"Bringing P2P to the Web: Security and privacy in the Firecoral 
network," in In lPTPS 09, Boston, MA, Apr. 2009. 

[l3] J. Li and N. Li, "Oacerts: Oblivious attribute certificates," IEEE Trans. 
Dependable Secur. Comput., vol. 3, no. 4, pp. 340-352, 2006. 

[14] K. Loesing and S. KaffiUe, "Open chord. an implementation of the chord 
dht in java," hup://open-chord.sourceforge.net/. 




