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Abstract-Graphics processing unit (GPU) has evolved into 
a general-purpose computing platform. Inspired by the GPU 
technology advantage, this paper concerns the design and perfor­
mance evaluation of practical GPU-accelerated server architec­
ture for Video-on-Demand (VoD) services with network coding. 
Following the proposal of an optimized network coding algorithm 
based on parallel threads on GPU, a GPU-Accelerated Server 
(GAS) for VoD streaming is designed to leverage the workload 
between GPU and CPU and thus improve the performance of 
the VoD server. Extensive real-world experimental results have 
proved that compared with the approaches with network coding 
performed only on CPU or GPU, the proposed GAS architecture 
is more advantageous in serving capacity, response time, and 
CPU usage. Our study has investigated a way of designing high 
performance VoD streaming servers with network coding and 
GPU-acceleration incorporated. 

Index Terms-Video-on-demand, network coding, GPU, 
streaming server 

I. INTRODUCTION 

Video-on-Demand (VoD) services are becoming increas­
ingly popular over the Internet [1]. It has been known that 
centralized server approach is expensive in terms of both 
bandwidth cost and serving capacity. As an alternative, peer­
to-peer (P2P) network is a cost-effective solution to providing 
VoD streaming to a large number of users [2]-[4]. In a typical 
P2P-VoD architecture, peers are organized in a tree [5], [6] 
or mesh [7], [8] overlay structure to collaboratively relay 
data blocks for each other. The server's bandwidth cost and 
workload can thus partially be alleviated by leveraging each 
peer's bandwidth and capacity [2]. 

Network coding provides an information-theoretical ap­
proach to network throughput improvement [9]. The idea 
behind network coding is to allow coding operations on 
data flows to be performed at intermediate nodes. Since the 
landmark work on randomized network coding [10], [11], 
many research efforts have been directed towards the practical 
application of network coding in the P2P networks, such 
as Avalanche [12] and R2 [13]. In general, network coding 
eliminates the need for block reconciliation and thus is highly 
resilient to peer dynamics. In the context of VoD, Guha et 
al. [16] investigated the feasibility of providing VoD with 
low start-up delays using network coding. Chi et al. [15] 
proposed a scheduling algorithm based on deadline-aware 

network coding to meet the playback deadline constraints. 
It has been demonstrated that P2P VoD can benefit a lot 
from network coding in terms of video delivery efficiency. 
An commencial P2P system, UUSee [28], has also reported 
the effectiveness of network coding in VoD service. 

Unfortunately, for the P2P-VoD systems with network cod­
ing, most existing results have focused on the following 
issues [15]-[ 17]: 1) How can network coding simplify data 
scheduling? 2) What strategy can be designed to improve peer 
resilience? 3) Which overlay topology should be constructed 
for network coding? Little has been found on a sufficient anal­
ysis of the network coding overhead and on the performance 
improvement of the VoD server in the P2P-VoD systems with 
network coding. 

In this paper, we focus on the problem of optimizing the 
network coding overhead at VoD servers. The problem is 
motivated by the following observations. 

First, despite of the benefits of network coding, it is, 
however, important to recognize that the performance gain 
of network coding is obtained at the cost of higher coding 
complexity at each peer including the server. Such computa­
tional overhead adds to VoD servers workload, especially as 
the number of blocks to be coded scales up. 

Second, VoD client's intrinsic behaviors in asynchronous 
requests and interactive operations further exaggerate the prob­
lem. In contrast to live streaming, a VoD client may start to 
request a video at any time, and may randomly access arbitrary 
part of a video. Such asynchrony may lead to peer's failure in 
finding collaborating partners with similar block interests. In 
this case, the peer have to resort to the server for the desired 
video blocks. 

These characteristics make VoD server's computing capabil­
ity a bottleneck. A VoD server has to be able to perform net­
work coding operations and at the same time serve hundreds 
(or even thousands) of directly connected peers. Consequently, 
achieving high throughput and fast response times at the VoD 
server presents a challenging task for the P2P-VoD systems 
with network coding, especially in the case to sustain hundreds 
of concurrent video channels. As an evidence, a runtime 
trace of a real-world commercial P2P streaming system has 
also revealed that the available server computing capacities 
are unable to keep up with the increasing user demand in 
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video channels and have become a bottleneck to the streaming 

service [14]. Even when efficient algorithms are employed for 

block scheduling and overlay construction, the network coding 

overhead may still yield a degradation of the streaming quality. 

D erived from conventional wisdom, this paper attempts to 

investigate a new approach for bulding VoD servers using 

graphics processing units (GPUs). Our approach is inspired by 

the rapid increase in GPU's hardware performance and recent 

improvements in its progranuning flexibility. Modern GPUs 

offer large numbers of computing cores that operate in parallel. 

Compared to CPUs, commodity off-the-shelf GPUs have a 

much more favorable price-performance ratio. For example, 

NVIDIA GeForce 8800GT GPU is over three times faster 

than Intel Core2 Quad 3.0GHz CPU in terms of floating 

point operations per second (FLOPS). In addition, flexible 

programming environments [24], [25] let any application tap 

into the vast GPU computational power previously available 

only to graphics applications. For example, CUDA (Compute 

Unified D evice Architecture) provides a C-Ianguage devel­

opment environment for NVIDIA GPUs [24]. The growing 

computing ability has transformed the GPU into a massively 

parallel general-purpose accelerator processor for non-graphics 

problems, ranging from image processing to scientific comput­

ing [27]. 

We believe that VoD servers with network coding provides 

a potential application domain for GPUs. However, building 

an efficient VoD server with GPU is a non-trivial task. To 

provide high throughput and fast response times, a VoD server 

needs to be carefully structured to conform to data-parallel 

programming model provided by the GPU, and also to balance 

the workload between CPU and GPU. 

We propose a GPU-Accelerated Server (GAS) architecture 

which embeds the optimized GPU-based network coding 

components. Together with the GAS architecture, a flexible 

scheduling assignment is also investigated. Using real-world 

experiments, we evaluate the performances of both the GPU­

accelerated network coding and the GAS architecture with 

a set of measurement metrics. The real-world experiments 

are designed with NVIDIA GeForce 8800GT GPU [26] and 

its development platform CUDA [24]. The experiment re­

sults show that the proposed GPU-accelerated network coding 

algorithm on NVIDIA 8800GT achieves a doubled coding 

throughput compared with that on Intel Quad-Core CPU with 

SSE2 acceleration. The experiment results also show that 

the GAS architecture achieves performance improvements of 

approximately 2 times in both average response time and 

serving capacity compared with the pure CPU implementation. 

To our best knowledge, this paper provides, for the first 

time, the detailed measurements of streaming server capacity 

utilization in a GPU-accelerated P2P-VoD streaming system. 

It is also worth while mentioning that the proposed GAS 

architecture can be deployed in a wide range of software and 

hardware environments, including Microsoft Windows, Linux, 

and Mac OS with the CUDA driver support by NVIDIA [24]. 

The rest of this paper is organized as follows. Section 

II describes the background and related work. Section III 

presents the design of VoD server architecture and schedul­

ing algorithm. Section IV analyzes the experimental results. 

Finally, Section V concludes this paper. 

II. BACKGROUND AND RELATED WORK 

In this section, we position our work in the context of related 

research. 

A. Random Linear Network Coding 

Network coding [9] has been originally proposed for achiev­

ing the theoretical multicast capacity of a network. Using 

random network coding, the server or a peer is allowed to 

combine a number of data blocks and encode them into one 

or several outgoing blocks, specified by independently and 

randomly chosen coding coefficients. Let b denote a group of 

m data blocks to be encoded at the server, which is represented 

by a vector with block elements as follows 

(1) 

where each data block bj, j = 1,2, ... , m, has a fixed size of 

k bytes, and the superscript T denotes the transpose operation. 

For any specific vector b, in order to produce one outgoing 

block Xi, a server first ¥enerates a coding
. 

coefficien� vector 

ai = [ail, ai2,···, aim ] , where each coding coeffiCIent aij 
is randomly chosen from Galois field GF (28 ). With linear 

network coding, the new block Xi is created by 

m 

Xi = L aij' bj 
j=l 

(2) 

The corresponding coefficient vector ai is embedded in each 

block's header during transmission. 

Each coded block Xi is sent together with the corresponding 

coefficient vector ai from the server to its downstream peer. 

Clearly, an overhead of m bytes per coded block is yielded 

by the accompanying coefficient vector since it contains m 

elements from GF (28 ) , or equivalently m bytes. Such an 

overhead is subtle for a large block size k and a moderate 

group size m. 

After a peer has received m linearly independent coded 

blocks X = [Xl, X2, ... , xm ]T" it begin to decode using the 

following matrix operations. The m coding coefficient vectors 

ai, i = 1,2, ... , m in fact constitute an m x m matrix A. 
Each row in A corresponds to the coefficients of one coded 

block. 

b = A-I. X (3) 

Note that the inverse of A is possible if and only if its rows 

are linearly independent, i.e., A has full rank. The inverse of 

A can be implemented efficiently using Gauss elimination or 

its extension Gauss-Jordan elimination. 

With network coding, all blocks are mixed and treated 

equally, which in turn eliminates the need to schedule the 

"rarest block" first or find a specific block. As long as a peer 

can collect enough number of linearly independent blocks, it 

can decode the original content. 



B. GPU-based Acceleration 

The primary practical problem network coding confronts is 

the coding complexity. As has been observed in a real-world 

experiment, network coding is only computationally feasible 

for the number of blocks to be coded less than a thousand [18]. 

To accelerate network coding throughput, a parallelized pro­

gressive approach has been proposed with SSE2 and AltiVec 

single instruction - multiple data (SIMD) vector instructions 

performed on Intel x86 and PowerPC processors, respectively 

[19]. 

More recently, preliminary results have been reported on 

employing graphics processing units (GPUs) to accelerate 

network coding by mapping network coding operations to 

GPUs [20]-[23]. The approaches to GPU-based network cod­

ing behind these results are in common. 

In order to help better understand the GPU-accelerated 

processing of network coding, we first use NV IDIA Geforce 

8800GT (henceforth used in this paper) as an example to 

briefly introduce the GPU architecture. The GPU contains a 

total of 112 streaming processors (SP) that are grouped to 14 

streaming mUltiprocessors (SM), with each SM containing 8 

SPs. The GPU employs a single-instruction multiple-thread 

(SIMT) architecture which is akin to SIMD. In the SIMT 

architecture, when an SM is allocated for a set of threads to 

execute, it groups the threads into 32 as one SIMT scheduling 

unit, or warp. Each unit are exectued in 4 cycles on the 8 SPs, 

with 1 thread per SP each cycle. If one unit stalls, the SM 

can execute another unit with zero-overhead hardware-based 

scheduling. Meanwhile, the 14 SMs can run different sets of 

threads independently and simultaneously. Therefore, the GPU 

is particularly suitable for data-parallel computations with data 

processing tasks mapped to parallel threads. 

In order to perform the parallel network coding on the GPU, 

the following two issues must be considered: 

1) Divide the coding computations into tasks that can be 

executed concurrently. 

2) Map the tasks to physical streaming processors. 

Suppose each data block bj, j = 1,2, ... , m has a fixed 

size of k bytes. Clearly, bj can be partitioned into up to k 
columns in terms of bytes. Whereas the conventional encoding 

processing works over these columns in a sequential order. 

In this parallel processing mode, k parallel threads are used 

in correspondences with the columns of b, with each thread 

independently calculating a dot product and providing an 

output byte Xij, j = 1,2, ... , k. To generate a full set of 

n coded blocks for a data group b, a total of n . k threads are 

thus required. 

With CUDA, the mapping was fairly straightforward. Fig. 1 

describes the principle of mapping the encoding processing 

to the GPU's processors. On each SM, threads are split into 

warps. In each warp, the 32 parallel threads are scheduled for 

a group of 8 threads in 4 cycles. 

Previous results [20]-[22] have shown that commodity 

GPUs are able to achieve the better encoding throughput as 

compared to mainstream multi-core CPUs. 

NVIDIA 8800GT GPU 
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Fig. 1. Mapping of coding processing tasks to threads on GPU. 

C. Our Contribution 

Our work in this paper is different from the already available 

related results on GPU-based network coding, such as [20], 

[22]. While these results are aimed to simply accelerate the 

raw network coding throughput using GPUs, our work here 

provides a new point of view for the design of practical VoD 

systems in order to accelerate the performance of the VoD 

servers. The raw coding throughput only reflect the feasibility 

of network coding on GPUs. However, the design of VoD 

server involves further considerations. The server with GPU 

need to be structured to provide high aggregate streaming 

rates and fast response time. Our paper is quite orthogonal 

to the above work. We investigate the challenges and benefits 

of GPU-based network coding on VoD servers. By taking 

the advantages of GPU, we are ready to propose optimized 

VoD server architecture. The complexity and challenges of 

GPU-accelerated network coding have not been previously 

examined in the context of VoD server. Therefore, we also 

implement an real-world experimental prototype to form an 

unbiased evaluation of the VoD server's performance. 

III. GPU-ACCELERATED SERVER FOR VoD STREAMING 

A. Assumptions and Design Space 

A VoD streaming server with network coding needs to 

serve the continuous requests from its directly connected peers. 

Meanwhile, it also needs to perform random network coding 

and to packetize the coded blocks. There are many aspects 

that affect the performance of the VoD streaming servers with 

network coding, such as network bandwidth, CPU overhead, 

and disk I/O. Therefore, to provide high coding throughput and 

fast response times, there are many possible design spaces in 

the VoD server architecture. 

In this section, we focus on the performance optimization 

of the VoD streaming servers by alleviating the CPU load 

with GPU acceleration in a cost-effective way. We believe that 

this part is most suitable for implementation on GPUs. For 

this purpose, we propose an architecture of GPU-Accelerated 

Servers (GAS), together with a scheduling assignment. 



Of course, if disk I/O and network bandwidth are the main 

bottlenecks, then any method based on optimizing CPU or 

GPU performance is futile. In our design, we assume that 

disk I/O and network bandwidth are not the bottleneck. We 

will see in the experiments that such assumptions are realistic 

provided that the server is equipped with Giga-byte Ethernet 

interface and RAID disk. 

B. T he GAS Architecture 

While network coding has proved effective for video stream­

ing in the P2P networks, it is also accompanied with a large 

portion of the total CPU workload on the server. The network 

coding overhead may dramatically degrade the performance 

of the VoD streaming server, especially in the cases of high 

stream bit rate and massive scale-up of the number of blocks 

to be coded. 

In order to reduce the server's workload, one possible 

approach is to employ an offline pre-coding procedure. With 

offline pre-coding approach, the video blocks are pre-encoded 

by a dedicated server, and the coded blocks are then stored 

on the VoD server's disk. However, this approach is usually 

impractical since it requires a large extra storage space with a 

prohibitive cost of creation and maintenance. In addition, the 

coding parameters are fixed once the coded blocks have been 

generated and stored on the disk. 

In our design, we consider on-the-fly coding. In on-the-fly 

coding approach, the video blocks are encoded by the server 

upon the arrival of a request from a peer, and are then sent to 

the the peer. In comparison with offline pre-coding approach, 

on-the-fly coding approach may prove more advantageous. 

First, with on-the-fly coding, it is easy to configure the coding 

parameters, including block size and finite field, in order to 

meet various on-demand needs from different peers. Second, 

on-the-fly coding may generate as many coded blocks as 

needed for the original blocks, whereas the offline pre-coding 

approach usually stores only a limited number of coded blocks 

for avoiding large costs of extra storage. 

With the rapid improvements in performance and pro­

grammability as well as the increasing performance-to-price 

ratio of GPUs, it is reasonable to equip the VoD streaming 

servers with off-the-shelf graphics cards to take over a portion 

of the CPU workload. 

Fig. 2 presents a cost-effective and high-performance archi­

tecture of GPU-Accelerated Servers (GAS) for VoD Stream­

ing. The computing capacity of GPU is exploited to alleviate 

the CPU workload and hence achieve a performance improve­

ment of the VoD streaming server. The GAS architecture in 

Fig. 2 consists of the following basic modules: 

1) GPU/CPU Coder: to maintain the encoding threads on 

the GPU and the CPU, respectively. 

2) Task Manager: be responsible for scheduling user re­

quests and reading data blocks from video files. 

3) Request/Data Dispatcher: to accomodate the client re­

quests from peers and send the coded blocks to peers, 

respectively. 

T3 RAM 

NIC 

Fig. 2. The architecture of GPU-accelerated server (GAS) for VoD streaming. 

1. Request Dispatcher 
receive user request from network; 
pass the request to Task Manager; 

2. Task Manager 
parse (video file, block group id, block length); 
if (the requested block group are not in memory) 

read the blocks from disk; 
generate an encoding task; 
push the task to Task Queue; 

3. GPU Coder 
wait until GPU is idle; 
read task from Task Queue; 
run the encoding task; 
pass the coded block to Data Dispatcher; 

4. CPU Coder 
wait until CPU is idle; 
read task from Task Queue; 
run the encoding task; 
pass the coded block to Data Dispatcher; 

5. Data Dispatcher 
pack the coded block; 
send the coded block to user; 

Fig. 3. Pseudo-code for the working threads at the VoD streaming server. 

In the GAS architecture, the video stream is divided into 

blocks of a fixed size k, and each block is assigned a sequence 

number to represent its playback order in the stream. Network 

coding operates over a group of m blocks as described in the 

previous section. The GAS architecture supports both push­

based and pull-based streaming protocols. Either when a peer 

requests a coded block, or when the streaming server needs to 

send out a coded block, the on-the-fly network coding scheme 

in GAS is presented in the following. The request dispatcher 

will pass the block information to the task manager. The task 

manager then reads all the blocks within a coding group into 

memory and pushes the encoding tasks into the task queue, and 

the GPU and CPU coders schedule the encoding tasks from 

the task queue to run. Finally, the generated coded blocks are 

sent by the data dispatcher to the peers. 

The pseudo-code for the working threads is given in Fig. 3. 



C. Scheduling 

In the streaming server design, one of the major objectives 

is to maintain a high serving capacity and provide a small 

response time. As one step in this direction, the GAS architec­

ture allows the simultaneous use of CPU and GPU at the VoD 

Streaming servers. For the GAS architecture to be efficient, 

a properly designed task scheduler is required to balance the 

load between CPU and GPU on the server. 

The load balance between CPU and GPU is indeed a 

mUltiprocessor scheduling problem, which needs to consider 

the following two issues: 

1) Which task runs next? 

2) Which processor runs the next task? 

Recall that the Request Dispatcher queues all the incoming 

data requests in Task Queue. We assume that there are N 

tasks in the Task Queue J, ji E J,i = 1,2, ... , N. We denote 

the CPU and GPU as processor set P, where Po and PI are 

CPU and GPU respectively. Suppose the amount of time delay 

needed for encoding is dik if task ji is scheduled on Pk. Our 

goal is to schedule these tasks such that 

1) no task takes longer than a given maximum time Ui (say, 

the video playback delay constraint), 

2) the average delay of a task is as small as possible. 

The Task Manager's objective is to a find a scheduling 

function f : T f---+ [0, co) x [Po, PI] that specifies the task 

execution sequences on each processor. 

The probem is indeed a job scheduling problem on two 

processors which is NP-Complete [29]. Therefore we provide 

heuristic approaches to address the problem. An intuitive 

assignment of tasks is the even assignment which distributes 

the coding load evenly across the processors. To this end, 

there are several possible processor assignment policies such 

as random and round robin. However, the even assignment 

of tasks to processors may entail an unwanted situation in 

which one processor is idle whereas in the meantime, another 

processor has a backlog since both CPU and GPU vary in 

computing capacity. With mUltiprocessors, it is paramount to 

keep each processor busy as much as possible in order to 

exploit their computing capacities and thus obtain the best 

performance. 

In our GAS design, we provide a simple yet efficient 

scheduling method. The arrived coding tasks are scheduled 

in a first-come first-serve (FCFS) fashion. We believe that the 

differentiated services can easily be incorporated into the GAS 

design using a priority queue that is maintained for the coding 

tasks from different peers. 

When assigning the scheduled coding tasks to processors, 

the GAS treats both CPU and GPU as a pooled resource, where 

both CPU and GPU coder threads employ self-scheduling 

when they are able to accept the encoding tasks. Consequently, 

both CPU and GPU in the GAS architecture will be kept busy 

once the task queue is not empty. Clearly, the self-scheduling 

assignment must satisfy the following two requirements: 

1) Make sure that the two threads do not choose the same 

encoding task; 

IIUpon new encoding task is loaded 
void addTask(newtask) 
( 

} 

mutex.lock(); 
taskQueue.push(newtask); 
semaphore.release(l); 
mutex.unlock(); 

II waitTask() for CPU and GPU 
void wai tTask () 
( 

semaphore.acquire(l); 
mutex. lock() ; 
if(!taskQueue.empty()) 
( 

task=taskQueue.front(); 
taskQueue.pop (); 

} 
mutex.unlock(); 

Fig. 4. Scheduling of the encoding task queue for both CPU and GPU. 

2) Make sure that no encoding task is neglected. 

To address the challenge, GAS maintains a semaphore in 

the encoding task queue which is given in Fig. 4. When the 

file manager thread has completed the loading of the encoding 

data into the main memory, it creates a new encoding task and 

pushes it into the task queue. Both CPU and GPU controller 

threads run in a blocking manner during the encoding process, 

that is, these threads can invoke the waitTaskO function and 

schedule a new task only when they have completed the 

current tasks. With this scheduling algorithm, the encoding 

tasks dequeue in a FCFS fashion and get assigned to a current 

idle processor. As a result, the network coding throughput 

on the streaming server could be maximally accelerated by 

balancing the load between CPU and GPu. 

In particular, priority could be trivially combined with our 

approach as it does not impact the proposed server architec­

ture. If any request approaches its playback time constraint, 

Task Manager may prioritize this request and set it at the top 

of the task queue. Hence it will be scheduled immediately. 

D. Analysis on GAS Design 

We now investigate the important factors that account for 

the server performance under GAS architecture. As we saw in 

the previous subsection, there are four key steps for generating 

coded blocks in GAS: 

• TI: Request Dispatcher accommodates the client requests; 

• T2: Task Manager loads the data blocks from hard disk 

to the main memory; 

• T3: GPU and CPU Coder schedules coding tasks to run 

respectively; 

• T4: Data Dispatcher packetizes the coded blocks and 

sends them to the peers. 

All the steps may contribute to the server's performance 

bottlenecks. The first step TI involves reading the client 

requests from network interface and passing the requests 

to Task Manager. Ignoring the latency of copying requests 

from the Ethernet interface to the main memory, which is 

almost constant (say, several j.ls), TI is only limited by the 



efficiency of Request Dispatcher threads. Since the server 
needs to sustain the demands from hundreds, even thousands, 
of directly connected peers, a pool of Request Dispatcher 
service threads is necessary to meet the simultaneous requests. 

In the second step, the Task Manager needs to parse the 
requests and read the required data blocks into the main 
memory. Parsing a client request only contributes a minor part 
to T2 since the data structure of the request is simple. Indeed, 
reading data blocks from hard disk to the main memory is 
costly compared with pure memory operations. The overhead 
includes opening the video file if it is not ready, seeking the 
desired block position, and loading a sequence of m data 
blocks into the main memory. One possible improvement is to 
merge the requests from different peers into one continuous 
disk access and to transfer the continuous blocks to the main 
memory as a whole. The mergence is possible only when the 
requests are within the same video file and different block 
sequences are continuous or overlapping. Another key insight 
that enables us to optimize T2 is to maintain a disk I/O cache. 
With a proper cache replacement policy, we can allocate a 
space in the main memory to cache some popular blocks. 
Once the data blocks are hit in cache, no extra disk I/O is 
needed. In our experiment, we do not consider additional cache 
since the RAID5 SATA disk can already provide a reading 
throughput which is beyond the GPU and CPU's aggregate 
coding throughput requirement. However, such optimizations 
can be included to reduce disk access frequency in case of 
practical VoD server deployment. 

The third step essentially consists of two parallel parts: GPU 
coding and CPU coding. The overall coding throughput is 
roughly the sum of the individual throughputs on the GPU 
and the CPU. The CPU coding efficiency could be improved 
by taking the advantage of modern multi-core CPUs and SIMD 
vector instruction sets, eg., Intel SSE2. Nevertheless, CPU 
coding is not our major concern here. How to improve the cod­
ing throughput on GPU has been introduced in section II-B. 
Specifically, we identify further improvement of coding perfor­
mance on GPU through a number of optimization schemes. As 
shown in Fig. 1, the GPU is integrated with 512MB of global 
graphics memory, and meanwhile, each SM contains 16KB 
of on-chip shared memory. However, compared with the on­
chip shared memory which is as fast as register, the global 
memory has a relatively longer access time which is usually 
ranged from 400 to 600 clock cycles. Notice that following 
the 8-bit byte-based encoding processing represented in (2), a 
thread needs first to load required bytes from global memory 
to shared memory prior to its running Galois operations. As 
discussed above, the byte-by-byte memory access may sutfer 
from a long latency. In order to reduce the memory access 
latency, we use the following two optimizations: 

1) Use 32-bit integer to access global memory in a single 
instruction. 

2) Coalesce the simultaneous memory accesses of data, 
which lie in the same segment by different threads within 
a warp, into a single memory transaction. 

The use of 32-bit integer, instead of 8-bit byte, avoids practi­
cally casting between integer and byte. In this case, moreover, 
a thread encodes 4 bytes, and thus only k / 4 parallel threads 
are needed to obtain a coded block, yielding a reduction of 
3/4 in the total number of required parallel threads. For these 
purposes, in our implementation, both the block size k and the 
group size m are chosen as a multiple of 4, respectively. 

We now proceed to study the forth step T4. In the forth 
step, the Data Dispatcher read the coded blocks from the 
main memory and sends them to network interfaces. The 
optimization for T4 is similar with T1. A pool of Data 
Dispatcher service threads is activated to send the coded data 
blocks as fast as possible. Since step 1 and 4 are not our major 
focus, we omitted further discussion on the optimizations for 
network socket I/O. We simply employ a relatively large pool 
of threads that could saturate the Ethernet interface capacity 
to ensure that network I/O is not the bottleneck. 

Warping up all the modules, GAS is now ready to bring 
high-performance network coding throughput to streaming 
servers by leveraging GPU's many-core computing power. 

IV. PERFORMANCE EVALUATION 

In this section, we present the performance evaluation 
results on both the GPU-accelerated network coding and the 
VoD server using the GAS architecture. All the results reported 
in this section have been obtained by averaging over ten runs 
of the real-world experiments. 

A. Experiment Environments 

To evaluate the performances of GPU-accelerated network 
coding and GAS-based VoD streaming server, the random 
network coding algorithms are designed over GF(28 ), and the 
GAS architecture is deployed on a commodity VoD streaming 
server. The server is equipped with two Intel Pentium Xeon 
5405 2.0GHz Quad-Core processors, 2 x 2GB ECC RAM, 
one NV IDIA Geforce 8800G T GPU, 160GB SATA RAID5 
hard disk, and one Gigabit Ethernet adapter. Both the network 
coding and the GPU code are implemented with CUDA 2.0(3. 

B. Performance of GPU-Accelerated Network Coding 

As an important metric to gain insights on the server 
performance, we first validate the raw coding bandwidth under 
our optimized GPU code implementation. The impact of GPU­
acceleration on the network coding throughput is evaluated 
in terms of network coding bandwidth by using a set of 
experiments. For a fair comparison, a baseline C++ imple­
mentation for the CPU schemes is incorporated with the SSE2 
optimization. The experiments for the CPU implementation are 
run with three different CPU setups: 1) Single Xeon 5405 with 
4 threads; 2) Dual Xeon 5405 with 4 threads; 3) Dual Xeon 
5405 with 8 threads. 

In the first set of experiments, the number of data blocks 
to be coded is fixed at 64, 128, and 256, respectively. Fig. 5 
presents a comparison of the encoding bandwidth as a function 
of the block size between the GPU scheme and the three 
CPU schemes above. Obviously, the encoding bandwidth of 
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Fig. 5. Encoding bandwidth with fixed block number 64, 128 and 256 
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Fig. 6. Decoding bandwidth with fixed block number 64, 128 and 256 

our GPU-accelerated implementation is larger than that of all 

the cutting-edge CPU implementations. The improvement in 

the encoding bandwidth comes from the use of GPU parallel 

computing architecture. As the block size increases, the encod­

ing bandwidth of each CPU scheme increases significantly, 

especially in the case of 8 threads. However, the encoding 

bandwidth of the GPU-accelerated scheme varies marginally. 

From the three sub-figures in Fig. 5, it is also seen that the 

encoding bandwidth decreases with the number of data blocks. 

This is explained by the fact that the increase in the number of 

data blocks leads to an increased memory accesses and thus 

results in a reduction of the encoding bandwidth. 

The experimental results on the decoding are shown in 

Fig. 6 for the comparison of the decoding bandwidth as a 

function of block size between the above schemes. Again, the 

GPU-accelerated scheme achieves the best performance com­

pared with the CPU schemes. Clearly, the decoding bandwidth 

of each scheme is smaller than the corresponding encoding 

bandwidth due to the fact that the coefficient matrix inversion 

involves serial operations. This may also explain the increasing 

of the decoding bandwidth for the GPU-accelerated scheme 

with the block size. With the increase in block size, the time 

spent in matrix inversion is no longer dominant. As a result, 

the decoding bandwidth would approach that of encoding. 

In conclusion, with respect to both encoding and decoding 

bandwidths, the GPU-accelerated scheme outperforms the 

CPU schemes. Therefore, it is not only feasible but also 

practical to accelerate network coding using GPU. 

C. Performance of GAS 

Having employed the GPU-based network coding in GAS, 

we are now ready to evaluate its performance against CPU­

based implementation. In the evaluation of the VoD streaming 

server performance, we consider the following three metrics: 

1) Serving Capacity: Which represents the maximum num­

ber of simultaneous connections that can be successfully 

supported by the server; 

2) Response Time: Which is measured as the time differ­

ence between when the server receives a request and 

when the server sends out the coded blocks; 

3) CPU Usage: Which reflects the CPU load in percentage 

at a given time instant. 

To fully evaluate the GAS scheme with network coding 

performed on both CPU and GPU, we also consider other 

two special schemes to network coding, namely pure CPU 

approach and pure GPU approach. The pure CPU approach 

performs network coding solely on CPU, whereas the pure 

GPU approach performs network coding solely on GPu. 



In the set of experiments designed to examine the serving 

capacity of the three schemes, the server provides only one 

video channel coded at a specified bit rate of 750 Kbps. The 

arrival of client requests is modeled by a discrete Poisson 

process with A = 2 and 0 = 5s. The clients are supposed 

to keep on requesting data blocks once their requests have 

arrived. 

Fig. 7a presents the experimental results on the CPU usage. 

Obviously, the CPU usage of GAS is between that of the two 

pure schemes. This can be explained by the fact that GAS 

leverages the CPU load with part of the network coding tasks 

executed on GPU. 

Fig. 7b shows that the response time for all the three 

schemes increases with the number of simultaneous users. 

Moreover, GAS can accommodate nearly 500 users, whereas 

the other two pure schemes can only support about 200 and 

350 users, respectively. These results have shown that GAS 

outperforms both pure schemes in terms of serving capacity 

in a wide range of response time beyond lOOms. 

Fig. 7c presents the results of the CPU load on the streaming 

server in a more dynamic environment, where the video of 

size 160MB is served at a streaming bit rate of 750 Kbps, and 

where client departure behaviors have been taken into account 

using the churn rate pattern of real-world trace results [17]. In 

this set of experiments, the arrival of client requests is assumed 

to follow the same Poisson distribution as mentioned above. 

The results of Fig. 7c has been obtained by tracing the CPU 

usage on the server within one hour, and the CPU usage is 

presented as a function of time. Again, the CPU usage of the 

GAS scheme is reasonably acceptable. 

Fig. 8 gives the results of the response time distribution 

captured for the three schemes. It is easily seen that GAS 

minimizes the startup delay which is experienced by end users. 

These results show that GAS are more stable and scalable in 

terms of response time. 

One interesting question raised now is that how the number 

of video channels affects the server performance. Unlike 

previous experiments with only one video channel, the exper­

iments below consider 30 and 200 different video channels, 

respectively, in order to examine the impacts of multiple video 

channels. In these experiments, the video popularity model 

follows Zipf-like distribution, with a Zipf popularity parameter 

of 0.5. All the videos have the same streaming bit rate of 750 

Kbps, and the client requests still follow a Poisson arrival 

pattern with A = 2 and 0 = 5s. All the clients will stay in 

session and keep on requesting blocks from the server. 

Fig. 9 depicts the CPU usage actually measured for the three 

schemes. Again, GAS has a moderate CPU usage compared 

with the other two schemes. Fig. 10 illustrates how the 

response time of the VoD server evolves in the case where the 

server has multiple video channels. Clearly, GAS outperforms 

the other two schemes as the number of concurrent client 

requests increases with time. It indicates that a substantial 

improvement in the serving capacity of the streaming server 

can be obtained by balancing the load between CPU and GPU. 

For the number of clients beyond 300, GAS outperforms the 
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Fig. 11. The percentage of delay components in response time for GAS 

pure schemes in both scenarios with 30 and 200 channels, 

respectively. For response time benchmark, there is a larger 

performance gain for GAS due to the load balancing design 

by GAS. 

As the number of concurrent users increases, the average 

response time for GAS will degrade. Neglecting the network 

I/O, the response time includes three delay components: 

(l)Queueing delay: waiting time in the task queue; (2)1/0 

delay: the time needed for loading the source blocks from 

hard disk drive (HDD) to main memory; (3)Encoding delay: 

encoding the blocks. We now investigate the main contributing 

factor in the increase of response time. In this set of experi­

ments, the video's bit rate is 750 Kbps,the client requests still 

follow a Poisson arrival pattern with A = 2 and 0 = 5s. All 

the clients will stay in session and keep on requesting blocks 

from the server. Fig. 11 reflects the average percentage of 

the three delay components for GAS at a given time. Initially, 

there's nearly no queueing delay since the number of clients is 

small. The encoding delay contributes to most of the response 

time. With the increase in user requests, the queueing delay 

increases significantly. From Fig. 11, we also observe that disk 

I/O is actually not a dominant factor in response time. 

V. CONCLUSION 

A GPU-Accelerated Server (GAS) architecture for VoD 

streaming has been proposed based on a GPU-accelerated 

network coding processing on the NV IDIA GeForce 8800GT 

GPU. Using real-world experiments, the performances of both 

the GPU-based network coding and the GAS architecture have 

been examined. With these results, the main idea of speeding 

up the VoD streaming server by exploiting the computing 

power of GPU has been demonstrated. As can be observed, 

our GAS approach achieves a significant performance gain 

in terms of the CPU load, the coding throughput, and the 

response time. This paper provides, in fact, a proof-of-concept 

in that by offering an attractive performance-price ratio, GPUs 

can be used to offload the streaming server overhead and thus 

circumvent the hurdle to the practical deployment of network 
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coding-based P2P-VoD systems. As part of our ongoing work, 

several issues still remain open, which include the design and 

performance evaluation for the application of multiple GPUs 

in the VoD streaming server. 
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