
An Architecture Design of GPU-Accelerated VoD

Streaming Servers with Network Coding

Jin Zhao*t, Xinya Zhang*t and Xin Wang*t

*School of Computer Science, Fudan University
Shanghai 200433, China

t Shanghai Key Lab of Intelligent Information Processing
Shanghai 200433, China

Email: {jzhao.06300720198.xinw}@fudan.edu.cn

Abstract-Graphics processing unit (GPU) has evolved into
a general-purpose computing platform. Inspired by the GPU
technology advantage, this paper concerns the design and perfor­
mance evaluation of practical GPU-accelerated server architec­
ture for Video-on-Demand (VoD) services with network coding.
Following the proposal of an optimized network coding algorithm
based on parallel threads on GPU, a GPU-Accelerated Server
(GAS) for VoD streaming is designed to leverage the workload
between GPU and CPU and thus improve the performance of
the VoD server. Extensive real-world experimental results have
proved that compared with the approaches with network coding
performed only on CPU or GPU, the proposed GAS architecture
is more advantageous in serving capacity, response time, and
CPU usage. Our study has investigated a way of designing high
performance VoD streaming servers with network coding and
GPU-acceleration incorporated.

Index Terms-Video-on-demand, network coding, GPU,
streaming server

I. INTRODUCTION

Video-on-Demand (VoD) services are becoming increas­
ingly popular over the Internet [1]. It has been known that
centralized server approach is expensive in terms of both
bandwidth cost and serving capacity. As an alternative, peer­
to-peer (P2P) network is a cost-effective solution to providing
VoD streaming to a large number of users [2]-[4]. In a typical
P2P-VoD architecture, peers are organized in a tree [5], [6]
or mesh [7], [8] overlay structure to collaboratively relay
data blocks for each other. The server's bandwidth cost and
workload can thus partially be alleviated by leveraging each
peer's bandwidth and capacity [2].

Network coding provides an information-theoretical ap­
proach to network throughput improvement [9]. The idea
behind network coding is to allow coding operations on
data flows to be performed at intermediate nodes. Since the
landmark work on randomized network coding [10], [11],
many research efforts have been directed towards the practical
application of network coding in the P2P networks, such
as Avalanche [12] and R2 [13]. In general, network coding
eliminates the need for block reconciliation and thus is highly
resilient to peer dynamics. In the context of VoD, Guha et
al. [16] investigated the feasibility of providing VoD with
low start-up delays using network coding. Chi et al. [15]
proposed a scheduling algorithm based on deadline-aware

network coding to meet the playback deadline constraints.
It has been demonstrated that P2P VoD can benefit a lot
from network coding in terms of video delivery efficiency.
An commencial P2P system, UUSee [28], has also reported
the effectiveness of network coding in VoD service.

Unfortunately, for the P2P-VoD systems with network cod­
ing, most existing results have focused on the following
issues [15]-[17]: 1) How can network coding simplify data
scheduling? 2) What strategy can be designed to improve peer
resilience? 3) Which overlay topology should be constructed
for network coding? Little has been found on a sufficient anal­
ysis of the network coding overhead and on the performance
improvement of the VoD server in the P2P-VoD systems with
network coding.

In this paper, we focus on the problem of optimizing the
network coding overhead at VoD servers. The problem is
motivated by the following observations.

First, despite of the benefits of network coding, it is,
however, important to recognize that the performance gain
of network coding is obtained at the cost of higher coding
complexity at each peer including the server. Such computa­
tional overhead adds to VoD servers workload, especially as
the number of blocks to be coded scales up.

Second, VoD client's intrinsic behaviors in asynchronous
requests and interactive operations further exaggerate the prob­
lem. In contrast to live streaming, a VoD client may start to
request a video at any time, and may randomly access arbitrary
part of a video. Such asynchrony may lead to peer's failure in
finding collaborating partners with similar block interests. In
this case, the peer have to resort to the server for the desired
video blocks.

These characteristics make VoD server's computing capabil­
ity a bottleneck. A VoD server has to be able to perform net­
work coding operations and at the same time serve hundreds
(or even thousands) of directly connected peers. Consequently,
achieving high throughput and fast response times at the VoD
server presents a challenging task for the P2P-VoD systems
with network coding, especially in the case to sustain hundreds
of concurrent video channels. As an evidence, a runtime
trace of a real-world commercial P2P streaming system has
also revealed that the available server computing capacities
are unable to keep up with the increasing user demand in

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.37

video channels and have become a bottleneck to the streaming

service [14]. Even when efficient algorithms are employed for

block scheduling and overlay construction, the network coding

overhead may still yield a degradation of the streaming quality.

D erived from conventional wisdom, this paper attempts to

investigate a new approach for bulding VoD servers using

graphics processing units (GPUs). Our approach is inspired by

the rapid increase in GPU's hardware performance and recent

improvements in its progranuning flexibility. Modern GPUs

offer large numbers of computing cores that operate in parallel.

Compared to CPUs, commodity off-the-shelf GPUs have a

much more favorable price-performance ratio. For example,

NVIDIA GeForce 8800GT GPU is over three times faster

than Intel Core2 Quad 3.0GHz CPU in terms of floating

point operations per second (FLOPS). In addition, flexible

programming environments [24], [25] let any application tap

into the vast GPU computational power previously available

only to graphics applications. For example, CUDA (Compute

Unified D evice Architecture) provides a C-Ianguage devel­

opment environment for NVIDIA GPUs [24]. The growing

computing ability has transformed the GPU into a massively

parallel general-purpose accelerator processor for non-graphics

problems, ranging from image processing to scientific comput­

ing [27].

We believe that VoD servers with network coding provides

a potential application domain for GPUs. However, building

an efficient VoD server with GPU is a non-trivial task. To

provide high throughput and fast response times, a VoD server

needs to be carefully structured to conform to data-parallel

programming model provided by the GPU, and also to balance

the workload between CPU and GPU.

We propose a GPU-Accelerated Server (GAS) architecture

which embeds the optimized GPU-based network coding

components. Together with the GAS architecture, a flexible

scheduling assignment is also investigated. Using real-world

experiments, we evaluate the performances of both the GPU­

accelerated network coding and the GAS architecture with

a set of measurement metrics. The real-world experiments

are designed with NVIDIA GeForce 8800GT GPU [26] and

its development platform CUDA [24]. The experiment re­

sults show that the proposed GPU-accelerated network coding

algorithm on NVIDIA 8800GT achieves a doubled coding

throughput compared with that on Intel Quad-Core CPU with

SSE2 acceleration. The experiment results also show that

the GAS architecture achieves performance improvements of

approximately 2 times in both average response time and

serving capacity compared with the pure CPU implementation.

To our best knowledge, this paper provides, for the first

time, the detailed measurements of streaming server capacity

utilization in a GPU-accelerated P2P-VoD streaming system.

It is also worth while mentioning that the proposed GAS

architecture can be deployed in a wide range of software and

hardware environments, including Microsoft Windows, Linux,

and Mac OS with the CUDA driver support by NVIDIA [24].

The rest of this paper is organized as follows. Section

II describes the background and related work. Section III

presents the design of VoD server architecture and schedul­

ing algorithm. Section IV analyzes the experimental results.

Finally, Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we position our work in the context of related

research.

A. Random Linear Network Coding

Network coding [9] has been originally proposed for achiev­

ing the theoretical multicast capacity of a network. Using

random network coding, the server or a peer is allowed to

combine a number of data blocks and encode them into one

or several outgoing blocks, specified by independently and

randomly chosen coding coefficients. Let b denote a group of

m data blocks to be encoded at the server, which is represented

by a vector with block elements as follows

(1)

where each data block bj, j = 1,2, ... , m, has a fixed size of

k bytes, and the superscript T denotes the transpose operation.

For any specific vector b, in order to produce one outgoing

block Xi, a server first ¥enerates a coding
.

coefficien� vector

ai = [ail, ai2,···, aim] , where each coding coeffiCIent aij
is randomly chosen from Galois field GF (28). With linear

network coding, the new block Xi is created by

m

Xi = L aij' bj
j=l

(2)

The corresponding coefficient vector ai is embedded in each

block's header during transmission.

Each coded block Xi is sent together with the corresponding

coefficient vector ai from the server to its downstream peer.

Clearly, an overhead of m bytes per coded block is yielded

by the accompanying coefficient vector since it contains m

elements from GF (28) , or equivalently m bytes. Such an

overhead is subtle for a large block size k and a moderate

group size m.

After a peer has received m linearly independent coded

blocks X = [Xl, X2, ... , xm]T" it begin to decode using the

following matrix operations. The m coding coefficient vectors

ai, i = 1,2, ... , m in fact constitute an m x m matrix A.
Each row in A corresponds to the coefficients of one coded

block.

b = A-I. X (3)

Note that the inverse of A is possible if and only if its rows

are linearly independent, i.e., A has full rank. The inverse of

A can be implemented efficiently using Gauss elimination or

its extension Gauss-Jordan elimination.

With network coding, all blocks are mixed and treated

equally, which in turn eliminates the need to schedule the

"rarest block" first or find a specific block. As long as a peer

can collect enough number of linearly independent blocks, it

can decode the original content.

B. GPU-based Acceleration

The primary practical problem network coding confronts is

the coding complexity. As has been observed in a real-world

experiment, network coding is only computationally feasible

for the number of blocks to be coded less than a thousand [18].

To accelerate network coding throughput, a parallelized pro­

gressive approach has been proposed with SSE2 and AltiVec

single instruction - multiple data (SIMD) vector instructions

performed on Intel x86 and PowerPC processors, respectively

[19].

More recently, preliminary results have been reported on

employing graphics processing units (GPUs) to accelerate

network coding by mapping network coding operations to

GPUs [20]-[23]. The approaches to GPU-based network cod­

ing behind these results are in common.

In order to help better understand the GPU-accelerated

processing of network coding, we first use NV IDIA Geforce

8800GT (henceforth used in this paper) as an example to

briefly introduce the GPU architecture. The GPU contains a

total of 112 streaming processors (SP) that are grouped to 14

streaming mUltiprocessors (SM), with each SM containing 8

SPs. The GPU employs a single-instruction multiple-thread

(SIMT) architecture which is akin to SIMD. In the SIMT

architecture, when an SM is allocated for a set of threads to

execute, it groups the threads into 32 as one SIMT scheduling

unit, or warp. Each unit are exectued in 4 cycles on the 8 SPs,

with 1 thread per SP each cycle. If one unit stalls, the SM

can execute another unit with zero-overhead hardware-based

scheduling. Meanwhile, the 14 SMs can run different sets of

threads independently and simultaneously. Therefore, the GPU

is particularly suitable for data-parallel computations with data

processing tasks mapped to parallel threads.

In order to perform the parallel network coding on the GPU,

the following two issues must be considered:

1) Divide the coding computations into tasks that can be

executed concurrently.

2) Map the tasks to physical streaming processors.

Suppose each data block bj, j = 1,2, ... , m has a fixed

size of k bytes. Clearly, bj can be partitioned into up to k
columns in terms of bytes. Whereas the conventional encoding

processing works over these columns in a sequential order.

In this parallel processing mode, k parallel threads are used

in correspondences with the columns of b, with each thread

independently calculating a dot product and providing an

output byte Xij, j = 1,2, ... , k. To generate a full set of

n coded blocks for a data group b, a total of n . k threads are

thus required.

With CUDA, the mapping was fairly straightforward. Fig. 1

describes the principle of mapping the encoding processing

to the GPU's processors. On each SM, threads are split into

warps. In each warp, the 32 parallel threads are scheduled for

a group of 8 threads in 4 cycles.

Previous results [20]-[22] have shown that commodity

GPUs are able to achieve the better encoding throughput as

compared to mainstream multi-core CPUs.

NVIDIA 8800GT GPU

iCodedtiiita-SIocks----

� ! I' XI k,

� , 1<--_x=-2 ___ -'

SM 13.

! I Xm
'----=.-c?'���-����-�����"""= ��_-,��-'

Shared Memory (16KB)

cycle 0 computations
WUIJlN

IlIJIillIillIlI IlIJIillIillIlI IlIJIillIillIlI IlIJIillIillIlI

Fig. 1. Mapping of coding processing tasks to threads on GPU.

C. Our Contribution

Our work in this paper is different from the already available

related results on GPU-based network coding, such as [20],

[22]. While these results are aimed to simply accelerate the

raw network coding throughput using GPUs, our work here

provides a new point of view for the design of practical VoD

systems in order to accelerate the performance of the VoD

servers. The raw coding throughput only reflect the feasibility

of network coding on GPUs. However, the design of VoD

server involves further considerations. The server with GPU

need to be structured to provide high aggregate streaming

rates and fast response time. Our paper is quite orthogonal

to the above work. We investigate the challenges and benefits

of GPU-based network coding on VoD servers. By taking

the advantages of GPU, we are ready to propose optimized

VoD server architecture. The complexity and challenges of

GPU-accelerated network coding have not been previously

examined in the context of VoD server. Therefore, we also

implement an real-world experimental prototype to form an

unbiased evaluation of the VoD server's performance.

III. GPU-ACCELERATED SERVER FOR VoD STREAMING

A. Assumptions and Design Space

A VoD streaming server with network coding needs to

serve the continuous requests from its directly connected peers.

Meanwhile, it also needs to perform random network coding

and to packetize the coded blocks. There are many aspects

that affect the performance of the VoD streaming servers with

network coding, such as network bandwidth, CPU overhead,

and disk I/O. Therefore, to provide high coding throughput and

fast response times, there are many possible design spaces in

the VoD server architecture.

In this section, we focus on the performance optimization

of the VoD streaming servers by alleviating the CPU load

with GPU acceleration in a cost-effective way. We believe that

this part is most suitable for implementation on GPUs. For

this purpose, we propose an architecture of GPU-Accelerated

Servers (GAS), together with a scheduling assignment.

Of course, if disk I/O and network bandwidth are the main

bottlenecks, then any method based on optimizing CPU or

GPU performance is futile. In our design, we assume that

disk I/O and network bandwidth are not the bottleneck. We

will see in the experiments that such assumptions are realistic

provided that the server is equipped with Giga-byte Ethernet

interface and RAID disk.

B. T he GAS Architecture

While network coding has proved effective for video stream­

ing in the P2P networks, it is also accompanied with a large

portion of the total CPU workload on the server. The network

coding overhead may dramatically degrade the performance

of the VoD streaming server, especially in the cases of high

stream bit rate and massive scale-up of the number of blocks

to be coded.

In order to reduce the server's workload, one possible

approach is to employ an offline pre-coding procedure. With

offline pre-coding approach, the video blocks are pre-encoded

by a dedicated server, and the coded blocks are then stored

on the VoD server's disk. However, this approach is usually

impractical since it requires a large extra storage space with a

prohibitive cost of creation and maintenance. In addition, the

coding parameters are fixed once the coded blocks have been

generated and stored on the disk.

In our design, we consider on-the-fly coding. In on-the-fly

coding approach, the video blocks are encoded by the server

upon the arrival of a request from a peer, and are then sent to

the the peer. In comparison with offline pre-coding approach,

on-the-fly coding approach may prove more advantageous.

First, with on-the-fly coding, it is easy to configure the coding

parameters, including block size and finite field, in order to

meet various on-demand needs from different peers. Second,

on-the-fly coding may generate as many coded blocks as

needed for the original blocks, whereas the offline pre-coding

approach usually stores only a limited number of coded blocks

for avoiding large costs of extra storage.

With the rapid improvements in performance and pro­

grammability as well as the increasing performance-to-price

ratio of GPUs, it is reasonable to equip the VoD streaming

servers with off-the-shelf graphics cards to take over a portion

of the CPU workload.

Fig. 2 presents a cost-effective and high-performance archi­

tecture of GPU-Accelerated Servers (GAS) for VoD Stream­

ing. The computing capacity of GPU is exploited to alleviate

the CPU workload and hence achieve a performance improve­

ment of the VoD streaming server. The GAS architecture in

Fig. 2 consists of the following basic modules:

1) GPU/CPU Coder: to maintain the encoding threads on

the GPU and the CPU, respectively.

2) Task Manager: be responsible for scheduling user re­

quests and reading data blocks from video files.

3) Request/Data Dispatcher: to accomodate the client re­

quests from peers and send the coded blocks to peers,

respectively.

T3 RAM

NIC

Fig. 2. The architecture of GPU-accelerated server (GAS) for VoD streaming.

1. Request Dispatcher
receive user request from network;
pass the request to Task Manager;

2. Task Manager
parse (video file, block group id, block length);
if (the requested block group are not in memory)

read the blocks from disk;
generate an encoding task;
push the task to Task Queue;

3. GPU Coder
wait until GPU is idle;
read task from Task Queue;
run the encoding task;
pass the coded block to Data Dispatcher;

4. CPU Coder
wait until CPU is idle;
read task from Task Queue;
run the encoding task;
pass the coded block to Data Dispatcher;

5. Data Dispatcher
pack the coded block;
send the coded block to user;

Fig. 3. Pseudo-code for the working threads at the VoD streaming server.

In the GAS architecture, the video stream is divided into

blocks of a fixed size k, and each block is assigned a sequence

number to represent its playback order in the stream. Network

coding operates over a group of m blocks as described in the

previous section. The GAS architecture supports both push­

based and pull-based streaming protocols. Either when a peer

requests a coded block, or when the streaming server needs to

send out a coded block, the on-the-fly network coding scheme

in GAS is presented in the following. The request dispatcher

will pass the block information to the task manager. The task

manager then reads all the blocks within a coding group into

memory and pushes the encoding tasks into the task queue, and

the GPU and CPU coders schedule the encoding tasks from

the task queue to run. Finally, the generated coded blocks are

sent by the data dispatcher to the peers.

The pseudo-code for the working threads is given in Fig. 3.

C. Scheduling

In the streaming server design, one of the major objectives

is to maintain a high serving capacity and provide a small

response time. As one step in this direction, the GAS architec­

ture allows the simultaneous use of CPU and GPU at the VoD

Streaming servers. For the GAS architecture to be efficient,

a properly designed task scheduler is required to balance the

load between CPU and GPU on the server.

The load balance between CPU and GPU is indeed a

mUltiprocessor scheduling problem, which needs to consider

the following two issues:

1) Which task runs next?

2) Which processor runs the next task?

Recall that the Request Dispatcher queues all the incoming

data requests in Task Queue. We assume that there are N

tasks in the Task Queue J, ji E J,i = 1,2, ... , N. We denote

the CPU and GPU as processor set P, where Po and PI are

CPU and GPU respectively. Suppose the amount of time delay

needed for encoding is dik if task ji is scheduled on Pk. Our

goal is to schedule these tasks such that

1) no task takes longer than a given maximum time Ui (say,

the video playback delay constraint),

2) the average delay of a task is as small as possible.

The Task Manager's objective is to a find a scheduling

function f : T f---+ [0, co) x [Po, PI] that specifies the task

execution sequences on each processor.

The probem is indeed a job scheduling problem on two

processors which is NP-Complete [29]. Therefore we provide

heuristic approaches to address the problem. An intuitive

assignment of tasks is the even assignment which distributes

the coding load evenly across the processors. To this end,

there are several possible processor assignment policies such

as random and round robin. However, the even assignment

of tasks to processors may entail an unwanted situation in

which one processor is idle whereas in the meantime, another

processor has a backlog since both CPU and GPU vary in

computing capacity. With mUltiprocessors, it is paramount to

keep each processor busy as much as possible in order to

exploit their computing capacities and thus obtain the best

performance.

In our GAS design, we provide a simple yet efficient

scheduling method. The arrived coding tasks are scheduled

in a first-come first-serve (FCFS) fashion. We believe that the

differentiated services can easily be incorporated into the GAS

design using a priority queue that is maintained for the coding

tasks from different peers.

When assigning the scheduled coding tasks to processors,

the GAS treats both CPU and GPU as a pooled resource, where

both CPU and GPU coder threads employ self-scheduling

when they are able to accept the encoding tasks. Consequently,

both CPU and GPU in the GAS architecture will be kept busy

once the task queue is not empty. Clearly, the self-scheduling

assignment must satisfy the following two requirements:

1) Make sure that the two threads do not choose the same

encoding task;

IIUpon new encoding task is loaded
void addTask(newtask)
(

}

mutex.lock();
taskQueue.push(newtask);
semaphore.release(l);
mutex.unlock();

II waitTask() for CPU and GPU
void wai tTask ()
(

semaphore.acquire(l);
mutex. lock() ;
if(!taskQueue.empty())
(

task=taskQueue.front();
taskQueue.pop ();

}
mutex.unlock();

Fig. 4. Scheduling of the encoding task queue for both CPU and GPU.

2) Make sure that no encoding task is neglected.

To address the challenge, GAS maintains a semaphore in

the encoding task queue which is given in Fig. 4. When the

file manager thread has completed the loading of the encoding

data into the main memory, it creates a new encoding task and

pushes it into the task queue. Both CPU and GPU controller

threads run in a blocking manner during the encoding process,

that is, these threads can invoke the waitTaskO function and

schedule a new task only when they have completed the

current tasks. With this scheduling algorithm, the encoding

tasks dequeue in a FCFS fashion and get assigned to a current

idle processor. As a result, the network coding throughput

on the streaming server could be maximally accelerated by

balancing the load between CPU and GPu.

In particular, priority could be trivially combined with our

approach as it does not impact the proposed server architec­

ture. If any request approaches its playback time constraint,

Task Manager may prioritize this request and set it at the top

of the task queue. Hence it will be scheduled immediately.

D. Analysis on GAS Design

We now investigate the important factors that account for

the server performance under GAS architecture. As we saw in

the previous subsection, there are four key steps for generating

coded blocks in GAS:

• TI: Request Dispatcher accommodates the client requests;

• T2: Task Manager loads the data blocks from hard disk

to the main memory;

• T3: GPU and CPU Coder schedules coding tasks to run

respectively;

• T4: Data Dispatcher packetizes the coded blocks and

sends them to the peers.

All the steps may contribute to the server's performance

bottlenecks. The first step TI involves reading the client

requests from network interface and passing the requests

to Task Manager. Ignoring the latency of copying requests

from the Ethernet interface to the main memory, which is

almost constant (say, several j.ls), TI is only limited by the

efficiency of Request Dispatcher threads. Since the server
needs to sustain the demands from hundreds, even thousands,
of directly connected peers, a pool of Request Dispatcher
service threads is necessary to meet the simultaneous requests.

In the second step, the Task Manager needs to parse the
requests and read the required data blocks into the main
memory. Parsing a client request only contributes a minor part
to T2 since the data structure of the request is simple. Indeed,
reading data blocks from hard disk to the main memory is
costly compared with pure memory operations. The overhead
includes opening the video file if it is not ready, seeking the
desired block position, and loading a sequence of m data
blocks into the main memory. One possible improvement is to
merge the requests from different peers into one continuous
disk access and to transfer the continuous blocks to the main
memory as a whole. The mergence is possible only when the
requests are within the same video file and different block
sequences are continuous or overlapping. Another key insight
that enables us to optimize T2 is to maintain a disk I/O cache.
With a proper cache replacement policy, we can allocate a
space in the main memory to cache some popular blocks.
Once the data blocks are hit in cache, no extra disk I/O is
needed. In our experiment, we do not consider additional cache
since the RAID5 SATA disk can already provide a reading
throughput which is beyond the GPU and CPU's aggregate
coding throughput requirement. However, such optimizations
can be included to reduce disk access frequency in case of
practical VoD server deployment.

The third step essentially consists of two parallel parts: GPU
coding and CPU coding. The overall coding throughput is
roughly the sum of the individual throughputs on the GPU
and the CPU. The CPU coding efficiency could be improved
by taking the advantage of modern multi-core CPUs and SIMD
vector instruction sets, eg., Intel SSE2. Nevertheless, CPU
coding is not our major concern here. How to improve the cod­
ing throughput on GPU has been introduced in section II-B.
Specifically, we identify further improvement of coding perfor­
mance on GPU through a number of optimization schemes. As
shown in Fig. 1, the GPU is integrated with 512MB of global
graphics memory, and meanwhile, each SM contains 16KB
of on-chip shared memory. However, compared with the on­
chip shared memory which is as fast as register, the global
memory has a relatively longer access time which is usually
ranged from 400 to 600 clock cycles. Notice that following
the 8-bit byte-based encoding processing represented in (2), a
thread needs first to load required bytes from global memory
to shared memory prior to its running Galois operations. As
discussed above, the byte-by-byte memory access may sutfer
from a long latency. In order to reduce the memory access
latency, we use the following two optimizations:

1) Use 32-bit integer to access global memory in a single
instruction.

2) Coalesce the simultaneous memory accesses of data,
which lie in the same segment by different threads within
a warp, into a single memory transaction.

The use of 32-bit integer, instead of 8-bit byte, avoids practi­
cally casting between integer and byte. In this case, moreover,
a thread encodes 4 bytes, and thus only k / 4 parallel threads
are needed to obtain a coded block, yielding a reduction of
3/4 in the total number of required parallel threads. For these
purposes, in our implementation, both the block size k and the
group size m are chosen as a multiple of 4, respectively.

We now proceed to study the forth step T4. In the forth
step, the Data Dispatcher read the coded blocks from the
main memory and sends them to network interfaces. The
optimization for T4 is similar with T1. A pool of Data
Dispatcher service threads is activated to send the coded data
blocks as fast as possible. Since step 1 and 4 are not our major
focus, we omitted further discussion on the optimizations for
network socket I/O. We simply employ a relatively large pool
of threads that could saturate the Ethernet interface capacity
to ensure that network I/O is not the bottleneck.

Warping up all the modules, GAS is now ready to bring
high-performance network coding throughput to streaming
servers by leveraging GPU's many-core computing power.

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation
results on both the GPU-accelerated network coding and the
VoD server using the GAS architecture. All the results reported
in this section have been obtained by averaging over ten runs
of the real-world experiments.

A. Experiment Environments

To evaluate the performances of GPU-accelerated network
coding and GAS-based VoD streaming server, the random
network coding algorithms are designed over GF(28), and the
GAS architecture is deployed on a commodity VoD streaming
server. The server is equipped with two Intel Pentium Xeon
5405 2.0GHz Quad-Core processors, 2 x 2GB ECC RAM,
one NV IDIA Geforce 8800G T GPU, 160GB SATA RAID5
hard disk, and one Gigabit Ethernet adapter. Both the network
coding and the GPU code are implemented with CUDA 2.0(3.

B. Performance of GPU-Accelerated Network Coding

As an important metric to gain insights on the server
performance, we first validate the raw coding bandwidth under
our optimized GPU code implementation. The impact of GPU­
acceleration on the network coding throughput is evaluated
in terms of network coding bandwidth by using a set of
experiments. For a fair comparison, a baseline C++ imple­
mentation for the CPU schemes is incorporated with the SSE2
optimization. The experiments for the CPU implementation are
run with three different CPU setups: 1) Single Xeon 5405 with
4 threads; 2) Dual Xeon 5405 with 4 threads; 3) Dual Xeon
5405 with 8 threads.

In the first set of experiments, the number of data blocks
to be coded is fixed at 64, 128, and 256, respectively. Fig. 5
presents a comparison of the encoding bandwidth as a function
of the block size between the GPU scheme and the three
CPU schemes above. Obviously, the encoding bandwidth of

45
Single Xeon5405, 4 threads �

40 Dual Xeon5405, 4 threads �
"' Dual Xeon540S, 8 threads ___
Q;

70

�
>. 60
ell

Single Xeon5405, 4 threads �
Dual Xecn5405, 4 threads �
Dual Xeon5405, 8 threads ___

Geloree 8800GT GPU �
>.
ell

35
Geloree 8800GT GPU �

25 r-�-�---:Si:;C·n� g""le-cX"'-eo�n-;C 54-;-;0"'5' , 4'"t;:-hrc-eaccdcs -�--,-,

Dual Xecn5405, 4 threads �
Dual Xeon5405, 8 threads ___

Geloree 8800GT GPU �

� � 30 �e
,5 ,5 50 ,5 15 "0 "0 "0

.
� .�

"0 25 .�
-g
'" 40

c
'"

-g
'"
.0 .0 20 .� .0 .� 10

"8 30 "8 15 "8
"
c
W

Vi'
Q;
>.
ell
�
.c
'i5
.�
"0
C
'"
.0
CJ)
c

'8
"
"
Cl

"
c
w 10

5

"
c
W 5

1KB 2KB 4KB 8KB 16KB 32KB 64KB 1 KB 2KB 4KB 8KB 16KB 32KB 64 KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB

Block size Block size Block size

(a) block number 64 (b) block number 128 (c) block number 256

Fig. 5. Encoding bandwidth with fixed block number 64, 128 and 256

80 40
Single Xeon5405, 4 threads �

70
Dual Xecn5405, 4 threads �
Dual Xecn5405, 8 threads � Vi'

Geloree 8800GT GPU � Q;
>.

35

30

Single Xeon5405, 4 threads �
Dual Xeon5405, 4 threads �
Dual Xeon5405, 8 threads �

Geloree 8800GT GPU � �

20 r-�-�---:Si:;C·n"'g""le-cX"'-ec�n-;C54-;-;0"'5' , 4"t;:-hrc-ea=-= drs -�--,-,

Dual Xecn5405, 4 threads �
Dual Xecn5405, 8 threads �

>. 15
ell

Geloree 8800GT GPU �

60 ell
� 25 .c

50 'i5
.� 20 "0

40 c '"
.0 15
CJ)

30 c

'8 10
"

20
"
Cl 5

10 0

�
.c
'i5
� 10
c
'"
.0
CJ)
c

'8 5
"
"
Cl

o
1KB 2KB 4KB 8KB 16KB 32KB 64KB 1 KB 2KB 4KB 8KB 16KB 32KB 64 KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB

Block size Block size Block size

(a) block number 64 (b) block number 128 (c) block number 256

Fig. 6. Decoding bandwidth with fixed block number 64, 128 and 256

our GPU-accelerated implementation is larger than that of all

the cutting-edge CPU implementations. The improvement in

the encoding bandwidth comes from the use of GPU parallel

computing architecture. As the block size increases, the encod­

ing bandwidth of each CPU scheme increases significantly,

especially in the case of 8 threads. However, the encoding

bandwidth of the GPU-accelerated scheme varies marginally.

From the three sub-figures in Fig. 5, it is also seen that the

encoding bandwidth decreases with the number of data blocks.

This is explained by the fact that the increase in the number of

data blocks leads to an increased memory accesses and thus

results in a reduction of the encoding bandwidth.

The experimental results on the decoding are shown in

Fig. 6 for the comparison of the decoding bandwidth as a

function of block size between the above schemes. Again, the

GPU-accelerated scheme achieves the best performance com­

pared with the CPU schemes. Clearly, the decoding bandwidth

of each scheme is smaller than the corresponding encoding

bandwidth due to the fact that the coefficient matrix inversion

involves serial operations. This may also explain the increasing

of the decoding bandwidth for the GPU-accelerated scheme

with the block size. With the increase in block size, the time

spent in matrix inversion is no longer dominant. As a result,

the decoding bandwidth would approach that of encoding.

In conclusion, with respect to both encoding and decoding

bandwidths, the GPU-accelerated scheme outperforms the

CPU schemes. Therefore, it is not only feasible but also

practical to accelerate network coding using GPU.

C. Performance of GAS

Having employed the GPU-based network coding in GAS,

we are now ready to evaluate its performance against CPU­

based implementation. In the evaluation of the VoD streaming

server performance, we consider the following three metrics:

1) Serving Capacity: Which represents the maximum num­

ber of simultaneous connections that can be successfully

supported by the server;

2) Response Time: Which is measured as the time differ­

ence between when the server receives a request and

when the server sends out the coded blocks;

3) CPU Usage: Which reflects the CPU load in percentage

at a given time instant.

To fully evaluate the GAS scheme with network coding

performed on both CPU and GPU, we also consider other

two special schemes to network coding, namely pure CPU

approach and pure GPU approach. The pure CPU approach

performs network coding solely on CPU, whereas the pure

GPU approach performs network coding solely on GPu.

In the set of experiments designed to examine the serving

capacity of the three schemes, the server provides only one

video channel coded at a specified bit rate of 750 Kbps. The

arrival of client requests is modeled by a discrete Poisson

process with A = 2 and 0 = 5s. The clients are supposed

to keep on requesting data blocks once their requests have

arrived.

Fig. 7a presents the experimental results on the CPU usage.

Obviously, the CPU usage of GAS is between that of the two

pure schemes. This can be explained by the fact that GAS

leverages the CPU load with part of the network coding tasks

executed on GPU.

Fig. 7b shows that the response time for all the three

schemes increases with the number of simultaneous users.

Moreover, GAS can accommodate nearly 500 users, whereas

the other two pure schemes can only support about 200 and

350 users, respectively. These results have shown that GAS

outperforms both pure schemes in terms of serving capacity

in a wide range of response time beyond lOOms.

Fig. 7c presents the results of the CPU load on the streaming

server in a more dynamic environment, where the video of

size 160MB is served at a streaming bit rate of 750 Kbps, and

where client departure behaviors have been taken into account

using the churn rate pattern of real-world trace results [17]. In

this set of experiments, the arrival of client requests is assumed

to follow the same Poisson distribution as mentioned above.

The results of Fig. 7c has been obtained by tracing the CPU

usage on the server within one hour, and the CPU usage is

presented as a function of time. Again, the CPU usage of the

GAS scheme is reasonably acceptable.

Fig. 8 gives the results of the response time distribution

captured for the three schemes. It is easily seen that GAS

minimizes the startup delay which is experienced by end users.

These results show that GAS are more stable and scalable in

terms of response time.

One interesting question raised now is that how the number

of video channels affects the server performance. Unlike

previous experiments with only one video channel, the exper­

iments below consider 30 and 200 different video channels,

respectively, in order to examine the impacts of multiple video

channels. In these experiments, the video popularity model

follows Zipf-like distribution, with a Zipf popularity parameter

of 0.5. All the videos have the same streaming bit rate of 750

Kbps, and the client requests still follow a Poisson arrival

pattern with A = 2 and 0 = 5s. All the clients will stay in

session and keep on requesting blocks from the server.

Fig. 9 depicts the CPU usage actually measured for the three

schemes. Again, GAS has a moderate CPU usage compared

with the other two schemes. Fig. 10 illustrates how the

response time of the VoD server evolves in the case where the

server has multiple video channels. Clearly, GAS outperforms

the other two schemes as the number of concurrent client

requests increases with time. It indicates that a substantial

improvement in the serving capacity of the streaming server

can be obtained by balancing the load between CPU and GPU.

For the number of clients beyond 300, GAS outperforms the

100

90

80

70

60

�

l
50

40
0

f 30

� 20

10

User number

Fig. 11. The percentage of delay components in response time for GAS

pure schemes in both scenarios with 30 and 200 channels,

respectively. For response time benchmark, there is a larger

performance gain for GAS due to the load balancing design

by GAS.

As the number of concurrent users increases, the average

response time for GAS will degrade. Neglecting the network

I/O, the response time includes three delay components:

(l)Queueing delay: waiting time in the task queue; (2)1/0

delay: the time needed for loading the source blocks from

hard disk drive (HDD) to main memory; (3)Encoding delay:

encoding the blocks. We now investigate the main contributing

factor in the increase of response time. In this set of experi­

ments, the video's bit rate is 750 Kbps,the client requests still

follow a Poisson arrival pattern with A = 2 and 0 = 5s. All

the clients will stay in session and keep on requesting blocks

from the server. Fig. 11 reflects the average percentage of

the three delay components for GAS at a given time. Initially,

there's nearly no queueing delay since the number of clients is

small. The encoding delay contributes to most of the response

time. With the increase in user requests, the queueing delay

increases significantly. From Fig. 11, we also observe that disk

I/O is actually not a dominant factor in response time.

V. CONCLUSION

A GPU-Accelerated Server (GAS) architecture for VoD

streaming has been proposed based on a GPU-accelerated

network coding processing on the NV IDIA GeForce 8800GT

GPU. Using real-world experiments, the performances of both

the GPU-based network coding and the GAS architecture have

been examined. With these results, the main idea of speeding

up the VoD streaming server by exploiting the computing

power of GPU has been demonstrated. As can be observed,

our GAS approach achieves a significant performance gain

in terms of the CPU load, the coding throughput, and the

response time. This paper provides, in fact, a proof-of-concept

in that by offering an attractive performance-price ratio, GPUs

can be used to offload the streaming server overhead and thus

circumvent the hurdle to the practical deployment of network

�
Q)
Cl
::l :J
:J a.
u

E
or
E
;::
Q)
� 0
5l-
Q) 0:

(])
Cl
til
Vl

::l
::l
a..
U

100

80

60

40

20

350

300

250

200

150

100

50

0

100

80

60

40

20

o

100000
CPU Only CPU and GPU -- CPU Only, GPU Only' CPU and GPU· 100

"'

\, 1 1
.s 10000 80
Q)

� E CPU Only
;::

I
Q) ,/

�
Cl 60

1000 I i
::l 0 :J

5l- :J
Q)

� a. 40 0:
.��t

U
100 .. ,,)

"' . 20
.. W •

10
200 400 600 800 1000 1200 1400 1600

Time (second)

o 100 200 300 400 500 600
Number of Users

500 1000 1500 2000 2500 3000 3500
Time (second)

400

o

(al CPU usage (b 1 Response time (cl CPU usage with peer departure

Fig. 7. Serving capacity of the streaming server with single video channel.

CPU Only
350

300

. . . E
. ' ,:; or 250

� . E
;::
Q) 200

.�
� 0
5l- 150 Q) 0:

100

50

800 1200 1600 2000 2400 2800 3200 3600
Time (second)

(al CPU only

GPU Only

.)11:':
• "lI!: 10: . '111. 1..)If

if)I(•• ••• _ . •• _._
A>: _., ••)1(»: ")0" ._ _ .. _

__)Ill "'ill. lO;lj,: •• ��� .. _ •• ¥
... ..,...... t I • liI-=-

o 400 800 1200 1600 2000 2400 2800 3200 3600
Time (second)

(bl GPU only

350

300

E
or 250
E
;::
Q) 200
� 0
5l- 150 Q) 0:

100

50

CPU and GPU

o 400 800 1200 1600 2000 2400 2800 3200 3600
Time (second)

(cl CPU and GPU

Fig. 8. Response time of GAS, pure CPU scheme, and pure GPU scheme with single video channel.

200 400 600

CPU and GPU

\

GPU Only

I

800 1000 1200 1400

Time (second)
(al 30 video channels

(])
Cl
til
Vl

::l
::l
a..
U

100

80

60

40

20

o

o

CPU Only CPU and GPU --

200

\

400 600

\

GPU Only

I

800 1000 1200 1400

Time (second)
(b 1 200 video channels

Fig. 9. CPU usage for GAS, pure CPU scheme, and pure GPU scheme with 30 and 200 video channels, respectively.

rJ)

E
Q)
E
i=
Q)
rJ)
c:::
o
c.
rJ)
Q)

0:::

100000

o

CPU Only x GPU Only * CPU and GPU +

100 200 300 400

Time (second)

(a) 30 video channels

500 600

Vl
E
Q)
E
i=
Q)
rJ)
c:::
o
c.
rJ)
Q)

0:::

100000

10000

1000

100

10
o

CPU Only x GPU Only * CPU and GPU+

\ 1 \
I �.
x

100 200 300 400 500 600

Time (second)

(b) 200 video channels

Fig. 10. Response time for GAS, pure CPU scheme, and pure GPU scheme with 30 and 200 video channels, respectively.

coding-based P2P-VoD systems. As part of our ongoing work,

several issues still remain open, which include the design and

performance evaluation for the application of multiple GPUs

in the VoD streaming server.

ACKNOW LEDGMENT

The work was supported in part by 863 program of China

under grant No. 2009AAOIA348, by NSFC under grant

60803119, and by Science and Technology Commission of

Shanghai Municipality under grant 08dz15001OE.

REFERENCES

[1] YouTube website. [Online]. Available: http://www.youtube.com/
[2] c. Huang, J. Li, and K. W Ross, "Can Internet video-on-demand be

profitable," in Proc. ACM SIGCOMM'07, Kyoto, Japan, 2007, pp. 133-
144.

[3] B. Cheng, X. Liu, Z. Zhang, and H. Jin,"A measurement study of a
peer-to-peer video-on-demand system" in Proc. IPTPS, Bellevue, WA,
Feb. 2007.

[4] B. Cheng, L. Stein, H. Jin, and Z. Zhang, "Towards cinematic Internet
Video-on-Demand," in Proc. ACM EuroSys 2008, Glasgow, Scotland,
Apr. 2008, pp. 109-122

[5] Y. Guo, K. Suh, J. Kurose, D. Towsley, "P2Cast: P2P patching scheme
for VoD service," in Proc. WWW'03, Budapest, Hungary, May 2003, pp.
301-309.

[6] T. Do, K. Hua, and M. Tantaoui, "P2VoD: providing fault tolerant Video­
on-Demand streaming in Peer-to-Peer environment," in Proc. ICC'04,
Paris, France, Jun. 2004, pp. 1467-1472.

[7] K. Suh, c. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,
and M. Vall eo, "Push-to-peer video-on-Demand system: design and
evaJuation," IEEE J. Select. Areas in Commun., vol. 25, no. 9, pp. 1706-
1716, Dec. 2007.

[8] c. Huang, J. Li, and K. Ross, "Peer-assisted VoD: making Internet video
distribution cheap," in Proc. IPTPS'07, Redmond, WA, Feb. 2007.

[9] R. Ahlswede, N. Cai, S. Li, and R. Yeung, "Network information flow,"
IEEE Trans. Inform. Theory, vol. 46, no. 5, pp. 1204-1216, Jul. 2000.

[10] P. Chou, Y. Wu, and K. Jain, "Practical network coding," in Proc. 41st
Allerton Con! on Communication Control and Computing, Monticello,
IL, Oct. 2003.

[11] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, "The benefits
of coding over routing in a randomized setting," in Proc. of Int. Symp.
on Information Theory ISIT'03, Jun. 2003, p. 442.

[12]

[13]

[14]

[15]

[l6]

[17]

[l8]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

C. Gkantsidis and P. Rodriguez, "Network coding for large scale content
distribution," in Proc. IEEE INFOCOM'05, Miami, FL, USA, Mar.
2005, pp. 2235-2245.
M. Wang and B. Li, "R2: random push with random network coding in
live peer-to-peer streaming," IEEE J. Select. Areas Commun., vol. 25,
no. 9, pp. 1655-1666, Dec. 2007.
C. Wu, B. Li, and S. Zhao, "Multi-channel live P2P streaming: refocus­
ing on servers," in Proc. IEEE INFOCOM'08, Phoenix, AZ, May 2008,
pp. 1355-1363.
H. Chi, Q. Zhang, J. Jia, and X. Shen, "Efficient search and scheduling in
P2P-based media-on-demand streaming service," IEEE J. Select. Areas
Commun., vol. 25, no. 1, pp. 119-130, Jan. 2007.
S. Guha, S. Annapureddy, C. Gkantsidis, P. Rodriguez, and D. Gu­
nawardena, "Exploring VoD in P2P swarming systems," in Proc. IEEE
INFOCOM'07, Anchorage, Alaska, May 2007, pp. 2571-2575
Y. Huang, T Z. J. Fu, D. M. Chiu, J. C. S. Lui, and C. Huang,
"Challenges, design and analysis of a large-scale P2P VoD system,"
in ACM SIGCOMM'08, Seattle, WA, Aug. 2008, pp. 375-388.
M. Wang, and B. Li, "How practical is network coding?" in Proc. IEEE
IWQoS 2006, New Haven, CT, Jun. 2006, pp. 274-278.
H. Shojania and B. Li, "ParaJlelized progressive network coding with
hardware acceleration," in Proc. IEEE IWQoS'07, Evanston, IL, 2007,
pp. 47-55.
X.-W Chu, K.-Y Zhao, and M. Wang, "Massively parallel network
coding on GPUs," in Proc. IEEE IPCCC'08, Dec. 2008.
X.-W Chu, K. Zhao, and M. Wang, "PracticaJ random linear network
coding on GPUs," in IFfP Networking 09, Archen, Germany, May 2009.
H. Shojania, B. Li, X. Wang, "Nuclei: GPU-accelerated many-core
network coding," in Proc. IEEE INFO COM 2009, Rio de Janeiro, Brazil,
Apr. 2009
H. Shojania, B. Li, "Pushing the envelope: extreme network coding on
the GPU," in Proc. IEEE ICDCS 2009, Montreal, Canada, Jun. 2009,
pp. 490-499.
NVIDIA CUDA [Online] Available: http://www.nvidia.com/cuda!.
ATI CTM Guide [Online] Available: http://ati.amd.com!.
NVIDIA GeForce 8800 GPU Architecture Overview [Online] Available:
http://www.nvidia.com
J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J.
C. Phillips, "GPU computing," Proc. of the IEEE, vol. 96, no. 5, pp.
879-899, May 2008.
Z. Liu, C. Wu, B. Li, and S. Zhao, "UUSee: large-scale operational
on-demand streaming with random network coding," in Proc. IEEE
INFOCOM'IO, San Diego, USA, Mar. 2010.
E. Lawler, 1. Lenstra, A. Kan, and D. Shmoys, "Sequencing and
scheduling: algorithms and complexity," Elsevier, 1993.

