
Building Parallel Regeneration Trees in Distributed

Storage Systems with Asymmetric Links

Jun Li, Shuang Yang, Xin Wang

Abstract-Distributed storage systems provide reliable storage
service by storing data, with a certain amount of redundancy, into
a substantial number of storage nodes. In order to compensate
the data loss incurred by node failures, the lost data should be
regenerated. Tree-structured regeneration, during which storage
nodes may relay the network traffic, has shown its potential to
improve the efficiency of the regeneration process in the network
with symmetric links. In this paper, we consider tree-structured
regeneration in the network with asymmetric links, and analyze
its expected time spend during the regeneration. Moreover, we
further reduce the regeneration time by constructing multiple
parallel regeneration trees. We proposed two optimal algorithms
with polynomial time complexity, to construct multiple edge­
disjoint and multiple edge-sharing parallel regeneration trees,
respectively. We evaluate our algorithms by the simulation using
real data measured in PlanetLab. The simulation results show that
multiple parallel regeneration trees can reduce the regeneration
time by 75% and keep the file availability more than 98%.

I. INTRODUCTION

The distributed storage system (e.g., [1]), designed to provide
a large-scale and reliable data storage service, stores data into
a large number of storage nodes in a network. Depending
on application scenarios, storage nodes may vary from cluster
servers in modular data centers [2], to even ordinary computers
in peer-to-peer networks [1]. The storage nodes are subject to
fail, resulting in the data loss. Thus, the system needs to store
a certain amount of redundancy, to guarantee that a subset of
storage nodes can recover the data. MDS codes, such as Reed­
Solomon codes, maintain the recoverability property such that
any subset including at least k nodes can recover the original
data.

When a storage node fails, a replacement node, called
newcomer, should regenerate the lost data. In this process of
regeneration, if any k nodes suffice to recover the original
data, to maintain the recoverability property, the newcomer
should receive data from at least k storage nodes, called
providers in the regeneration process. Thus, the regeneration
process is bottlenecked by the slowest end-to-end link from
one provider to the newcomer, i.e., the bottleneck link. As a
matter of fact, the bottleneck link can be bypassed by the tree­
structured regeneration [3], [4] using network coding, such that
providers may encode and relay the traffic from other providers
to the newcomer, as shown in Fig. lea). We proposed the tree-

Jun Li, Shuang Yang, and Xin Wang (contacting author: xinw@fudan.edu.cn)
are with School of Computer Science, Fudan University, China. This work is
supported in part by NSFC under Grant No. 60702054, 863 program of China
under Grant No. 2009AAOIA348, Shanghai Municipal R&D Foundation under
Grant No. 09511501200, and Shanghai Rising-Star Program under Grant No.
08QA14009.

structured regeneration in the network with sYlmnetric links [3]
and incorporated it with regenerating codes [5] in [4].

In this paper, we step forward to consider the asymmetric
links in the network, i.e., the bandwidth in one direction of
the link is not as available as that in the other one. Lee et
al. [6] measured the bandwidth capacity between nodes in
PlanetLab [7]. The measurement results show that only 21.49%
of the measured node pairs have a symmetric end-to-end link
connecting them. Without the knowledge of link asymmetry,
the available bandwidth of the regeneration tree will not be
as good as expected, if the available bandwidth is measured
in one direction or in a round trip. For example, the available
bandwidth of the regeneration tree, i.e., the available bandwidth
of the bottleneck link, is expected to be 30Mbps in Fig. lea)
as links are supposed to be symmetric, but in fact it is only
15Mbps if links in the network are asymmetric in Fig. l(b). In
this paper, we discuss the algorithm to construct the regener­
ation tree with the optimal available bandwidth. For example,
the optimal regeneration tree in the network model shown in
Fig. l(c) achieves the available bandwidth of 20Mbps in the
regeneration process.

In addition, we further try to utilize links more effectively
during the regeneration by constructing multiple parallel re­
generation trees. For example, the available bandwidth in the
regeneration process can be further improved to 30Mbps in
Fig. 1 (d), if we construct t regeneration trees (t > 1) which
transmit t of the whole regeneration traffic in parallel, respec­
tively. Though the minimum available bandwidth of one parallel
regeneration tree may be worse than the that of the single
regeneration tree, the parallel transmission can help to reduce
the time spent during the regeneration by 33%. Moreover, if
some edges of several trees may share the same end-to-end link,
the regeneration time can be further reduced by 25%, as shown
in Fig. lee). In this paper, we propose two optimal polynomial
algorithms to construct t edge-disjoint and edge-sharing parallel
regeneration trees, respectively.

We run extensive simulations to evaluate the performance
of our algorithms. We simulate a distributed storage system
based on real data of available bandwidth and node behaviors
measured in PlanetLab. Our simulation results show that using
multiple parallel regeneration trees can reduce regeneration
time to 19% of that spent by the conventional star-structured
regeneration, and to 45% of that using a single regeneration
tree. In the simulation of a dynamic network environment, we
observe that multiple parallel regeneration trees can keep the
file availability of at least 98%.

The remainder of this paper is organized as follows. In

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.30

Vo

V2 V3 V2 30Mbps V3
(a) An optimal regeneration
tree in a network with sym­
metric links.

(b) A regeneration tree in
a network with asymmetric
links.

(c) An optimal regeneration
tree in a network with asym­
metric links.

(d) Two parallel regeneration
trees in a network with asym­
metric links.

(e) Two edge-sharing parallel
regeneration trees in a net­
work with asymmetric links.

Fig. 1. Examples of regeneration trees in the networks with symmetric and asymmetric links.

Sec. II, we introduce the background, and describe in detail

the problem of the ignorance of bandwidth asymmetry and the

advantage of multiple regeneration trees. Sec. III introduces the

network model and discusses the construction and the expected

regeneration time of the optimal regeneration tree. In Sec. IV,

we discuss the construction algorithms of t edge-disjoint and

t edge-sharing parallel regeneration trees. We introduce the

simulation results in Sec. V. Finally, Sec. VI concludes this

paper.

II. PRELIMINARIES

A. Redundancy and linear network coding

In the distributed storage system, data are stored in a number

of storage nodes. A storage node may save a whole file or a part

of a file. Since the nodes may leave the network temporarily

or even fail, data should be stored with redundancy such that a

subset of storage nodes can recover the original data. If the size

of a file is M bits, the storage nodes in the network may store

totally 3� bits. Thus, 'i bits are stored as the redundancy and

the redundancy rate r is 1.5.
Compared with storing replicas of the original data in the

storage nodes, encoding the original data into coded blocks can

improve the data availability [8] . Maintaining the recoverability

property with a high probability, Acedannski et al. [9] intro­

duced randomized linear network coding as a way of achieving

coded blocks. Dimakis et al. [10] presented deterministic linear

network coding to achieve the redundancy. If a file is divided

into k blocks, Bl, B2, ... , Bb a coded block F is a linear

combination of the k blocks on a Galois field IF 2q. q bits are

regarded as a symbol on IF 2q and a block is then a sequence of

symbols on IF 2q. Thus we have

k
F= L aiBi, (1)

i=l

where (aI, a2,"" ak)T is the randomly-generated encoding

vector, ai E IF 2'1, i = 1,2, ... , k. If q is large enough, any

k coded blocks are sufficient to recover the original blocks

with high probability. Given k coded blocks and their encoding

vectors, we can reconstruct the original blocks by solving a

linear system of k equations.

Without loss of generality, we assume that each storage node

stores one coded block, such that any k storage nodes can

recover the original data. Apart from the coded block, a storage

node has to store the corresponding encoding vector. However,

this overhead can be ignored if the block is large enough. Since

the size of one coded block is equal to the size of one original

block, the redundancy rate is � if there are n coded blocks in

the network.

B. Tree-structured data regeneration

Nodes may fail in the distributed storage system and thus the

data loss may be incurred. The redundancy rate will decrease

or even turn to zero if node failures are not handled. In order

to regenerate the lost coded block, the system should select

a node, called newcomer, to replace the failed storage node.

The newcomer should receive k' coded blocks, Fl, F2, ... , Fk"
from k' active storage nodes, called providers, and get a new

coded block Fo as a linear combination of the received blocks:

k'
Fo = L a�Fi' (2)

i=l

a; E lF2q, i = 1,2, ... , k. To keep the recoverability property,

k' should be at least k. However, considering the bandwidth

cost and the node behaviors, a small number of providers is

preferred in the distributed storage system [11], so in this paper

we only considers the scenario that k' = k. Wu et al. [5]

showed that the minimum regeneration traffic when k' = k is

M bits, the size of the original file. This optimal traffic can be

achieved easily when the newcomer receives k coded blocks

from k storage nodes.

Even though the minimum regeneration traffic has been

achieved, we can further reduce the regeneration time by ex­

ploiting the bandwidth diversity. In an overlay storage network,

links between storage nodes usually enjoy different available

bandwidth. Conventionally the regeneration is carried out in

a manner called star-structured regeneration. For example,

Fig. l(a) shows a regeneration in a network with symmetric

links, in which Vo is the newcomer and other three nodes are

providers, i.e., k = 3. If the newcomer receives the coded

blocks directly from the three providers, the transmission will

finish when the newcomer has received the coded block from

V3, and the regeneration time is thus 3� ��ps'
Moreover, we can allow providers to relay the regeneration

traffic. The darkened directed edges in Fig. lea) indicate how

data are transmitted in the network. For example, V2 receives

data from V3, encodes the received blocks with the coded

blocks stored by itself, and then sends the coded data to the

newcomer as long as there are data available to send, rather

than after the whole block is encoded. The edges used in

the transmission form a spanning tree over the newcomer and

the providers, called regeneration tree. The bottleneck edge of

a regeneration tree is the edge with the minimum available

bandwidth, and the available bandwidth of a regeneration tree

is thus the available bandwidth of the bottleneck edge. In

Fig. lea), (Vl, Vo) and (V3, V2) are bottleneck edges and the

regeneration time becomes one forth of the star-structured

regeneration.

C. Regeneration in the network with asymmetric links

The links in the network model in Fig. lea) are all symmetric,

i.e., the available bandwidth in one direction is the same as the

that in the other direction, but in reality, this is improbable. The

measurement in PlanetLab [6] shows that at least 78.51 % of

links are asymmetric. Fig. l(b) shows a network model with

asymmetric links. The available bandwidth of each edge in

Fig. lea) is the average available bandwidth of corresponding

edges in two directions in Fig. 1 (b). If the link aSYlmnetry

is neglected and the bandwidth is measured in a round trip,

the network model will still be the same as Fig. lea), but the

available bandwidth of the regeneration tree will be reduced to

15Mbps, as shown in Fig. l(c).

In addition, multiple parallel links are unlikely to saturate

the available bandwidth of the node in the Internet, because

the end-to-end bottleneck usually occurs in the intra-AS or

inter-AS link [12]. Thus we can further use the remaining

available links and even their remaining available bandwidth to

construct more regeneration trees in the network. For example,

two parallel regeneration trees are constructed in Fig. led). The

two trees have the available bandwidth of 20Mbps and 15Mbps,

respectively. If we let the first tree regenerates 57.1 % of the

coded block and the second tree regenerates the other 42.9%

in parallel, the regenerate time will be reduced to 3/;;5 b��ps'
However, this way of constructing multiple parallel trees by

the unequal partition of coded blocks requires each tree to

know the available bandwidth, which changes frequently in the

network, of all other trees. If we just divide the coded block into

two equal parts, the regeneration time will still be 3 x tx\�it�b
PS

.

Moreover, since the actual transmission rate in a regeneration

tree is the available bandwidth of its bottleneck edge, there is

spare bandwidth in most edges. The two edge-sharing parallel

regeneration trees in Fig. lee) achieve the regeneration time as

little as 3xtxt2�it�b
PS

' even though the coded blocks are equally

partitioned for the two trees. Thus in this paper, we first discuss

how to construct the optimal regeneration tree in the network

with asymmetric links and analyze its expected regeneration

time in Sec. III. Then in Sec. IV, we discuss the construction of

edge-disjoint and edge-sharing parallel regeneration trees with

the equal partition of coded blocks.

III. TREE-STRUCTURED REGENERATION

A. Network model and the regeneration tree

Assume linear network coding is used to produce redundancy

in a distributed storage system. The original file is divided

into k blocks and encoded into more than k coded blocks.

Each storage node stores one coded block. In a regeneration, a

newcomer receives k coded blocks from k providers. We define

the node set V(k) = {Vo, Vl, ... , Vd, where Vo denotes the

newcomer and other nodes denote the providers.

In the network, links between nodes are aSYlmnetric. We

define two directed edges between two nodes Vi and Vj, i -I- j.
The edge (Vi, Vj) denotes the end-to-end link from Vi to Vj.
The edge set E(k) = { (Vi, Vj)li,j E [O .. k], i -I- j}. The weight

of (Vi, Vj), w(Vi, Vj), denotes the available bandwidth from Vi
to Vj.

In this paper, the network model is represented as a directed

complete graph G(k) = (V(k),E(k),w). We assume that for

each node in V(k), multiple connections with some other nodes

can not saturate its available bandwidth capacity. Fig. l(b) is

an example of the network model G(3).
We can construct a regeneration tree in a network model

G(k). In a symmetric network model such as Fig. lea), a

regeneration tree is a spanning tree rooted at the newcomer

[3], as the newcomer should receive coded blocks from all the

providers. Similarly, we give the definition of the regeneration

tree in G(k).
Definition 1: In a network model G(k), a regeneration tree

is a reverse arborescence rooted at the newcomer, i.e., a directed

spanning tree rooted at the newcomer such that the edges are

directed towards the newcomer.

Since every edge in a regeneration tree in G(k) is directed

towards the newcomer, every provider has a directed path to the

newcomer. Thus the newcomer can receive coded data from all

the providers in G(k). Moreover, as we show in Fig. l(b) and

Fig. l(c), the regeneration time is bottlenecked by the minimum

edge in the regeneration tree. We do not count the initial delay,

i.e., the time from establishing connections to the arrival of the

first byte at the newcomer, since the size of the coded block is

usually large enough in distributed storage systems.

Definition 2: The available bandwidth of a regeneration tree

T in G(k) is the weight of the minimum edge in T.

In order to reduce the regeneration time, our objective is to

find the optimal regeneration tree in G(k), i.e., the regeneration

tree with the maximum available bandwidth. This is equivalent

to finding the maximum bottleneck spanning tree in a graph.

Gabow and Tarjan [13] proposed an algorithm of this problem

by the dichotomic search, shown in Algorithm 1. The time com­

plexity of Algorithm 1 is O(IE(k)llog(V(k))) = O(k210gk).

Algorithm 1 Splitting algorithm for the problem of the
optimal regeneration tree in G(k) [13]. Let E(k)
{e1,e2, ... ,ek(k+1)}' where w(e1) 2: w(e2) 2: ... >
w(ek(k+1))'

1: e1 f- 1, e2 f- IE(k) 1
2: while e1 i=- e2 do

3: m f- l�(e1 + e2)J
4: E1 f- {elw(em) :0::: w(e),e E E(k)}
5: if every node in G(V(k),E1) has a directed path towards

Vo then

6: e2 f- m

7: else

8: e1 f- m + 1
9: end if

10: end while

11: .* f- w(eeJ
12: return a spanning tree in G(V(k), {elw(e) 2: .*})

B. Analysis of regeneration time

In this section, we investigate the gain of the optimal regen­
eration tree, from the perspective of the regeneration time. For
the tree-structured regeneration, we have shown in Sec. III-A
that the regeneration time is bottle necked by the minimum edge
in the regeneration tree.

Definition 3: The regeneration time is the ratio of the size
of a coded block to the available bandwidth of the regeneration
tree.

Given a network model G(k) = {V(k), E(k), w}, if we have
known the distribution function of w, we can know the expected
value of the regeneration time. If the size of the original file
is M bits, the size of a coded block is thus � bits, so the
regeneration time is k.:reb)'

where eb is the bottleneck edge of
the optimal regeneration tree.

Property 1: If eb = ei in G(k), i.e., eb is the i-th maximum
edge in E(k), then k :0::: i :0::: k2 + 1.

Proof In G(k) there are totally k + 1 nodes and a
regeneration tree thus has k edges, so eb is at most the k-th
maximum edge. On the other hand, since G(k) is a complete
graph, every provider has k edge-disjoint directed paths towards
the newcomer. Thus no provider will be disconnected from
the newcomer until at least k edges in G(k) are removed, so
i :0::: k(k + 1) -k + 1 = k2 + 1. •

Let p(k + 1, i) denote the probability that eb = ei in G(k),
and E[i, k(k + 1)] the expected weight of the i-th maximum
edge in E (k). The expected regeneration time of the tree­
structured regeneration is

k2+1
M p(k + I, i)

ttree = L k' E[i, k(k + 1)] i=k
(3)

Given the distribution of w, we can get E[i, k(k + 1)] by
order statistics [14]. Assume F(x) and f(x) are curriculum
distribution function and probability density function of w,

respectively.

E[i, k(k + 1)] =

+00
j. n!Fk(k+1)-i(x)[1 -F(x)]i-1 f(x)

X · dx. (4)
(k(k + 1) -i)!(i -I)!

o
Now we discuss the distribution of p(k + 1, i) in G (k).

According to Property 1, p(k + 1, i) = 0 when i < k or
i> k2 + 1.

Lemma 1: Let Q(l,j) denote the number of directed graphs
containing l labeled nodes and j directed edges, such that every
node in the graph has a directed path towards one specific root
node. When l - 1 :0::: j :0::: l(l - 1),

Q(l,j) = (l(l j 1))
i
t

1
p(l, i). (5)

Otherwise Q(l,j) = O.
Proof When j < l-1, such a graph can not be connected.

When j > l (l - 1), it is impossible since there are at most
l (l - 1) edges in the graph. Therefore, Q(l, j) = 0 when j <

l - 1 or j > l (l - 1).
Now we discuss the case when I - 1 :0::: j :0::: l(l - 1). For

one graph satisfying the condition, we let the weight of the j
edges be l(l - 1), l(l - 1) - 1, ... , and l(l - 1) -(j - 1),
respectively. Then we add l(l - 1) -j edges into the graph
to make it become a complete graph, and let the weight of
the added edges be 1, 2, ... , and l(l - 1) -j, respectively.
Thus we can map this graph to j!(l(l - 1) -j)! G(l - l)s,
in which eb = ej', l - 1 :0::: j' :0::: j. Since the number of the
graphs satisfying the condition is Q(l, j), the number of G(k),
in which eb = ej"l- 1 :0::: j':O::: j, is Q(l,j)j!(l(l-l) -j)!.

On the other hand, given a network model G (k), the prob­
ability that eb = ej',l-I:O::: j':O::: j is "Li=l-lP(l,j), so the

number of such G(k)s is (l(l-I))! "Li=l-lP(l,j).
Connecting the two parts above, we have the following

equation:

j
Q(l,j)j!(l(l- 1) -j)! = (l(l -I))! L p(l,j) (6)

i=l-l

Therefore, Q(l,j) = (l(l j 1))
i=�/(l, i).

Theorem 1: If k:O::: i:O::: k2 + 1, p(k + l,i) =

•

kh ltl (7= i) R(k,l,i) + � %=: (7=;) R(k,l,i)
()

, (7)

where R(k, l, i) =

L
]I + h + j3 = i -1

]I,h,j3 2: 0

k(k + 1) -1
� -1

(l(k+
1-l))Q(I,]I)Q(k+1-I,h). (8) j3

Proof Assume in G(k) eb = ei, k :0::: i :0::: k2 + 1. There
are two possibilities of the position of ei.

a. ei points to the newcomer, i.e., ei = (Vi, Vo), 1 :s; t :s; k.
The probability of this case is apparently k(k�l) = k!I' Let

E = {el' e2, . . . , ei}. In this situation, ei is the bottleneck edge
if and only if in G(V(k), E), for each nodes except Vo and Vi,
there are at least one directed path towards Vi or Vo. Assume
there are I nodes, including Vi itself, having directed paths
towards Vi, 1 :s; I :s; k. We define 11(1) to be the set of these

I nodes and 11(2) the set of other k + 1 -I nodes. Apart from
Vi, the number of selecting I - 1 nodes from k - 1 providers

into 11(1) is (� � �) . To make ei be the bottleneck edge, the

edges in E;{ ed can be between two nodes in V(I)' or between
two nodes in V(2), or from one node in 11(2) to one node in
11(1). Assume there are jl edges between two nodes in 11(1),
j2 edges between two nodes in 11(2), and j3 from one node in
11(2) to one node in 11(1). According to Lemma 1, the number

of such assignments is
(l(k +

j
� -I)) Q(l,jdQ(k + 1 -

1,12). Summarizing the numbers of all possibilities of jl, j2
and j3, we get the total number of the possibilities of the edge
assignments and denote it by R(k, I, i). Considering the number
of assigning i-I edges in E - { ei} into k(k + 1) - 1 positions

. (k(k+l)-I)
d .. 11 h 'b'I" f IS i-I an summarlzmg a t e POSSI I Itles 0

11(1) and 11(2), we get the probability that Ei is the bottleneck
edge when ei = (Vi, Vo) is

k (k-l)
1 . _ l� 1- 1

R(k, I, i)
Pa(k+ ,2)- (k(k+l)-I)

2 - 1

(9)

b. The other case is that ei is from one provider to another
provider, i.e., ei = (Vip Vir)' 1 :s; tt, t2 :s; k, tl =J t2' The

probability of this case is Z(Z�ij = �+�. In G(V(k), E), we
let 11(1) to be the set of the nodes which have a directed path
towards Vi" including Vi, itself, and 11(2) the set of other nodes
in V(k). Assume there are I nodes in V(I), 1 :s; I :s; k +
1 - 2 = k - 1, so the number of the possibilities of selecting

I - 1 nodes in 11(1) - {Vi,} from k + 1 - 3 = k - 2 nodes in

V(k) - {Vo, Vi" Vi2} is
(7 � �) . Similar with the proof

above, when ei = (Vi" ViJ, the probability that Ei is the
bottleneck edge is

k-l (k - 2)
. l� I-I R(k,l,i)

pb(k+l,2)= (k(k:+-l)-I)
2 - 1

(10)

Notice that ei is impossible to be from Vo to another node,
because the newcomer just receives data from other nodes in
the regeneration process. Therefore, p(k + 1, i), the probability
that ei is the bottleneck edge in G (k) is

1 k-l
p(k + 1, i) = -k -Pa(k + 1, i) + -k -Pb(k + 1, i). (11)

+1 +1

•

"

400

'---���----r=-e-==s ::O::TA=R=il
-a-TREE

� 100

Ql� 50

4 6 8 10 12 14 16 18 20

k (#provider)

Fig. 2. Expected regeneration time of STAR and TREE in G(k). The available
bandwidth of the link satisfies the uniform distribution U[O.3Mbps, 140Mbps].

For the star-structured regeneration in a network model G(k),
however, it only uses the k edges pointing to the newcomer Vo,
so the bottleneck edge is clearly the minimum edge among the
k edges. Thus the expected regeneration time is

M 1
tstar = k . E [k, k]

(12)

Fig. 2 shows the expected regeneration time of the tree­
structured regeneration (TREE) and the star-structured regen­
eration (STAR). We assume the available bandwidth of links
satisfies a uniform distribution of U[0.3Mbps, 140Mbps]. The
size of the original file is 4GB. We calculate the expected
regeneration time of TREE and STAR by (3) and (12). We
notice that compared with STAR, the regeneration time can be
reduced by more than 90% when k ?: 12.

IV. MULTIPLE REGENERA TION TREES

In this section, we further reduce the regeneration time by
utilizing more links in the network to construct multiple re­
generation trees, that works in parallel during the regeneration.
For example, if we construct two parallel regeneration trees
in a network model G(k), we can divide the coded block in
each provider into two parts. Since every regeneration tree is
a spanning tree, every provider should belong to both trees.
Therefore, the newcomer can receives the first part of the
regenerated block from the first tree, and the second part from
the second tree. The regeneration time is thus determined by
the regeneration tree with more regeneration time.

Assume we can construct t parallel regeneration trees,
T1, T2, . . . , Tt. Let Wi denote the available bandwidth of Ti,
i = 1,2, ... , t. In this paper, we consider the equal partition
of the coded block and thus construct t regeneration trees that
maximize min { WI, W2 . . . , Wt}. We start from the construction
algorithm of the edge-disjoint parallel regeneration trees, and
then extend it to construct edge-sharing parallel regeneration
trees.

A. Edge-disjoint parallel regeneration trees

We start from constructing the optimal t edge-disjoint par­
allel regeneration trees in G(k) = (V(k),E(k),w). Given a
constant t, the goal is to find t edge-disjoint trees in G(k),
denoted by T1,T2, . . . ,Tt. Ti = (V(k), Ei,w),Ei c E(k), i =

1,2, ... ,t. For each tree Ti, i = 1,2, ... ,t, it is a regeneration

tree such that every provider in G (k) has a directed path

towards the newcomer Vo. Ei n Ej = 0 when i i=- j. Define

Wi as the available bandwidth of Ti. Since the t trees are edge­

disjoint, the available bandwidth of each tree will not interfere

with other trees. Since each regeneration tree is responsible for

regenerating one equal part of the coded block, the regeneration

time of the whole coded block is thus the regeneration time of

the regeneration tree with the minimum available bandwidth,

i.e.,
M 1

tmu lt =

-kt' . { }
.

mm Wi
l:Si:St

(13)

The problem of achieving the optimal regeneration time is

equivalent to that of maximizing min {Wi}. Because Wi =

l<i<t
min{w(e)}, it is further equivalent

-
to

-
the problem of maxi­

eEE,
mizing min {w(e)}.

eEEi,l:Si:St
t

Definition 4: Let E* = U Ei be the edge set of the t edge­
i=l

disjoint parallel regeneration trees. The available bandwidth A *
is min {w(e)}.

eEE*
Notice that there can be many trees with the same available

bandwidth. However, since the regeneration time depends on

the weight of the bottleneck edge, rather than the structure of

the regeneration tree, we first find the maximum A * and the cor­

responding bottleneck edge, and then construct t regeneration

trees from the edges with weight larger than A * .
The size of feasible solution space is IE(k)l, since A* equals

the weight of one edge in E(k). We design a dichotomic algo­

rithm, similar with Algorithm 1, to find the available bandwidth

A* in the network model G(k) which runs in O(t2k410g k)
time. Assuming t edge-disjoint parallel regeneration trees exist

in G (k), the t trees with the maximum A * are constructed in

Algorithm 2.

Algorithm 2 Splitting algorithm for the problem of finding t
edge-disjoint parallel regeneration trees in G(k).

1: B1 +- 1, B2 +- IE(k)1
2: while B1 i=- B2 do

3: m +- l�(B1 + B2)J
4: E1 +- {elw(em) :s; w(e),e E E(k)}
5: if t edge-disjoint parallel regeneration trees exist in

G(V(k), Ed then

6: B2 +- m

7: else

8: B1 +- m + 1
9: end if

10: end while

11: A* +- w(eoJ
12: return t regeneration trees in G(V(k),{elw(e);::: A*})

From Line 2 to Line 10, we search the possible bottleneck

weight value dichotomically. Since there are altogether IE(k)1
different values, all steps run at most log IE(k)1 times. Line 5

checks the existence of t mutually edge-disjoint spanning trees,

which has been studied by Tarjan [15]. The time complex­

ity of this step is 0 (t21 E (k) 12). In a word, the dichotomic

search can find the maximum A* in O(t2IE(k)1210g IE(k)l) =

O(t2 k4 log k) time. After getting A *, we can find t edge­

disjoint regeneration trees with available bandwidth no less

than A* by the algorithm proposed in [16]. The time com­

plexity of Line 12 is O(log(lV(k)lt) . lV(k)12 . IE(k)1 .
10g(lV(k)12 IIE(k)l) = O(log(kt)k4). Thus, the overall time

complexity is O(t2k410g k).
Theorem 2: Algorithm 2 produces t edge-disjoint parallel re­

generation trees that achieve the maximum available bandwidth.

Proof Since the correctness of Line 12 has been in­

vestigated in [16], we will show the correctness of the di­

chotomic search. If A * is the maximum available bandwidth, it

is impossible to construct t edge-disjoint parallel regeneration

trees in graph G(V(k), {ele E E(k),w(e) ;::: w(eoJ}), where

w(eo2) > A *, otherwise the bottleneck ;::: w(eo2) > A *. On

the other hand, it is always possible to construct t edge­

disjoint parallel regeneration trees in graph G(V(k), {ele E

E(k), w(e) ;::: w(eo,)}), where w(eo,) :s; A *. Therefore, A *
is the threshold whether t parallel edge-disjoint regeneration

trees exist. Since there are finite feasible solutions, the available

bandwidth A * can be found by the dichotomic search. •

B. Edge-sharing parallel regeneration trees

Algorithm 2 shows how to construct multiple edge-disjoint

parallel regeneration trees. However, for each edge in a regen­

eration tree, its available bandwidth will not be used up until

it is the bottleneck edge of the tree. Thus though many links

in the network may be used, the available bandwidth of these

links is not fully utilized. The algorithm in this section allows

links to be shared by several regeneration trees, so as to fully

utilize the available bandwidth.

Given t regeneration trees, Ti = (V(k), Ei), Ei c E(k), i =

1,2, ... ,t, in G(k) = (V(k),E(k),w), we assume the avail­

able bandwidth of Ti is Wi. There are t edge-sharing parallel

regeneration trees if and only if 'Ve E E(k), L Wi :s; w(e).
E,3e

The regeneration time is also bottlenecked by the regeneration

tree with the minimum available bandwidth, so (13) still holds

and our objective remains finding the maximum A *.
Property 2: Given the optimal available bandwidth A *

of t edge-sharing parallel regeneration trees in G(k)
(V(k),E(k),w), for any edge e E E(k), define n),*(e)
l w;;l J. n),* (e) ;::: I{Ti(V(k), Ei)le E Ei, i = 1,2, ... , t}l.

Proof For each e E E(k), w;;l > m�({�;} >
Ei3e

I{Ti(V(k), Ei)le E Ei,l :s; i :s; t}l. Considering the size of

a set is always an integer, the floor can be achieved. •

According to Property 2, if there exist t edge-sharing parallel

regeneration trees with available bandwidth A *, at most n), * (e)
connections can be established in one edge e. In other words,

we can split e into n), * (e) edges, each with available bandwidth

no worse than A *. The problem then becomes checking whether

t edge-disjoint parallel regeneration trees exist, and thus can be

solved by [16].

On the other hand, we might place at most t connections into
one edge in the graph, since we only construct t edge-sharing
parallel regeneration trees. Define the feasible solution space
W = U {w(e), �w(e), tw(e), ... , iw(e)}, as the available

eEE(k)
bandwidth of at least one edge should be used up. Clearly,
IWI � tIE(k)l· Let W = {Wl,W2, ... ,wlwl},Wl 2: W2 2:
. . . ,wlwl}·

Similar to the algorithm for finding multiple edge-disjoint
parallel regeneration trees, we can use a dichotomic method
in Algorithm 3 to find the maximum available bandwidth
,* in G(k), which runs in O(t2IE(kW 10g(tIE(k)I)) =

O(t2k410g(tk)) time as O(IWI) = O(tIE(k)I). We assume
one spanning tree exists in G(k), since we can split the only
one tree into t trees by splitting each of its edges into t edges.

Algorithm 3 Splitting algorithm for the problem of finding t
edge-sharing parallel regeneration trees in G(k).

1: Bl +-1, B2 +-IWI
2: while Bl i= B2 do

3: m +- l�(Bl + B2)J
4: Let El be a multiset of S(wm) = {e x nw=(e)le E

E(k)}
5: if t edge-disjoint parallel regeneration trees exist in

G(V(k), Ed then

6: B2 +-m

7: else

8: Bl +-m + 1

9: end if

10: end while

11: ,* +-We,
12: return t regeneration trees in G(V(k),S('*))

Theorem 3: Algorithm 3 produces t edge-sharing parallel re­
generation trees that achieve the maximum available bandwidth.

Proof" If ,\ * is the maximum available bandwidth, it
is impossible to construct t edge-sharing spanning trees in
graph G(V, Swo2)' where we2 > ,\ *, otherwise the available
bandwidth 2: we2 > ,\ *. Also, it is always possible to construct
t edge-sharing parallel regeneration trees in graph G(V, SWo,),
where we, � ,\ *, since SA' � SWo,. Therefore, ,\ * is the
threshold whether t edge-sharing parallel regeneration trees
exist. Since there are finite feasible solutions, the maximum
available bandwidth ,\ * can be found by the dichotomic search.

•

V. SIMULATION

In this section, we make extensive empirical studies to
evaluate the performance of the tree-structured regeneration
algorithms based on the real data of available bandwidth [17]
and node behaviors [18] measured in PlanetLab [7], a global
research network in which most links are asymmetry.

The main results we observe from the simulation results
include:

• The regeneration time can be greatly reduced by construct­
ing multiple parallel regeneration trees. Because of this,

fO.S �O.5

00!----7-�, -76 -8O-----c"�-!o-�" °O�---;;C;----;COA;-----;C;06;----;C;;-�
asymmetry factor a available bandwidth x (Kbps) x 10"

(a) available bandwidth (b) asymmetry factor

Fig. 3. Curriculum distribution functions of available bandwidth and asym­
metry factor in PlanetLab.

the file can be regarded as almost available in a dynamic
network environment with the node join and departure.

• The edge-sharing algorithm performs better than the edge­
disjoint algorithm, both on the available bandwidth and on
the resistance to the high asynunetry factor.

A. Static network environment

We first simulate a static network, i.e., storage nodes in
the network are supposed to be static and there is no node
join/departure during the regeneration. The network topology is
constructed based on real data of available bandwidth measured
in PlanetLab by S3 (Scalable Sensing Service) [17]. If k
providers are used in the regeneration process, we construct
a network containing one newcomer and k providers, and then
we assign the weight of each link, using the available bandwidth
measured in S3 by the tool of pathChirp [19] on 16:28:lO
(Pacific Time), Nov. 11, 2009.

We use the asyrmnetry factor to denote the asymmetry of
links. Assume the available bandwidth in the two directions of
one link is BW1 and BW2, the asymmetry factor is

IBW1 - BW21 a= �-;-----�

max{BW1,BW2}
(14)

It is clear that 0 � a � 1. Fig. 3 shows the curriculum
distribution functions of the available bandwidth and the asym­
metry factor in PlanetLab, respectively. We use the algorithms
mentioned in this paper to construct regeneration tree(s) in the
network and the simulation is repeated for 1000 times.

The algorithms we compare contain star-structured regener­
ation (STAR), tree-structured regeneration (TREE) in Sec. III,
for the case of single regeneration tree. For the case of
multiple parallel regeneration trees, we compare our optimal
algorithms proposed in Sec. IV and two greedy algorithms.
Our optimal algorithms are denoted as t-optimal-edge-disjoint
algorithm (t-OPT-disjoint), and t-optimal-edge-sharing algo­
rithm (t-OPT-sharing). The greedy algorithms are denoted as
t-greedy-edge-disjoint algorithm (t-GREEDY-disjoint) and t­
greedy-edge-sharing algorithm (t-GREEDY-sharing).

Now we introduce the greedy algorithms used in the simu­
lation. Let t=2, for example. For the 2-GREEDY-disjoint algo­
rithm, the first regeneration tree is constructed as the optimal
regeneration tree by TREE, and then we remove the edges

in the first regeneration tree from the network. The second

regeneration tree is then constructed by TREE on the network

with remaining edges. For the 2-GREEDY-sharing algorithm,

the edges of the two parallel regeneration trees can share

the same link. Thus after constructing the first regeneration

tree by TREE, we decrease the weight of edges in the first

regeneration tree by the available bandwidth of the first tree

and then construct the second tree by TREE. (13) still holds

for the greedy algorithms, as we partition the coded blocks into

size-equal blocks.

15

7

�STAR
_TREE
-e-2-0PT -disjoiot
-e-2-0PT -sharing
_2-GREEDY-disjoint
-+-2-GREEDY-sharin

k (#provider)

(a) I-tree vs. 2-tree

2.5

10 10 15
k (#provider)

(b) 2-tree vs. 3-tree

20

Fig. 4. Regeneration rate with the increasing of the number of providers,
when a E (0,0.6].

For fairness, we define the regeneration rate in G(k) as k x t

times of the available bandwidth, and thus the regeneration time

is the ratio of the size of the original file to the regeneration rate.

We compare the regeneration rate in Fig. 4, in which the asym­

metry factor of links is selected in (0,0.6]. We show in Fig. 4(a)

the regeneration rate of I-tree algorithms (STAR and TREE)

and 2-tree algorithms (2-0PT/GREEDY-disjointlsharing). We

can see for all algorithms except STAR, the regeneration rate

increases with k, because the tree-structured regeneration can

bypass the slow links in the network, while STAR has to suffer

from the link with the minimum bandwidth from one provider

to the newcomer. Compared with STAR, TREE can increase

the available bandwidth by a factor of 14 when k = 10, and

the regeneration rate of 2-0PT-disjoint and 2-0PT-sharing can

even achieve 22.9 and 23.5 times of STAR. On the other hand,

the regeneration rate of 2-0PT-disjoint and 2-0PT-sharing is

l.6 and l.7 times of the regeneration rate of TREE. Because

we use more links by constructing two regeneration trees, the

regeneration rate of the second tree can not be as good as the

regeneration rate of the single tree. Therefore, 2-tree algorithms

can not achieve twice of the regeneration rate of TREE.

Moreover, we notice that though our optimal algorithms

perform better than the greedy algorithm, the curves of greedy

algorithms converge to the curves of the corresponding optimal

algorithms. However, we still think our optimal algorithms is

better for practical distributed storage systems. First, consider­

ing the computational cost of encoding and decoding and the

cost of establishing and maintaining connections in the network,

distributed storage systems usually prefer a smaller k in prac­

tical. Second, the greedy algorithms have to construct parallel

4F""'" �
2

0

8

6

4

2

0

�

__ STAR

�TREE

.... 2-0PT -disjoint

.... 2-0PT-sharing

� 2-GREEDY-disjoin

-+- 2-GREEDY-shann

0.2 0.4 0.6 0.8
maximum asymmetry factor Ctmax

(al I-tree vs. 2-tree

0.2
maximum asymmetry factor {lmax

(b 1 2-tree vs. 3-tree

Fig. 5. Regeneration rate with the maximum asymmetry factor amax, when
k = 10.

regeneration trees one after another, so it may incur additional

cost of regeneration time and bandwidth measurement.

We show the results in Fig. 4(b) when we employ more par­

allel regeneration trees during the regeneration. 3-0PT-disjoint

and 3-0PT-sharing can achieve regeneration rate l.3 and 1.4

times of 2-0PT-sharing. However, we observe interestingly that

3-0PT-disjoint performs worse than 2-0PT-sharing and even 2-

OPT-disjoint when k � 8. The reason is that when k is small,

the number of links in the network is also small, and the slow

links in the network probably can not be bypassed. Therefore,

we think it is better to share links with parallel regeneration

trees, and if the distributed storage systems can not afford a

large k, it is better to use only 2 parallel regeneration trees or

even single regeneration tree in the regeneration process.

We also investigate how the asyrmnetry factor O! influences

the regeneration rate. We assign available bandwidth to links

using the measured bandwidth data with asyrmnetry factor in

(0, O!max) , and the maximum asymmetry factor O!max varies

from 0.05 to l. Fig. 5 shows the curves of regeneration rate

with the increasing of O!max. For each algorithm, the average

regeneration rate is related with the asymmetry factor, because

the average available bandwidth in some intervals of asymmetry

factor is relatively higher. Moreover, with the increasing of

asymmetry factor, it is more probable that the available band­

width is very low in one direction of the link. We thus observe

that for all the algorithms, the regeneration rate changes with

the asymmetry factor intervals in a similar trend and it tends

to be lower with a larger asymmetry factor. In Table I, we

calculate the ratio of the maximum regeneration rate of each

algorithm to its minimum regeneration rate. We notice that the

regeneration rate can be more affected by the asymmetry factor

TABLE I

THE RATIO OF THE MAXIMUM REGENERATION RATE TO THE MINIMUM

REGENERATION RATE OF EACH ALGORITHM IN FIG. 5.

algorithm I ratio I algorithm I ratio

STAR 1.3510 TREE 1.1109

2-0PT-disjoint 1.2128 2-0PT-sharing 1.1877

2-GREEDY-disjoint 1.2249 2-GREEDY-sharing 1.1985

3-0PT-disjoint 1.4550 3-0PT-sharing 1.2854

3-GREEDY-disjoint 1.5046 3-GREEDY-sharing 1.3687

Ts
Tf

Nall
Nr
M

r

tmax

TABLE II
SIMULATION PARAMETERS

starting time (sec.)
finish time (sec.)

the number of nodes
repeated times
file size (KB)

redundancy rate
maximum number of parallel regeneration trees

2 x 10°
1.2 x 10

100
500

5 x 10"
1.5
5

if there are more parallel regeneration trees. However, STAR is
still very sensitive with the asymmetry factor, because it always
"selects" the link with the worst available bandwidth as its
bottleneck edge. We also observe that edge-sharing algorithms
work better than edge-disjoint algorithms, because when the
asyrmnetry factor is large, the bandwidth left by other parallel
regeneration trees tends to be higher and thus is more likely to
used by edge-sharing algorithms.

B. Dynamic network environment

We have evaluated the performance of the algorithms in a
static environment, i.e., there is no node join/departure in the
network. However, it is improbable in reality. Thus, in this
section, we introduce the node behaviors into our simulation
and compare some metrics important to the practical distributed
storage systems.

The trace file containing the join/departure behaviors of
nodes in PlanetLab is provided by [18]. The status of the node is
detected by the pings repeated every 15 minutes from Jan. 2004

to Jan. 2005. Based the trace file, we run our simulation in an
event -driven simulator which simulates a practical distributed
storage system in PlanetLab. Each node in the simulation is
mapped to a real node in PlanetLab, and the edge in the
simulation is mapped to the corresponding edge connecting the
two corresponding nodes in PlanetLab in the same direction.
We assign the available bandwidth of each edge according to
the available bandwidth of the mapped edge.

Table II shows the parameters we use in the simulation. Time
starts at 0 in the trace file and the simulation runs from Ts to
Tf. We select Nail nodes with the most frequent join/leave
behaviors from the nodes in the trace file. We assume that at
the beginning of the simulation, a file has been stored in the
distributed storage system. The size of the file is M kilobytes.
The file is divided into k blocks and the coded blocks are stored
in r x k storage nodes, where r is the redundancy rate. Each
storage node stores one coded block.

A storage

node leaves.

Anotller regeneration The regeneration Another storage

is launched. successes. node leaves.

time

A newcomer is selected and regeneration time
a regeneration is launched.

One provider leaves.

The regeneration fails.

Fig. 6. Timeline of the regeneration process in the simulation.

We use a timeline in Fig. 6 to describe our simulation system.
After a storage node leaves the network at tl, the system has to
select a replacement node, i.e., a newcomer, to regenerate the
lost coded block. If there is no available replacement node, the
regeneration has to be postponed until a node joins the network
at t2. When a regeneration is launched, k providers are selected
from the available storage nodes with the highest available
bandwidth towards the newcomer. We construct the regener­
ation tree(s) and calculate the corresponding regeneration time.
When a storage node or the newcomer leaves the network at
t3, before the regeneration finishes, the regeneration fails and
the system has to launch another regeneration at t4' When the
regeneration finishes at t5, it is regarded as successful. The
system then keeps idle until another storage node fails at t6.

We compare four algorithms in the simulation. For I-tree
algorithms, we compare STAR and TREE. For multi-tree
algorithms, we set tmax as the maximum number of parallel
regeneration trees used during the regeneration. When t is too
large, the regeneration rate of t-OPT-disjointlsharing algorithm
will decrease, as shown in Fig. 4(b). Thus we select the
best t which achieves the maximum regeneration rate when
t = 1,2, ... , tmax. When t = 1, the regeneration tree is
constructed by TREE, and t parallel regeneration trees are
constructed by t-OPT-disjoint or t-OPT-sharing algorithm when
t > 2. This algorithm is referred to as BEST-disjoint if the
t-OPT-disjoint algorithm is used and as BEST-sharing if the t­
OPT-sharing algorithm is employed. We repeat the simulation
for Nr times and then get the average results.

Table II also shows the values of parameters used in our
simulation. The simulation covers 107 seconds in PlanetLab.
There are totally 100 nodes in the simulation. On average, there
are 4 9.92 nodes available and each node joins or leaves the
network 0.27 times per day during this time. We set the size of
the original file to be 500GB, the size of the current mainstream
commodity hard disk. The redundancy rate is set to be 1.5. At
most 5 parallel regeneration trees can be constructed during the
regeneration. In the simulation, k varies from 6 to 20. Thus, it
is probable that there exist 5 edge-disjoint parallel regeneration
trees. The simulation is repeated for 500 times.

Fig. 7 shows the simulation results. In Fig. 7(a), we can
see that TREE can reduce the regeneration time by 58% and
BEST-sharing further reduce the time by 55% compared with
TREE. Because the number of links in the network increases
with k, it is more likely to select the links with higher available
bandwidth when k is larger. Thus the curves all go down
with the increasing of k. Compared with Fig. 4, the curves of
BEST-disjoint and BEST-sharing are quite close together. The
"BEST" algorithms can select the best t to achieve the optimal
regeneration time, so the gap between BEST-disjoint and BEST­
sharing will not be big when k is small. When k becomes larger,
the gap becomes smaller and smaller, as illustrated in Fig. 4.

We also compare another two important performance metrics
of the regeneration in the distributed storage system. One metric
is the probability of successful regeneration. The regeneration
fails when one provider or the newcomer leaves the network

c
.Q
];;
"

X
104 4 .�
'----r-

-

�

-
---;:=

=
=

==

::;l

-e-STAR
-e-TREE
� BEST-disjoint
-+- BEST-sharing

� 1 .5
�

�L-�---1� 0--�12---1� 4---1�6--�18--�20
k (#provider)

0.9 5
c
.Q
� 0 .9"'- ..,.

1:,
�
:a 0.8 5
�
iil 0
'0
&'

.8
� 0.7 5
K

.7

�

6

......

-e-STAR
-e-TREE
� BEST-disjoint
� BEST-sharing

�
10 12 14 16 18 20

k (#provider)

-e-STAR
-e-TREE
� BEST-disjoint
� BEST-sharing 0.46L� ---1�0--�12---'=1:C: 4=:::i16==1i: 8='J 20

k (#provider)

(a) regeneration time (b) probability of successful regeneration (c) data availability

Fig. 7. Simulation results in the dynamic network environment.

during the regeneration. We can see in Fig. 7(b) that both BEST­

disjoint and BEST-sharing have the probability of successful

regeneration more than 90%, while only about 75% of the

regeneration processes using STAR and about 85% of the

regeneration processes using TREE success. Moreover, when k
is large, the probability of the successful regeneration process

begins to reduce, because node departures are more likely to

happen during the regeneration.

We notice in Fig. 7(c), the file availability of STAR is only

about 60%. T he file availability is the probability that the file

can be recovered. If too many regeneration processes fail, the

number of coded blocks can not be kept always larger than k.
However, when k > 14, the file availability of BEST-disjoint

and BEST-sharing can be more than 98%. Even for TREE,

the file availability can still be almost 90%. T herefore, we

can regard the file as highly available by the tree-structured

regeneration algorithms.

VI. CONCLUSION

In this paper, we discuss the tree-structured regeneration in

the network with asymmetric links. We show the construction

algorithm of the optimal regeneration tree in the network with

aSYlmnetric links and analyze its performance. We then propose

two algorithms to construct multiple parallel regeneration trees,

so as to further reduce the regeneration time by transmitting

data in parallel during the regeneration. By extensive sim­

ulations, we evaluate the performance of the tree-structured

regeneration algorithms using real data measured in PlanetLab.

Parallel regeneration trees can reduce the regeneration time

significantly and maintain the file availability of no less than

98%.

REFERENCES

[1] R. Bhagwan, K. Tati, y-c. Cheng, S. Savage, and G. M. Voelker, "Total
Recall: System Support for Automated Availability Management," in
Proc. USENIX Symposium on Networked Systems Design and Implemen­
tation (NSDI), 2004, pp. 25-25.

[2] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y Shi, C. Tian, Y Zhang, and
S. Lu, "BCube: A High Performance, Server-centric Network Architecture
for Modular Data Centers," in Proc. ACM SIGCOMM 2009 conference

on Data communication, 2009, pp. 63-74.

[3] J. Li, S. Yang, X. Wang, X. Xue, and B. Li, "Tree-structured Data
Regeneration with Network Coding in Distributed Storage Systems," in
Proc. 17th IEEE International Workshop on Quality of Service (IWQoS),

2009.
[4] J. Li, S. Yang, X. Wang, and B. Li, "Tree-structured Data Regeneration

in Distributed Storage Systems with Regenerating Codes," in Proc. IN­
FOCOM, 2010.

[5] Y Wu, R. Dimakis, and K. Ramchandran, "Deterministic Regenerating
Codes for Distributed Storage," in Proc. Allerton Coriference on Control,
Computing, and Communication, 2007.

[6] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca, "Measuring
Bandwidth Between PlanetLab Nodes," in Proc. Passive and Active
Network Measurement (PAM), 2005, pp. 292-305.

[7] [Online]. Available: http://www.planet-lab.org/
[8] R. Rodrigues and B. Liskov, "High Availability in DHTs: Erasure Coding

vs. Replication," 2005.
[9] S. Acedatiski, S. Deb, M. Medard, and R. Koetter, "How Good is Random

Linear Coding based Distributed Networked Storage?" in Proc. 1st

Workshop on Network Coding (WiOpt), Apr. 2005.
[10] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran, "Network

Coding for Distributed Storage Systems," in Proc. INFO COM, May 2007,
pp. 2000-2008.

[11] A. Duminuco and E. Biersack, "Hierarchical Codes: How to Make
Erasure Codes Attractive for Peer-to-Peer Storage Systems," in Proc. 8th
International Conference on Peer-to-Peer Computing (P2P), Sep. 2008,
pp. 89-98.

[l2] A. Akella, S. Seshan, and A. Shaikh, "An Empirical Evaluation of Wide­
area Internet Bottlenecks," in Proc. ACM SIGMETRICS international
coriference on Measurement and modeling of computer systems, 2003,
pp. 316-317.

[13] H. N. Gabow and R. E. Tarjan, "Algorithms for Two Bottleneck Opti­
mization Problems," J. Algorithms, vol. 9, no. 3, pp. 411-417, 1988.

[l4] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. Wiley-
interscience, Aug 2003.

[15] R. E. Tarjan, "A Good Algorithm for Edge-disjoint Branching," In­

fom. Process. Lett., vol. 3, no. 2, pp. 51-53, 1974.
[16] H. N. Gabow and K. S. Manu, "Packing Algorithms for Arborescences

(and Spanning Trees) in Capacitated Graphs," in Proc. 4th International
Conference on Integer Programming and Combinatorial Optimization
(IPCO), 1995, pp. 388-402.

[17] S. Banerjee, S.-J. Lee, P. Sharma, and P. Yalagandula. S3 (Scalable
Sensing Service). [Online]. Available: http://networking.hpl.hp.com/s­
cube/PLI

[l8] J. Stribling. Planetlab All Pairs Ping. [Online]. Available:
http://infospect.planet-lab.org/pings

[19] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cot, " pathChirp: Ef­
ficient Available Bandwidth Estimation for Network Paths;' in Proc. Pas­

sive and Active Measurement Workshop, 2003.

