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Abstract-Distributed storage systems provide reliable storage 
service by storing data, with a certain amount of redundancy, into 
a substantial number of storage nodes. In order to compensate 
the data loss incurred by node failures, the lost data should be 
regenerated. Tree-structured regeneration, during which storage 
nodes may relay the network traffic, has shown its potential to 
improve the efficiency of the regeneration process in the network 
with symmetric links. In this paper, we consider tree-structured 
regeneration in the network with asymmetric links, and analyze 
its expected time spend during the regeneration. Moreover, we 
further reduce the regeneration time by constructing multiple 
parallel regeneration trees. We proposed two optimal algorithms 
with polynomial time complexity, to construct multiple edge­
disjoint and multiple edge-sharing parallel regeneration trees, 
respectively. We evaluate our algorithms by the simulation using 
real data measured in PlanetLab. The simulation results show that 
multiple parallel regeneration trees can reduce the regeneration 
time by 75% and keep the file availability more than 98%. 

I. INTRODUCTION 

The distributed storage system (e.g., [1]), designed to provide 
a large-scale and reliable data storage service, stores data into 
a large number of storage nodes in a network. Depending 
on application scenarios, storage nodes may vary from cluster 
servers in modular data centers [2], to even ordinary computers 
in peer-to-peer networks [1]. The storage nodes are subject to 
fail, resulting in the data loss. Thus, the system needs to store 
a certain amount of redundancy, to guarantee that a subset of 
storage nodes can recover the data. MDS codes, such as Reed­
Solomon codes, maintain the recoverability property such that 
any subset including at least k nodes can recover the original 
data. 

When a storage node fails, a replacement node, called 
newcomer, should regenerate the lost data. In this process of 
regeneration, if any k nodes suffice to recover the original 
data, to maintain the recoverability property, the newcomer 
should receive data from at least k storage nodes, called 
providers in the regeneration process. Thus, the regeneration 
process is bottlenecked by the slowest end-to-end link from 
one provider to the newcomer, i.e., the bottleneck link. As a 
matter of fact, the bottleneck link can be bypassed by the tree­
structured regeneration [3], [4] using network coding, such that 
providers may encode and relay the traffic from other providers 
to the newcomer, as shown in Fig. lea). We proposed the tree-
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structured regeneration in the network with sYlmnetric links [3] 
and incorporated it with regenerating codes [5] in [4]. 

In this paper, we step forward to consider the asymmetric 
links in the network, i.e., the bandwidth in one direction of 
the link is not as available as that in the other one. Lee et 
al. [6] measured the bandwidth capacity between nodes in 
PlanetLab [7]. The measurement results show that only 21.49% 
of the measured node pairs have a symmetric end-to-end link 
connecting them. Without the knowledge of link asymmetry, 
the available bandwidth of the regeneration tree will not be 
as good as expected, if the available bandwidth is measured 
in one direction or in a round trip. For example, the available 
bandwidth of the regeneration tree, i.e., the available bandwidth 
of the bottleneck link, is expected to be 30Mbps in Fig. lea) 
as links are supposed to be symmetric, but in fact it is only 
15Mbps if links in the network are asymmetric in Fig. l(b). In 
this paper, we discuss the algorithm to construct the regener­
ation tree with the optimal available bandwidth. For example, 
the optimal regeneration tree in the network model shown in 
Fig. l(c) achieves the available bandwidth of 20Mbps in the 
regeneration process. 

In addition, we further try to utilize links more effectively 
during the regeneration by constructing multiple parallel re­
generation trees. For example, the available bandwidth in the 
regeneration process can be further improved to 30Mbps in 
Fig. 1 (d), if we construct t regeneration trees (t > 1) which 
transmit t of the whole regeneration traffic in parallel, respec­
tively. Though the minimum available bandwidth of one parallel 
regeneration tree may be worse than the that of the single 
regeneration tree, the parallel transmission can help to reduce 
the time spent during the regeneration by 33%. Moreover, if 
some edges of several trees may share the same end-to-end link, 
the regeneration time can be further reduced by 25%, as shown 
in Fig. lee). In this paper, we propose two optimal polynomial 
algorithms to construct t edge-disjoint and edge-sharing parallel 
regeneration trees, respectively. 

We run extensive simulations to evaluate the performance 
of our algorithms. We simulate a distributed storage system 
based on real data of available bandwidth and node behaviors 
measured in PlanetLab. Our simulation results show that using 
multiple parallel regeneration trees can reduce regeneration 
time to 19% of that spent by the conventional star-structured 
regeneration, and to 45% of that using a single regeneration 
tree. In the simulation of a dynamic network environment, we 
observe that multiple parallel regeneration trees can keep the 
file availability of at least 98%. 

The remainder of this paper is organized as follows. In 
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Vo 

V2 V3 V2 30Mbps V3 
(a) An optimal regeneration 
tree in a network with sym­
metric links. 

(b) A regeneration tree in 
a network with asymmetric 
links. 

(c) An optimal regeneration 
tree in a network with asym­
metric links. 

(d) Two parallel regeneration 
trees in a network with asym­
metric links. 

(e) Two edge-sharing parallel 
regeneration trees in a net­
work with asymmetric links. 

Fig. 1. Examples of regeneration trees in the networks with symmetric and asymmetric links. 

Sec. II, we introduce the background, and describe in detail 

the problem of the ignorance of bandwidth asymmetry and the 

advantage of multiple regeneration trees. Sec. III introduces the 

network model and discusses the construction and the expected 

regeneration time of the optimal regeneration tree. In Sec. IV, 

we discuss the construction algorithms of t edge-disjoint and 

t edge-sharing parallel regeneration trees. We introduce the 

simulation results in Sec. V. Finally, Sec. VI concludes this 

paper. 

II. PRELIMINARIES 

A. Redundancy and linear network coding 

In the distributed storage system, data are stored in a number 

of storage nodes. A storage node may save a whole file or a part 

of a file. Since the nodes may leave the network temporarily 

or even fail, data should be stored with redundancy such that a 

subset of storage nodes can recover the original data. If the size 

of a file is M bits, the storage nodes in the network may store 

totally 3� bits. Thus, 'i bits are stored as the redundancy and 

the redundancy rate r is 1.5. 
Compared with storing replicas of the original data in the 

storage nodes, encoding the original data into coded blocks can 

improve the data availability [8] . Maintaining the recoverability 

property with a high probability, Acedannski et al. [9] intro­

duced randomized linear network coding as a way of achieving 

coded blocks. Dimakis et al. [10] presented deterministic linear 

network coding to achieve the redundancy. If a file is divided 

into k blocks, Bl, B2, ... , Bb a coded block F is a linear 

combination of the k blocks on a Galois field IF 2q. q bits are 

regarded as a symbol on IF 2q and a block is then a sequence of 

symbols on IF 2q. Thus we have 

k 
F= L aiBi, (1) 

i=l 

where (aI, a2,"" ak)T is the randomly-generated encoding 

vector, ai E IF 2'1, i = 1,2, ... , k. If q is large enough, any 

k coded blocks are sufficient to recover the original blocks 

with high probability. Given k coded blocks and their encoding 

vectors, we can reconstruct the original blocks by solving a 

linear system of k equations. 

Without loss of generality, we assume that each storage node 

stores one coded block, such that any k storage nodes can 

recover the original data. Apart from the coded block, a storage 

node has to store the corresponding encoding vector. However, 

this overhead can be ignored if the block is large enough. Since 

the size of one coded block is equal to the size of one original 

block, the redundancy rate is � if there are n coded blocks in 

the network. 

B. Tree-structured data regeneration 

Nodes may fail in the distributed storage system and thus the 

data loss may be incurred. The redundancy rate will decrease 

or even turn to zero if node failures are not handled. In order 

to regenerate the lost coded block, the system should select 

a node, called newcomer, to replace the failed storage node. 

The newcomer should receive k' coded blocks, Fl, F2, ... , Fk" 
from k' active storage nodes, called providers, and get a new 

coded block Fo as a linear combination of the received blocks: 

k' 
Fo = L a�Fi' (2) 

i=l 

a; E lF2q, i = 1,2, ... , k. To keep the recoverability property, 

k' should be at least k. However, considering the bandwidth 

cost and the node behaviors, a small number of providers is 

preferred in the distributed storage system [11], so in this paper 

we only considers the scenario that k' = k. Wu et al. [5] 

showed that the minimum regeneration traffic when k' = k is 

M bits, the size of the original file. This optimal traffic can be 

achieved easily when the newcomer receives k coded blocks 

from k storage nodes. 

Even though the minimum regeneration traffic has been 

achieved, we can further reduce the regeneration time by ex­

ploiting the bandwidth diversity. In an overlay storage network, 

links between storage nodes usually enjoy different available 

bandwidth. Conventionally the regeneration is carried out in 

a manner called star-structured regeneration. For example, 

Fig. l(a) shows a regeneration in a network with symmetric 



links, in which Vo is the newcomer and other three nodes are 

providers, i.e., k = 3. If the newcomer receives the coded 

blocks directly from the three providers, the transmission will 

finish when the newcomer has received the coded block from 

V3, and the regeneration time is thus 3� ��ps' 
Moreover, we can allow providers to relay the regeneration 

traffic. The darkened directed edges in Fig. lea) indicate how 

data are transmitted in the network. For example, V2 receives 

data from V3, encodes the received blocks with the coded 

blocks stored by itself, and then sends the coded data to the 

newcomer as long as there are data available to send, rather 

than after the whole block is encoded. The edges used in 

the transmission form a spanning tree over the newcomer and 

the providers, called regeneration tree. The bottleneck edge of 

a regeneration tree is the edge with the minimum available 

bandwidth, and the available bandwidth of a regeneration tree 

is thus the available bandwidth of the bottleneck edge. In 

Fig. lea), (Vl, Vo) and (V3, V2) are bottleneck edges and the 

regeneration time becomes one forth of the star-structured 

regeneration. 

C. Regeneration in the network with asymmetric links 

The links in the network model in Fig. lea) are all symmetric, 

i.e., the available bandwidth in one direction is the same as the 

that in the other direction, but in reality, this is improbable. The 

measurement in PlanetLab [6] shows that at least 78.51 % of 

links are asymmetric. Fig. l(b) shows a network model with 

asymmetric links. The available bandwidth of each edge in 

Fig. lea) is the average available bandwidth of corresponding 

edges in two directions in Fig. 1 (b). If the link aSYlmnetry 

is neglected and the bandwidth is measured in a round trip, 

the network model will still be the same as Fig. lea), but the 

available bandwidth of the regeneration tree will be reduced to 

15Mbps, as shown in Fig. l(c). 

In addition, multiple parallel links are unlikely to saturate 

the available bandwidth of the node in the Internet, because 

the end-to-end bottleneck usually occurs in the intra-AS or 

inter-AS link [12]. Thus we can further use the remaining 

available links and even their remaining available bandwidth to 

construct more regeneration trees in the network. For example, 

two parallel regeneration trees are constructed in Fig. led). The 

two trees have the available bandwidth of 20Mbps and 15Mbps, 

respectively. If we let the first tree regenerates 57.1 % of the 

coded block and the second tree regenerates the other 42.9% 

in parallel, the regenerate time will be reduced to 3/;;5 b��ps' 
However, this way of constructing multiple parallel trees by 

the unequal partition of coded blocks requires each tree to 

know the available bandwidth, which changes frequently in the 

network, of all other trees. If we just divide the coded block into 

two equal parts, the regeneration time will still be 3 x tx\�it�b
PS 

. 

Moreover, since the actual transmission rate in a regeneration 

tree is the available bandwidth of its bottleneck edge, there is 

spare bandwidth in most edges. The two edge-sharing parallel 

regeneration trees in Fig. lee) achieve the regeneration time as 

little as 3xtxt2�it�b
PS

' even though the coded blocks are equally 

partitioned for the two trees. Thus in this paper, we first discuss 

how to construct the optimal regeneration tree in the network 

with asymmetric links and analyze its expected regeneration 

time in Sec. III. Then in Sec. IV, we discuss the construction of 

edge-disjoint and edge-sharing parallel regeneration trees with 

the equal partition of coded blocks. 

III. TREE-STRUCTURED REGENERATION 

A. Network model and the regeneration tree 

Assume linear network coding is used to produce redundancy 

in a distributed storage system. The original file is divided 

into k blocks and encoded into more than k coded blocks. 

Each storage node stores one coded block. In a regeneration, a 

newcomer receives k coded blocks from k providers. We define 

the node set V(k) = {Vo, Vl, ... , Vd, where Vo denotes the 

newcomer and other nodes denote the providers. 

In the network, links between nodes are aSYlmnetric. We 

define two directed edges between two nodes Vi and Vj, i -I- j. 
The edge (Vi, Vj) denotes the end-to-end link from Vi to Vj. 
The edge set E(k) = { (Vi, Vj)li,j E [O .. k], i -I- j}. The weight 

of (Vi, Vj), w(Vi, Vj), denotes the available bandwidth from Vi 
to Vj. 

In this paper, the network model is represented as a directed 

complete graph G(k) = (V(k),E(k),w ). We assume that for 

each node in V(k), multiple connections with some other nodes 

can not saturate its available bandwidth capacity. Fig. l(b) is 

an example of the network model G(3). 
We can construct a regeneration tree in a network model 

G(k). In a symmetric network model such as Fig. lea), a 

regeneration tree is a spanning tree rooted at the newcomer 

[3], as the newcomer should receive coded blocks from all the 

providers. Similarly, we give the definition of the regeneration 

tree in G(k). 
Definition 1: In a network model G(k), a regeneration tree 

is a reverse arborescence rooted at the newcomer, i.e., a directed 

spanning tree rooted at the newcomer such that the edges are 

directed towards the newcomer. 

Since every edge in a regeneration tree in G( k) is directed 

towards the newcomer, every provider has a directed path to the 

newcomer. Thus the newcomer can receive coded data from all 

the providers in G(k). Moreover, as we show in Fig. l(b) and 

Fig. l(c), the regeneration time is bottlenecked by the minimum 

edge in the regeneration tree. We do not count the initial delay, 

i.e., the time from establishing connections to the arrival of the 

first byte at the newcomer, since the size of the coded block is 

usually large enough in distributed storage systems. 

Definition 2: The available bandwidth of a regeneration tree 

T in G(k) is the weight of the minimum edge in T. 

In order to reduce the regeneration time, our objective is to 

find the optimal regeneration tree in G(k), i.e., the regeneration 

tree with the maximum available bandwidth. This is equivalent 

to finding the maximum bottleneck spanning tree in a graph. 

Gabow and Tarjan [13] proposed an algorithm of this problem 

by the dichotomic search, shown in Algorithm 1. The time com­

plexity of Algorithm 1 is O(IE(k)llog(V(k))) = O(k210gk). 



Algorithm 1 Splitting algorithm for the problem of the 
optimal regeneration tree in G(k) [13]. Let E(k) 
{e1,e2, ... ,ek(k+1)}' where w(e1) 2: w(e2) 2: ... > 
w(ek(k+1))' 

1: e1 f- 1, e2 f- IE(k) 1 
2: while e1 i=- e2 do 

3: m f- l�(e1 + e2)J 
4: E1 f- {elw(em) :0::: w(e),e E E(k)} 
5: if every node in G(V(k),E1) has a directed path towards 

Vo then 

6: e2 f- m 

7: else 

8: e1 f- m + 1 
9: end if 

10: end while 

11: .\* f- w(eeJ 
12: return a spanning tree in G(V(k), {elw(e) 2: .\*}) 

B. Analysis of regeneration time 

In this section, we investigate the gain of the optimal regen­
eration tree, from the perspective of the regeneration time. For 
the tree-structured regeneration, we have shown in Sec. III-A 
that the regeneration time is bottle necked by the minimum edge 
in the regeneration tree. 

Definition 3: The regeneration time is the ratio of the size 
of a coded block to the available bandwidth of the regeneration 
tree. 

Given a network model G(k) = {V(k), E(k), w}, if we have 
known the distribution function of w, we can know the expected 
value of the regeneration time. If the size of the original file 
is M bits, the size of a coded block is thus � bits, so the 
regeneration time is k.:reb)' 

where eb is the bottleneck edge of 
the optimal regeneration tree. 

Property 1: If eb = ei in G(k), i.e., eb is the i-th maximum 
edge in E(k), then k :0::: i :0::: k2 + 1. 

Proof In G(k) there are totally k + 1 nodes and a 
regeneration tree thus has k edges, so eb is at most the k-th 
maximum edge. On the other hand, since G(k) is a complete 
graph, every provider has k edge-disjoint directed paths towards 
the newcomer. Thus no provider will be disconnected from 
the newcomer until at least k edges in G(k) are removed, so 
i :0::: k(k + 1) -k + 1 = k2 + 1. • 

Let p(k + 1, i) denote the probability that eb = ei in G(k), 
and E[i, k(k + 1)] the expected weight of the i-th maximum 
edge in E (k). The expected regeneration time of the tree­
structured regeneration is 

k2+1 
M p(k + I, i) 

ttree = L k' E[i, k(k + 1)] i=k 
(3) 

Given the distribution of w, we can get E[i, k(k + 1)] by 
order statistics [14]. Assume F(x) and f(x) are curriculum 
distribution function and probability density function of w, 

respectively. 

E[i, k(k + 1)] = 

+00 
j. n!Fk(k+1)-i(x)[1 -F(x)]i-1 f(x) 

X ·  dx. (4) 
(k(k + 1) -i)!(i -I)! 

o 
Now we discuss the distribution of p( k + 1, i) in G (k). 

According to Property 1, p(k + 1, i) = 0 when i < k or 
i> k2 + 1. 

Lemma 1: Let Q(l,j) denote the number of directed graphs 
containing l labeled nodes and j directed edges, such that every 
node in the graph has a directed path towards one specific root 
node. When l - 1 :0::: j :0::: l(l - 1), 

Q(l,j) = ( l(l j 1) ) 
i
t

1 
p(l, i). (5) 

Otherwise Q(l,j) = O. 
Proof When j < l-1, such a graph can not be connected. 

When j > l (l - 1), it is impossible since there are at most 
l (l - 1) edges in the graph. Therefore, Q( l, j) = 0 when j < 

l - 1 or j > l (l - 1). 
Now we discuss the case when I - 1 :0::: j :0::: l(l - 1). For 

one graph satisfying the condition, we let the weight of the j 
edges be l(l - 1), l(l - 1) - 1, ... , and l(l - 1) -(j - 1), 
respectively. Then we add l(l - 1) -j edges into the graph 
to make it become a complete graph, and let the weight of 
the added edges be 1, 2, ... , and l(l - 1) -j, respectively. 
Thus we can map this graph to j!(l(l - 1) -j)! G(l - l)s, 
in which eb = ej', l - 1 :0::: j' :0::: j. Since the number of the 
graphs satisfying the condition is Q(l, j), the number of G( k), 
in which eb = ej"l- 1 :0::: j':O::: j, is Q(l,j)j!(l(l-l) -j)!. 

On the other hand, given a network model G (k ), the prob­
ability that eb = ej',l-I:O::: j':O::: j is "Li=l-lP(l,j), so the 

number of such G(k)s is (l(l-I))! "Li=l-lP(l,j). 
Connecting the two parts above, we have the following 

equation: 

j 
Q(l,j)j!(l(l- 1) -j)! = (l(l -I))! L p(l,j) (6) 

i=l-l 

Therefore, Q(l,j) = ( l(l j 1) ) 
i=�/(l, i). 

Theorem 1: If k:O::: i:O::: k2 + 1, p(k + l,i) = 

• 

kh ltl ( 7= i ) R(k,l,i) + � %=: ( 7=; ) R(k,l,i) 
( ) 

, (7) 

where R(k, l, i) = 

L 
]I + h + j3 = i -1 

]I,h,j3 2: 0 

k(k + 1) -1 
� -1 

( l(k+
1-l) )Q(I,]I)Q(k+1-I,h). (8) j3 

Proof Assume in G(k) eb = ei, k :0::: i :0::: k2 + 1. There 
are two possibilities of the position of ei. 



a. ei points to the newcomer, i.e., ei = (Vi, Vo), 1 :s; t :s; k. 
The probability of this case is apparently k(k�l) = k!I' Let 

E = {el' e2, . . .  , ei}. In this situation, ei is the bottleneck edge 
if and only if in G(V(k), E), for each nodes except Vo and Vi, 
there are at least one directed path towards Vi or Vo. Assume 
there are I nodes, including Vi itself, having directed paths 
towards Vi, 1 :s; I :s; k. We define 11(1) to be the set of these 

I nodes and 11(2) the set of other k + 1 -I nodes. Apart from 
Vi, the number of selecting I - 1 nodes from k - 1 providers 

into 11(1) is ( � � � ) . To make ei be the bottleneck edge, the 

edges in E;{ ed can be between two nodes in V(I)' or between 
two nodes in V(2), or from one node in 11(2) to one node in 
11(1). Assume there are jl edges between two nodes in 11(1), 
j2 edges between two nodes in 11(2), and j3 from one node in 
11(2) to one node in 11(1). According to Lemma 1, the number 

of such assignments is 
( l(k +

j
� -I) ) Q(l,jdQ(k + 1 -

1,12). Summarizing the numbers of all possibilities of jl, j2 
and j3, we get the total number of the possibilities of the edge 
assignments and denote it by R(k, I, i). Considering the number 
of assigning i-I edges in E - { ei} into k( k + 1) - 1 positions 

. ( k(k+l)-I ) 
d .. 11 h 'b'I" f IS i-I an summarlzmg a t e POSSI I Itles 0 

11(1) and 11(2), we get the probability that Ei is the bottleneck 
edge when ei = (Vi, Vo) is 

k ( k-l ) 
1 . _ l� 1- 1 

R(k, I, i) 
Pa(k+ ,2)- ( k(k+l)-I ) 

2 - 1 

(9) 

b. The other case is that ei is from one provider to another 
provider, i.e., ei = (Vip Vir)' 1 :s; tt, t2 :s; k, tl =J t2' The 

probability of this case is Z(Z�ij = �+�. In G(V(k), E), we 
let 11(1) to be the set of the nodes which have a directed path 
towards Vi" including Vi, itself, and 11(2) the set of other nodes 
in V(k). Assume there are I nodes in V(I), 1 :s; I :s; k + 
1 - 2 = k - 1, so the number of the possibilities of selecting 

I - 1 nodes in 11(1) - {Vi,} from k + 1 - 3 = k - 2 nodes in 

V(k) - {Vo, Vi" Vi2} is 
( 7 � � ) . Similar with the proof 

above, when ei = (Vi" ViJ, the probability that Ei is the 
bottleneck edge is 

k-l ( k - 2 ) 
. l� I-I R(k,l,i) 

pb(k+l,2)= ( k(k:+-l)-I ) 
2 - 1 

(10) 

Notice that ei is impossible to be from Vo to another node, 
because the newcomer just receives data from other nodes in 
the regeneration process. Therefore, p( k + 1, i), the probability 
that ei is the bottleneck edge in G (k) is 

1 k-l 
p(k + 1, i) = -k -Pa(k + 1, i) + -k -Pb(k + 1, i). (11) 

+1 +1 

• 

" 

400 

'---���----r=-e-==s ::O::TA=R=il 
-a-TREE 

� 100 

Ql� 50 

4 6 8 10 12 14 16 18 20 

k (#provider) 

Fig. 2. Expected regeneration time of STAR and TREE in G(k). The available 
bandwidth of the link satisfies the uniform distribution U[O.3Mbps, 140Mbps]. 

For the star-structured regeneration in a network model G(k), 
however, it only uses the k edges pointing to the newcomer Vo, 
so the bottleneck edge is clearly the minimum edge among the 
k edges. Thus the expected regeneration time is 

M 1 
tstar = k . E [k, k] 

(12) 

Fig. 2 shows the expected regeneration time of the tree­
structured regeneration (TREE) and the star-structured regen­
eration (STAR). We assume the available bandwidth of links 
satisfies a uniform distribution of U[0.3Mbps, 140Mbps]. The 
size of the original file is 4GB. We calculate the expected 
regeneration time of TREE and STAR by (3) and (12). We 
notice that compared with STAR, the regeneration time can be 
reduced by more than 90% when k ?: 12. 

IV. MULTIPLE REGENERA TION TREES 

In this section, we further reduce the regeneration time by 
utilizing more links in the network to construct multiple re­
generation trees, that works in parallel during the regeneration. 
For example, if we construct two parallel regeneration trees 
in a network model G(k), we can divide the coded block in 
each provider into two parts. Since every regeneration tree is 
a spanning tree, every provider should belong to both trees. 
Therefore, the newcomer can receives the first part of the 
regenerated block from the first tree, and the second part from 
the second tree. The regeneration time is thus determined by 
the regeneration tree with more regeneration time. 

Assume we can construct t parallel regeneration trees, 
T1, T2, . . .  , Tt. Let Wi denote the available bandwidth of Ti, 
i = 1,2, ... , t. In this paper, we consider the equal partition 
of the coded block and thus construct t regeneration trees that 
maximize min { WI, W2 . . .  , Wt}. We start from the construction 
algorithm of the edge-disjoint parallel regeneration trees, and 
then extend it to construct edge-sharing parallel regeneration 
trees. 

A. Edge-disjoint parallel regeneration trees 

We start from constructing the optimal t edge-disjoint par­
allel regeneration trees in G(k) = (V(k),E(k),w). Given a 
constant t, the goal is to find t edge-disjoint trees in G( k), 
denoted by T1,T2, . . .  ,Tt. Ti = (V(k), Ei,w),Ei c E(k), i = 



1,2, ... ,t. For each tree Ti, i = 1,2, ... ,t, it is a regeneration 

tree such that every provider in G (k) has a directed path 

towards the newcomer Vo. Ei n Ej = 0 when i i=- j. Define 

Wi as the available bandwidth of Ti. Since the t trees are edge­

disjoint, the available bandwidth of each tree will not interfere 

with other trees. Since each regeneration tree is responsible for 

regenerating one equal part of the coded block, the regeneration 

time of the whole coded block is thus the regeneration time of 

the regeneration tree with the minimum available bandwidth, 

i.e., 
M 1 

tmu lt = 

-kt' . { } 
. 

mm Wi 
l:Si:St 

(13) 

The problem of achieving the optimal regeneration time is 

equivalent to that of maximizing min {Wi}. Because Wi = 

l<i<t 
min{w(e)}, it is further equivalent 

-
to

-
the problem of maxi­

eEE, 
mizing min {w(e)}. 

eEEi,l:Si:St 
t 

Definition 4: Let E* = U Ei be the edge set of the t edge­
i=l 

disjoint parallel regeneration trees. The available bandwidth A * 
is min {w(e)}. 

eEE* 
Notice that there can be many trees with the same available 

bandwidth. However, since the regeneration time depends on 

the weight of the bottleneck edge, rather than the structure of 

the regeneration tree, we first find the maximum A * and the cor­

responding bottleneck edge, and then construct t regeneration 

trees from the edges with weight larger than A * . 
The size of feasible solution space is IE(k)l, since A* equals 

the weight of one edge in E(k). We design a dichotomic algo­

rithm, similar with Algorithm 1, to find the available bandwidth 

A* in the network model G(k) which runs in O(t2k410g k) 
time. Assuming t edge-disjoint parallel regeneration trees exist 

in G (k), the t trees with the maximum A * are constructed in 

Algorithm 2. 

Algorithm 2 Splitting algorithm for the problem of finding t 
edge-disjoint parallel regeneration trees in G(k). 

1: B1 +- 1, B2 +- IE(k)1 
2: while B1 i=- B2 do 

3: m +- l�(B1 + B2)J 
4: E1 +- {elw(em) :s; w(e),e E E(k)} 
5: if t edge-disjoint parallel regeneration trees exist in 

G(V(k), Ed then 

6: B2 +- m 

7: else 

8: B1 +- m + 1 
9: end if 

10: end while 

11: A* +- w(eoJ 
12: return t regeneration trees in G(V(k),{elw(e);::: A*}) 

From Line 2 to Line 10, we search the possible bottleneck 

weight value dichotomically. Since there are altogether IE(k)1 
different values, all steps run at most log IE(k)1 times. Line 5 

checks the existence of t mutually edge-disjoint spanning trees, 

which has been studied by Tarjan [15]. The time complex­

ity of this step is 0 (t21 E (k) 12). In a word, the dichotomic 

search can find the maximum A* in O(t2IE(k)1210g IE(k)l) = 

O( t2 k4 log k) time. After getting A *, we can find t edge­

disjoint regeneration trees with available bandwidth no less 

than A* by the algorithm proposed in [16]. The time com­

plexity of Line 12 is O(log(lV(k)lt) . lV(k)12 . IE(k)1 . 
10g(lV(k)12 IIE(k)l) = O(log(kt)k4). Thus, the overall time 

complexity is O(t2k410g k). 
Theorem 2: Algorithm 2 produces t edge-disjoint parallel re­

generation trees that achieve the maximum available bandwidth. 

Proof Since the correctness of Line 12 has been in­

vestigated in [16], we will show the correctness of the di­

chotomic search. If A * is the maximum available bandwidth, it 

is impossible to construct t edge-disjoint parallel regeneration 

trees in graph G(V(k), {ele E E(k),w(e) ;::: w(eoJ}), where 

w( eo2) > A *, otherwise the bottleneck ;::: w( eo2) > A *. On 

the other hand, it is always possible to construct t edge­

disjoint parallel regeneration trees in graph G(V(k), {ele E 

E(k), w( e) ;::: w( eo,)}), where w( eo,) :s; A *. Therefore, A * 
is the threshold whether t parallel edge-disjoint regeneration 

trees exist. Since there are finite feasible solutions, the available 

bandwidth A * can be found by the dichotomic search. • 

B. Edge-sharing parallel regeneration trees 

Algorithm 2 shows how to construct multiple edge-disjoint 

parallel regeneration trees. However, for each edge in a regen­

eration tree, its available bandwidth will not be used up until 

it is the bottleneck edge of the tree. Thus though many links 

in the network may be used, the available bandwidth of these 

links is not fully utilized. The algorithm in this section allows 

links to be shared by several regeneration trees, so as to fully 

utilize the available bandwidth. 

Given t regeneration trees, Ti = (V(k), Ei), Ei c E(k), i = 

1,2, ... ,t, in G(k) = (V(k),E(k),w), we assume the avail­

able bandwidth of Ti is Wi. There are t edge-sharing parallel 

regeneration trees if and only if 'Ve E E(k), L Wi :s; w(e). 
E,3e 

The regeneration time is also bottlenecked by the regeneration 

tree with the minimum available bandwidth, so (13) still holds 

and our objective remains finding the maximum A *. 
Property 2: Given the optimal available bandwidth A * 

of t edge-sharing parallel regeneration trees in G( k) 
(V(k),E(k),w), for any edge e E E(k), define n),*(e) 
l w;;l J. n),* (e) ;::: I{Ti(V(k), Ei)le E Ei, i = 1,2, ... , t}l. 

Proof For each e E E(k), w;;l > m�({�;} > 
Ei3e 

I{Ti(V(k), Ei)le E Ei,l :s; i :s; t}l. Considering the size of 

a set is always an integer, the floor can be achieved. • 

According to Property 2, if there exist t edge-sharing parallel 

regeneration trees with available bandwidth A *, at most n), * (e) 
connections can be established in one edge e. In other words, 

we can split e into n), * (e) edges, each with available bandwidth 

no worse than A *. The problem then becomes checking whether 

t edge-disjoint parallel regeneration trees exist, and thus can be 

solved by [16]. 



On the other hand, we might place at most t connections into 
one edge in the graph, since we only construct t edge-sharing 
parallel regeneration trees. Define the feasible solution space 
W = U {w(e), �w(e), tw(e), ... , iw(e)}, as the available 

eEE(k) 
bandwidth of at least one edge should be used up. Clearly, 
IWI � tIE(k)l· Let W = {Wl,W2, ... ,wlwl},Wl 2: W2 2: 
. . .  ,wlwl}· 

Similar to the algorithm for finding multiple edge-disjoint 
parallel regeneration trees, we can use a dichotomic method 
in Algorithm 3 to find the maximum available bandwidth 
,\* in G(k), which runs in O(t2IE(kW 10g(tIE(k)I)) = 

O(t2k410g(tk)) time as O(IWI) = O(tIE(k)I). We assume 
one spanning tree exists in G( k), since we can split the only 
one tree into t trees by splitting each of its edges into t edges. 

Algorithm 3 Splitting algorithm for the problem of finding t 
edge-sharing parallel regeneration trees in G(k). 

1: Bl +-1, B2 +-IWI 
2: while Bl i= B2 do 

3: m +- l�(Bl + B2)J 
4: Let El be a multiset of S(wm) = {e x nw=(e)le E 

E(k)} 
5: if t edge-disjoint parallel regeneration trees exist in 

G(V(k), Ed then 

6: B2 +-m 

7: else 

8: Bl +-m + 1 

9: end if 

10: end while 

11: ,\* +-We, 
12: return t regeneration trees in G(V(k),S('\*)) 

Theorem 3: Algorithm 3 produces t edge-sharing parallel re­
generation trees that achieve the maximum available bandwidth. 

Proof" If ,\ * is the maximum available bandwidth, it 
is impossible to construct t edge-sharing spanning trees in 
graph G(V, Swo2)' where we2 > ,\ *, otherwise the available 
bandwidth 2: we2 > ,\ *. Also, it is always possible to construct 
t edge-sharing parallel regeneration trees in graph G(V, SWo, ), 
where we, � ,\ *, since SA' � SWo,. Therefore, ,\ * is the 
threshold whether t edge-sharing parallel regeneration trees 
exist. Since there are finite feasible solutions, the maximum 
available bandwidth ,\ * can be found by the dichotomic search. 

• 

V. SIMULATION 

In this section, we make extensive empirical studies to 
evaluate the performance of the tree-structured regeneration 
algorithms based on the real data of available bandwidth [17] 
and node behaviors [18] measured in PlanetLab [7], a global 
research network in which most links are asymmetry. 

The main results we observe from the simulation results 
include: 

• The regeneration time can be greatly reduced by construct­
ing multiple parallel regeneration trees. Because of this, 

fO.S �O.5 

00!----7-�, -76 -8O-----c"�-!o-�" °O�---;;C;----;COA;-----;C;06;----;C;;-� 
asymmetry factor a available bandwidth x (Kbps) x 10" 

(a) available bandwidth (b) asymmetry factor 

Fig. 3. Curriculum distribution functions of available bandwidth and asym­
metry factor in PlanetLab. 

the file can be regarded as almost available in a dynamic 
network environment with the node join and departure. 

• The edge-sharing algorithm performs better than the edge­
disjoint algorithm, both on the available bandwidth and on 
the resistance to the high asynunetry factor. 

A. Static network environment 

We first simulate a static network, i.e., storage nodes in 
the network are supposed to be static and there is no node 
join/departure during the regeneration. The network topology is 
constructed based on real data of available bandwidth measured 
in PlanetLab by S3 (Scalable Sensing Service) [17]. If k 
providers are used in the regeneration process, we construct 
a network containing one newcomer and k providers, and then 
we assign the weight of each link, using the available bandwidth 
measured in S3 by the tool of pathChirp [19] on 16:28:lO 
(Pacific Time), Nov. 11, 2009. 

We use the asyrmnetry factor to denote the asymmetry of 
links. Assume the available bandwidth in the two directions of 
one link is BW1 and BW2, the asymmetry factor is 

IBW1 - BW21 a= �-;-----� 

max{BW1,BW2} 
(14) 

It is clear that 0 � a � 1. Fig. 3 shows the curriculum 
distribution functions of the available bandwidth and the asym­
metry factor in PlanetLab, respectively. We use the algorithms 
mentioned in this paper to construct regeneration tree(s) in the 
network and the simulation is repeated for 1000 times. 

The algorithms we compare contain star-structured regener­
ation (STAR), tree-structured regeneration (TREE) in Sec. III, 
for the case of single regeneration tree. For the case of 
multiple parallel regeneration trees, we compare our optimal 
algorithms proposed in Sec. IV and two greedy algorithms. 
Our optimal algorithms are denoted as t-optimal-edge-disjoint 
algorithm (t-OPT-disjoint), and t-optimal-edge-sharing algo­
rithm (t-OPT-sharing). The greedy algorithms are denoted as 
t-greedy-edge-disjoint algorithm (t-GREEDY-disjoint) and t­
greedy-edge-sharing algorithm (t-GREEDY-sharing). 

Now we introduce the greedy algorithms used in the simu­
lation. Let t=2, for example. For the 2-GREEDY-disjoint algo­
rithm, the first regeneration tree is constructed as the optimal 
regeneration tree by TREE, and then we remove the edges 



in the first regeneration tree from the network. The second 

regeneration tree is then constructed by TREE on the network 

with remaining edges. For the 2-GREEDY-sharing algorithm, 

the edges of the two parallel regeneration trees can share 

the same link. Thus after constructing the first regeneration 

tree by TREE, we decrease the weight of edges in the first 

regeneration tree by the available bandwidth of the first tree 

and then construct the second tree by TREE. (13) still holds 

for the greedy algorithms, as we partition the coded blocks into 

size-equal blocks. 
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Fig. 4. Regeneration rate with the increasing of the number of providers, 
when a E (0,0.6]. 

For fairness, we define the regeneration rate in G(k) as k x t 

times of the available bandwidth, and thus the regeneration time 

is the ratio of the size of the original file to the regeneration rate. 

We compare the regeneration rate in Fig. 4, in which the asym­

metry factor of links is selected in (0,0.6]. We show in Fig. 4(a) 

the regeneration rate of I-tree algorithms (STAR and TREE) 

and 2-tree algorithms (2-0PT/GREEDY-disjointlsharing). We 

can see for all algorithms except STAR, the regeneration rate 

increases with k, because the tree-structured regeneration can 

bypass the slow links in the network, while STAR has to suffer 

from the link with the minimum bandwidth from one provider 

to the newcomer. Compared with STAR, TREE can increase 

the available bandwidth by a factor of 14 when k = 10, and 

the regeneration rate of 2-0PT-disjoint and 2-0PT-sharing can 

even achieve 22.9 and 23.5 times of STAR. On the other hand, 

the regeneration rate of 2-0PT-disjoint and 2-0PT-sharing is 

l.6 and l.7 times of the regeneration rate of TREE. Because 

we use more links by constructing two regeneration trees, the 

regeneration rate of the second tree can not be as good as the 

regeneration rate of the single tree. Therefore, 2-tree algorithms 

can not achieve twice of the regeneration rate of TREE. 

Moreover, we notice that though our optimal algorithms 

perform better than the greedy algorithm, the curves of greedy 

algorithms converge to the curves of the corresponding optimal 

algorithms. However, we still think our optimal algorithms is 

better for practical distributed storage systems. First, consider­

ing the computational cost of encoding and decoding and the 

cost of establishing and maintaining connections in the network, 

distributed storage systems usually prefer a smaller k in prac­

tical. Second, the greedy algorithms have to construct parallel 
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Fig. 5. Regeneration rate with the maximum asymmetry factor amax, when 
k = 10. 

regeneration trees one after another, so it may incur additional 

cost of regeneration time and bandwidth measurement. 

We show the results in Fig. 4(b) when we employ more par­

allel regeneration trees during the regeneration. 3-0PT-disjoint 

and 3-0PT-sharing can achieve regeneration rate l.3 and 1.4 

times of 2-0PT-sharing. However, we observe interestingly that 

3-0PT-disjoint performs worse than 2-0PT-sharing and even 2-

OPT-disjoint when k � 8. The reason is that when k is small, 

the number of links in the network is also small, and the slow 

links in the network probably can not be bypassed. Therefore, 

we think it is better to share links with parallel regeneration 

trees, and if the distributed storage systems can not afford a 

large k, it is better to use only 2 parallel regeneration trees or 

even single regeneration tree in the regeneration process. 

We also investigate how the asyrmnetry factor O! influences 

the regeneration rate. We assign available bandwidth to links 

using the measured bandwidth data with asyrmnetry factor in 

(0, O!max) , and the maximum asymmetry factor O!max varies 

from 0.05 to l. Fig. 5 shows the curves of regeneration rate 

with the increasing of O!max. For each algorithm, the average 

regeneration rate is related with the asymmetry factor, because 

the average available bandwidth in some intervals of asymmetry 

factor is relatively higher. Moreover, with the increasing of 

asymmetry factor, it is more probable that the available band­

width is very low in one direction of the link. We thus observe 

that for all the algorithms, the regeneration rate changes with 

the asymmetry factor intervals in a similar trend and it tends 

to be lower with a larger asymmetry factor. In Table I, we 

calculate the ratio of the maximum regeneration rate of each 

algorithm to its minimum regeneration rate. We notice that the 

regeneration rate can be more affected by the asymmetry factor 

TABLE I 

THE RATIO OF THE MAXIMUM REGENERATION RATE TO THE MINIMUM 

REGENERATION RATE OF EACH ALGORITHM IN FIG. 5. 

algorithm I ratio I algorithm I ratio 

STAR 1.3510 TREE 1.1109 

2-0PT-disjoint 1.2128 2-0PT-sharing 1.1877 

2-GREEDY-disjoint 1.2249 2-GREEDY-sharing 1.1985 

3-0PT-disjoint 1.4550 3-0PT-sharing 1.2854 

3-GREEDY-disjoint 1.5046 3-GREEDY-sharing 1.3687 



Ts 
Tf 

Nall 
Nr 
M 

r 

tmax 

TABLE II 
SIMULATION PARAMETERS 

starting time (sec.) 
finish time (sec.) 

the number of nodes 
repeated times 
file size (KB) 

redundancy rate 
maximum number of parallel regeneration trees 

2 x 10° 
1.2 x 10 

100 
500 

5 x 10" 
1.5 
5 

if there are more parallel regeneration trees. However, STAR is 
still very sensitive with the asymmetry factor, because it always 
"selects" the link with the worst available bandwidth as its 
bottleneck edge. We also observe that edge-sharing algorithms 
work better than edge-disjoint algorithms, because when the 
asyrmnetry factor is large, the bandwidth left by other parallel 
regeneration trees tends to be higher and thus is more likely to 
used by edge-sharing algorithms. 

B. Dynamic network environment 

We have evaluated the performance of the algorithms in a 
static environment, i.e., there is no node join/departure in the 
network. However, it is improbable in reality. Thus, in this 
section, we introduce the node behaviors into our simulation 
and compare some metrics important to the practical distributed 
storage systems. 

The trace file containing the join/departure behaviors of 
nodes in PlanetLab is provided by [18]. The status of the node is 
detected by the pings repeated every 15 minutes from Jan. 2004 

to Jan. 2005. Based the trace file, we run our simulation in an 
event -driven simulator which simulates a practical distributed 
storage system in PlanetLab. Each node in the simulation is 
mapped to a real node in PlanetLab, and the edge in the 
simulation is mapped to the corresponding edge connecting the 
two corresponding nodes in PlanetLab in the same direction. 
We assign the available bandwidth of each edge according to 
the available bandwidth of the mapped edge. 

Table II shows the parameters we use in the simulation. Time 
starts at 0 in the trace file and the simulation runs from Ts to 
Tf. We select Nail nodes with the most frequent join/leave 
behaviors from the nodes in the trace file. We assume that at 
the beginning of the simulation, a file has been stored in the 
distributed storage system. The size of the file is M kilobytes. 
The file is divided into k blocks and the coded blocks are stored 
in r x k storage nodes, where r is the redundancy rate. Each 
storage node stores one coded block. 

A storage 

node leaves. 

Anotller regeneration The regeneration Another storage 

is launched. successes. node leaves. 

time 

A newcomer is selected and regeneration time 
a regeneration is launched. 

One provider leaves. 

The regeneration fails. 

Fig. 6. Timeline of the regeneration process in the simulation. 

We use a timeline in Fig. 6 to describe our simulation system. 
After a storage node leaves the network at tl, the system has to 
select a replacement node, i.e., a newcomer, to regenerate the 
lost coded block. If there is no available replacement node, the 
regeneration has to be postponed until a node joins the network 
at t2. When a regeneration is launched, k providers are selected 
from the available storage nodes with the highest available 
bandwidth towards the newcomer. We construct the regener­
ation tree(s) and calculate the corresponding regeneration time. 
When a storage node or the newcomer leaves the network at 
t3, before the regeneration finishes, the regeneration fails and 
the system has to launch another regeneration at t4' When the 
regeneration finishes at t5, it is regarded as successful. The 
system then keeps idle until another storage node fails at t6. 

We compare four algorithms in the simulation. For I-tree 
algorithms, we compare STAR and TREE. For multi-tree 
algorithms, we set tmax as the maximum number of parallel 
regeneration trees used during the regeneration. When t is too 
large, the regeneration rate of t-OPT-disjointlsharing algorithm 
will decrease, as shown in Fig. 4(b). Thus we select the 
best t which achieves the maximum regeneration rate when 
t = 1,2, ... , tmax. When t = 1, the regeneration tree is 
constructed by TREE, and t parallel regeneration trees are 
constructed by t-OPT-disjoint or t-OPT-sharing algorithm when 
t > 2. This algorithm is referred to as BEST-disjoint if the 
t-OPT-disjoint algorithm is used and as BEST-sharing if the t­
OPT-sharing algorithm is employed. We repeat the simulation 
for Nr times and then get the average results. 

Table II also shows the values of parameters used in our 
simulation. The simulation covers 107 seconds in PlanetLab. 
There are totally 100 nodes in the simulation. On average, there 
are 4 9.92 nodes available and each node joins or leaves the 
network 0.27 times per day during this time. We set the size of 
the original file to be 500GB, the size of the current mainstream 
commodity hard disk. The redundancy rate is set to be 1.5. At 
most 5 parallel regeneration trees can be constructed during the 
regeneration. In the simulation, k varies from 6 to 20. Thus, it 
is probable that there exist 5 edge-disjoint parallel regeneration 
trees. The simulation is repeated for 500 times. 

Fig. 7 shows the simulation results. In Fig. 7(a), we can 
see that TREE can reduce the regeneration time by 58% and 
BEST-sharing further reduce the time by 55% compared with 
TREE. Because the number of links in the network increases 
with k, it is more likely to select the links with higher available 
bandwidth when k is larger. Thus the curves all go down 
with the increasing of k. Compared with Fig. 4, the curves of 
BEST-disjoint and BEST-sharing are quite close together. The 
"BEST" algorithms can select the best t to achieve the optimal 
regeneration time, so the gap between BEST-disjoint and BEST­
sharing will not be big when k is small. When k becomes larger, 
the gap becomes smaller and smaller, as illustrated in Fig. 4. 

We also compare another two important performance metrics 
of the regeneration in the distributed storage system. One metric 
is the probability of successful regeneration. The regeneration 
fails when one provider or the newcomer leaves the network 
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Fig. 7. Simulation results in the dynamic network environment. 

during the regeneration. We can see in Fig. 7(b) that both BEST­

disjoint and BEST-sharing have the probability of successful 

regeneration more than 90%, while only about 75% of the 

regeneration processes using STAR and about 85% of the 

regeneration processes using TREE success. Moreover, when k 
is large, the probability of the successful regeneration process 

begins to reduce, because node departures are more likely to 

happen during the regeneration. 

We notice in Fig. 7(c), the file availability of STAR is only 

about 60%. T he file availability is the probability that the file 

can be recovered. If too many regeneration processes fail, the 

number of coded blocks can not be kept always larger than k. 
However, when k > 14, the file availability of BEST-disjoint 

and BEST-sharing can be more than 98%. Even for TREE, 

the file availability can still be almost 90%. T herefore, we 

can regard the file as highly available by the tree-structured 

regeneration algorithms. 

VI. CONCLUSION 

In this paper, we discuss the tree-structured regeneration in 

the network with asymmetric links. We show the construction 

algorithm of the optimal regeneration tree in the network with 

aSYlmnetric links and analyze its performance. We then propose 

two algorithms to construct multiple parallel regeneration trees, 

so as to further reduce the regeneration time by transmitting 

data in parallel during the regeneration. By extensive sim­

ulations, we evaluate the performance of the tree-structured 

regeneration algorithms using real data measured in PlanetLab. 

Parallel regeneration trees can reduce the regeneration time 

significantly and maintain the file availability of no less than 

98%. 
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