
Mimir: Term-Distributed Indexing and Search for

Secret Documents

Guoqiang Gao, Ruixuan Li, Xiwu Gu, Kunmei Wen, Zhengding Lu, Kun Yan

Intelligent and Distributed Computing Lab, School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan 430074, P. R. China

Email:ggq@smail.hust.edu.cn.{rxli.xwgu.kmwen.zdlu}@hust.edu.cn.yankun@gmail.com

Abstract-In order to access sensitive documents shared over
government, army and enterprise intranets, users rely on an in
dexing facility where they can quickly locate relevant documents
they are allowed to access, (1) without leaking information about
the remaining documents, (2) without imposing large load on the
receptionist, and (3) with a balanced load on the index servers.
To address this problem, we propose Mimir, a distributed cipher
retrieval system for sensitive documents. Mimir constructs the
distributed indexes based on load balanced term distribution
for better search efficiency and load balanced query. Mimir
utilizes encryption with random key, partial key update, and
access control based on role and user to protect sensitive data
and improve query efficiency. Mimir uses dynamic pipelined
search strategy to balance the load of the management server
and reduce the search delay. Our experiments show that Mimir
can effectively protect secret data and answer queries nearly as
fast as an ordinary inverted index.

Index Terms-ciphertext retrieval system, index, search, term
distribution, encryption.

I. INTRODUCTION

The number of secret documents shared over government,
army and enterprise intranets is growing rapidly. How to ef
fectively manage these secret documents? Building an inverted
index over the collection of secret documents may is a good
choice [1]. The inverted index consists of a couple of data
structures, namely lexicon and posting lists. The former stores
all the distinct terms contained in documents. The latter is an
array of list storing terms occurrences within the document
collection. Current search engines mostly take the inverted
index to store information, such as Google [2]. In order to
prevent leakage of sensitive information, access control is the
most widely used way. We take the access control based on
role and user to prevent unauthorized users from accessing
information. However, storing plain text in the inverted index
is not secure for secret documents because an adversary who
gains access to the index files can access sensitive data, thus,
bypassing the access control mechanism. Although encrypting
the index can prevent data from being illegally stolen, however,
it will lead to large computational overhead. In order to obtain
high efficiency, only the lexicon needs to be encrypted because
the document can be only derived from lexicon in the index.
Although the term appears in the index as ciphertext, there
is still a risk of statistical attack for this strategy because
the highly frequent terms have a long posting list. To put it
simply, the attackers can learn the rule of posting list from
the frequency of terms. Then they can estimate the encrypted

terms through the length of the posting lists. In this paper, we
propose a strategy that a term is encrypted with a random key.
Thus, even if the key of a term is cracked, it will not pose a
threat to the other terms.

The amount of secret documents stored in some intranets
reaches at the terabyte range. If this volume of data were
stored and indexed on a single computer, queries would take
many seconds to evaluate even with the most efficient index
representations and query resolution methods. To handle the
necessary data volumes and query throughput rates, paral
lel computing systems are used, in which the documents
and index data are split across tightly-clustered distributed
computing systems. The main distributed indexing methods
include document-distributed index and term-distributed index.
Each processing server stores the index corresponding to a
subset of the documents in a document-distributed system.
Queries are processed in parallel at all servers, and collated
back into a single combined answer when all servers have
completed their local processing. The document distribution
has good scalability and load balancing, while it has low
search efficiency. In a term-distributed system, each of the
processing servers maintains complete index information for a
subset of the terms in the collection, and each query is referred
to the subset of the servers that hold relevant information. The
term distribution has compact index and high search efficiency,
while there is an evident lack of balance in the distribution on
the load of its servers [3]. In this paper, we propose a load
balanced term distribution strategy to retain the advantages of
term distribution, and to improve the load unbalance.

A distributed search system usually consists of the follow
ing components: client, receptionist and query processor. A
receptionist, is called as the management server in our system,
receives queries from client computers, and makes decisions
on how to route these queries to different query processors of
the system. The query processors, or so-called index servers,
hold index or document information, which are used to retrieve
and prepare the presentation of results, respectively. In a
standard query resolution method, the receptionist receives
a query, requests the index information for the query terms
from the pertinent index servers, and processes this infor
mation centrally. This strategy has the drawback of a severe
bottleneck at the receptionist. An alternative is the pipelined
term-distributed evaluation strategy proposed by Moffat et al.
[4], where the query processing is distributed across the index

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.25

servers. However, pipelined search will increase the search
delay because the search is done on the index servers one by
one. We propose the dynamic pipelined search to trade off the
bottleneck and the delay. If the communication load of the
management server is high, we take full pipe lined search to
decrease the load, namely the search request is routed directly
to the index servers and then the search is done on the index
servers linearly. If the load of the management server is low,
the search request is divided into multiple sub-queries and
forwarded to pertinent index servers.

To address these problems, we propose Mimirl, a distributed
retrieval system for secret documents. In order to improve
security, Mimir uses the cipher index and the access control
to protect sensitive information, and encrypts the terms in
the index with random key to reduce the risk of statistical
attack, and takes partial key update strategy to decrease the
potential risk of attack by malicious users. To improve system
performance, Mimir only encrypts the terms in the index to
decrease the cost of decryption and improve the retrieval effi
ciency, and constructs the distributed index based on the load
balanced term distribution for secret documents to balance the
load of the index servers, and achieves the distributed query
based on dynamic pipe lined search strategy to improve the
load of the management server and the search delay. Mimir
not only guarantees the safety of secret documents, but also
the efficiency of the retrieval system.

This paper is organized as follows. Related work is pre
sented in section 2. In section 3, we describe Mimir in details
from load balanced term distribution, random key, partial key
update, access control and dynamic pipe lined search. Section 4

evaluates the performance through experiments. We conclude
and summarize the results in section 5.

II. RELATED WORK

Index security has been addressed by many researches,
where the goal is to secure the secret documents from unau
thorized access. Typically a system must provide two ways to
achieve security: access control and data encryption [5]. Of the
two, access control is a relatively older way to protect sensitive
data. Currently, the access control for documents usually is
discretionary access control (DAC) strategy [6] or role-based
access control (RBAC) [7], [8]. Zerber [9] proposed a based
user-group access control for index, in which a user can belong
to multiple groups, but a document can only be owned by one
group. This strategy is not very flexible because the user must
belong to the group containing the document if he/she wants to
access the document. Mimir uses the access control based on
role and user, in which the roles and users can be authorized
at the same time, to increase system flexibility.

Encryption is a standard technique for storing data confiden
tially [10]. Bertino [11] provides a framework for policy-based
protection ofXML data by encryption. Seitz [12] proposed an
architecture that allows users to store and share encrypted data

I Mimir is the giant in Norse mythology who guards the "Well of the Highest
Wisdom", situated in Jotunheim under of the roots of Y ggdrasil, the World
Tree.

in the grid computing environment. Each posting list element
in Zerber [9] is encrypted, while the terms in the index are
not encrypted. This strategy will bring great decryption cost
because the posting list accounts for a large proportion of
the index, and may leak certain confidential terminology. In
Mimir, we perform the opposite operation. In order to obtain
the similar efficiency to an ordinary inverted index, the posting
list is not be encrypted and Mimir only encrypts the terms in
the index. In the absence of encryption posting lists, there is
the risk of statistics attack in Mimir. To decrease this risk,
Mimir takes random key to encrypt the terms. As a result, the
terms have different encryption key to encrypt and then this
strategy greatly enhanced the difficulty of crack. To further
improve system security, Mimir disturbs the correspondence
between term and key though partial key update. The variety
of cipher terms caused by key change will result in index
update. Margaritis [13] only flush selectively the terms with
most posting lists in memory into disk to merge it with primary
index when the memory gets full with new posting lists.
Gurajada [14] propose a new merge-based index maintenance
strategy for information retrieval systems. This strategy parti
tions the index into frequent-term index and infrequent-term
index based on the frequency of terms, and uses a lazy-merge
strategy for maintaining infrequent-term index and an active
merge strategy for maintaining frequent-term index. In partial
key update, Mimir builds secondary index for the terms which
key are changed, and initiates the operation of index merge at
idle only when the number of the secondary indexes reaches
a certain threshold.

To handle the large-scale secret documents, the secret
documents and index should be distributed to multiple index
servers. There is a substantial literature on distribution meth
ods. Li et al. [15] distribute index contains fuzzy keywords and
encrypted files into the cloud servers. This strategy can provide
an effective fuzzy keyword search over encrypted cloud data.
According to the principle of confidentiality, however, the
sensitive data should be stored in its own dedicated servers.
The distribution methods can be broadly categorized into two
types: document distributed and term distributed schemes.
Harman et al. [16] described a document distributed system
that was successfully deployed in practice. Cahoon et al. [17]

found that increasing the number of nodes used to manage a
fixed-size collection could improve response, with diminishing
returns. Probably the best-known document distributed system
is Google [18], in which the cluster of servers maintain a
document distributed index and other servers store information
such as the documents themselves. The major drawback of
document partitioned system is that servers execute operations
unnecessarily when querying sub-collections, which may con
tain only few or no relevant documents. In term distribution
researches, Ricardo A. Baeza-Yates et al [19] represent a
collection of documents with a binary matrix (D x T), where
rows represent documents and columns represent terms. Each
element (i, j) is "I" if the document i contains term j, and it is
"0" otherwise. The term partitioning consists of performing a
vertical partitioning of the TxD matrix. MacFarlane et al. [20]

found the overhead at the top process is a serious bottleneck

with term-distributed mechanism. Since the major overhead

comes from the search for retrieval systems, we can balance

this problem through the pipelined search which will be

discussed later. Webber et al. [4] showed that term partitioning

resulted in lower utilization of resources. More specifically,

it significantly reduces the number of disk accesses and the

volume of data exchanged. Although term distributed scheme

has good efficiency for search, but it will result in load

imbalance of the index servers. In this paper, to improve the

retrieval efficiency and balance load, we takes load balanced

term distribution strategy to build distributed index for secret

documents.

In the case of the term distributed system, there is an

evident lack of balance in the distribution on the load of

the management server. In this paper, we use the terms of

"management server" and "receptionist" interchangeably. To

solve this problem, Xi et al. [21] proposed a hybrid method,

where each inverted list is broken into k fixed-size chunks and

one chunk is held on each node. However, this strategy can

not utilize the advantages of document distribution and term

distribution. An approach to eliminate the bottleneck of the

management server is to use pipelining [22]. In this approach,

the query is evaluated in stage by the sequence of servers

that hold the inverted lists corresponding to the query terms.

Evaluation of the query begins on first index server, which

processes the posting lists corresponding to query terms to

produce a set of accumulators. This set is passed to the next

index server, which processes the lists for query terms against

these accumulators to produce a modified set. The rest can be

done in the same manner. Finally the last index server produces

a final set of accumulators and returns it to the management

server. However, the pipe lined search will increase the delay

of search. In this paper, We propose the dynamic pipelined

search to trade off the bottleneck and the delay.

III. MIMIR DISTRIBUTED CIPHER RETRIEVAL SYSTEM

Mimir is a distributed retrieval system for secret documents,

which has two main functions: distributed indexing and dis

tributed search. We will discuss each feature of Mimir in

details after an overview of the architecture.

The components of Mimir include the clients, the man

agement server, the index servers, the document servers, the

random key database (RKDB) and the encryption server as

shown in Figure l. In the client (web browser), an authorized

user can log onto the management server to build an index or

submit a query. The management server distributes the entire

index to p index servers as well as r secret documents to q

document servers, and assigns a query to the corresponding

index servers to perform search. To improve search efficiency,

Mimir uses the term distribution strategy to split the entire

index. A document is parsed into a series of terms which are

then assigned to the corresponding index servers. In the index

servers, Mimir uses the cipher terms, which are generated by

encrypting the plain terms, to build the index called cipher

index. All the cipher indexes stored in the index servers

Client Index

Fig. I. The architecture of Mimir.

constitute the distributed cipher index which is complete

logically. The index server is also responsible for handling

queries, so it also can be called the query server. The query

is parsed into multiple search terms, and then these terms are

sent to the corresponding index servers to perform queries,

and finally the results are transferred back to the management

server to merge. In the indexing and querying processes, the

terms are encrypted through the encryption server, and a term

obtains the key stored in RKDB through its hash value. In

the front end, Mimir sets a flexible access control policy to

protect sensitive data from unauthorized access; in the back

end, encryption takes care of data leakage from illegal use.

A. Load Balanced Term distribution

Although the term distribution has better search efficiency,

such as less disk access, than the document distribution, there

is an evident lack of balance in the load distribution of the

index servers. Suppose that r documents are parsed into m

terms, then the number of terms St which are assigned into

each index server in term distribution is refined in equation

(1).
m.

St =-
(I)

p

Where p is the number of index servers. Therefore, each index

server is assigned the same number of terms. Suppose the

index server IA owns the terms set TA = (tl' t2, ... , ts,), and

the frequency of a term t is defined as ! (t). The term frequency

of index server IA is refined in equation (2).

!(IA)
= L !(ti) (2)

t;ET/\

Since the frequencies of terms are different, according to

Zipf's law, the term frequency of each index server is also dif

ferent even with the same number of terms. Higher frequency

of a term results in more documents containing the term whose

posting list may be a bit longer. If !(IA) > !(IB), the index

size of server IA is bigger than the size of server lB. In the

query, the load of index server I A will be greater than the load

of index server lB.
In this paper, to ensure load balancing, the load balanced

term distribution will be adopted instead of random term

distribution. Most of the terms are low frequency terms, and

imbalanced load caused by the low-frequency terms is small

because the frequency interval between them is very little.

In order to improve efficiency, the low frequency terms are

assigned to the index servers with a random term distribution

strategy. For the high-frequency term, the management server

records the f(I) of each index server, where f(I) denotes the

high-frequency term frequency of the index server, and the

management server establishes a list L(ter-rn, index server)
for the allocated terms. In the distribution process, the low

frequency words were randomly assigned to the index server.

If a high-frequency term t is not in the list L, it would be

assigned to an index server 1 with minimal f(I), and the man

agement updates f(I) of the index server 1 by f(I)+ = f(t).
This is presented in Algorithm 1.

Algorithm 1 Load Balanced Term distribution (term t)

if f (t) > fthreshold then

if t not in L then

1 = {II min(j(I))}
allocate t to index server 1
f(1)+ = f(t)
insert t and 1 into L

else

lookup t in L and get 1;
allocate t to index server 1

end if

else

1 = hash(t) mod p
allocate t to index server 1

end if

B. Random Key

The terms are the most important part of the inverted index

because the documents can be deduced from them. To ensure

security of document data, it is necessary to ensure the safety

of inverted index. The best way is to encrypt the index as a

whole, but it would greatly reduce the efficiency of retrieval.

In this paper, we only encrypt the terms in the index in order

to make a system both safe and efficient. To process the

massive collection of secret documents, we can build cipher

index over multiple index servers. The distributed cipher index

proposed in this paper is described in Figure 2. The cipher

index which is wholly logical is separated into multiple index

servers through term distribution.

There is a high risk of statistical attack because the posting

lists are not encrypted. The high frequency terms have longer

posting lists, so the plain term can be estimated from the

cipertext term through the length of its posting list. For

example, according to the British National Corpus (BNC) ,

the word "people" has the highest frequency as an available

indexing term. Therefore, the cipher term with the longest

posting list can be estimated as the word "people", and the

encryption key can be obtained from the cipher term and the

plain term. Then the other terms in the cipher index can be

TABLE I
THE DATA STRUCTURE FOR KEY

SN I Key I Temp Key I Terms

0 keyO computer; ...

1 keyl cipher;index; ...

decrypted through the cracked key. To solve this problem, we

propose an approach which encrypts or decrypts terms not

with the same key but with random key. A term obtains an

encryption key from RKDB based on its hash value. In this

case, even if a term is cracked, the others will not be affected

because the terms have different encryption key. Therefore we

can significantly reduce the risk of statistical attack through

using this strategy.

RKDB has two functions: to store the key and protect the

key, as a result, RKDB must be an encrypted database. Table I

shows the data structure storing the key. Serial number (SN)

indicates the key position in RKDB, and a term can obtain

its key according to SN. The "Temp Key" field temporarily

stores the new key during key update, and replaces the key

with it when the index update is complete. The "Terms" field

in Table 1 indicates the terms set using the corresponding key.

This information is used for partial key update which will

be discussed in the following section. Supposing the number

of key stored in RKDB is M, then the method that a term

obtains a key is: the hash value of the term mod M and obtain

the key from RKDB according to the result. For example, the

hash value of "Chinese" is 1031, and M is 5000, thus the key

for "Chinese" can obtain from RKDB through the remainder

1031. At the same time, the word "Chinese" will be insert

into the corresponding terms set if the set does not contain it.

The method of obtaining a key from RKDB is presented in

Algorithm 2.

Algorithm 2 Obtain Key (term t)

sn = hash(t) mod M

key = RKDB[sn].Key
if t not in RKDB[sn].Ter-rns then

add t to RKDB[sn].Terms
end if

return key

C. Partial Key Update

Although random key reduces the risk of statistics attack,

the correspondence between term and key is fixed. That is the

key of a term is fixed unless the key is changed. To reduce the

potential risk, the key must be frequently updated. For Mimir,

when the key of a term is updated, the corresponding cipher

term will be changed. This will lead to huge system overhead

because of reconstruction of the term table in cipher index.

Random partial key updating can disrupt the correspondence

between term and key, thereby, enhancing the security of the

Logical Structure Term distribution Physical Structure

@#*& H doc1.txt I doc2.pdf II
�====i

@a#& H doc5.doc 0
�=�

&I>M H doc2.pdf 0
�=�

l+sG H docltxt I doc3.htm I
�=�

b*"z H doc3.htm I doc4.eml I
�=�

N-(g H doc4.eml OLI
__ ---'

Term encrypted Posting List

00 �=� I doc3.htm 10
'----------'

Index node 2

Index node 3

Fig. 2. The structure of the distributed cipher index with six terms.

system. In Mimir, each time we only update 10% key in RKDB
by random to improve updating efficiency and ensure system

security.

In order to improve the efficiency of key updating, Mimir

do not reconstruct the entire cipher index. If a key is updated,

firstly, Mimir finds the corresponding terms of this key through

RKDB. Secondly, Mimir obtains the index servers of these

terms through Algorithm I, and encrypts these terms using old

and new key to gain old and new cipher terms. Finally, Mimir

sends these cipher terms to the corresponding index servers to

update index. In index servers, Mimir can not simply replace

the old cipher term with a new cipher term, otherwise the

order of the term table in index will be upset. Mimir locates

the terms position through the old cipher terms and marks the

terms as deleted terms firstly. Then, Mimir builds a secondary

cipher index for the terms whose key have changed. Since the

posting list has not changed, the index building only is to sort

the term table. Suppose to take bubble sort, the comparison

times of terms for entire index rebuild is refined in equation

(3).
2:n

(
. _

)
_ n(n - 1)

1. 1 - ----'---'-

2 i=2

(3)

Where n is the number of terms in index. Therefore, the time

complexity of entire index rebuilding is 0(n2). As Mimir

on Iy updates 10% key each time, that is nearly the cipher

text of 10% terms are changed, Mimir has only one tenth

of the overhead compared to entire index rebuild. However,

there is the cost of index merge because Mimir generates the

secondary index. As the posting list does not change, this cost

come from the merging sort of two terms table in fact. The

time complexity of index merge for key update is 0(1). To

improve system performance, for key update, Mimir initiates

the operation of index merge at idle only when the number of

the secondary indexes reaches a certain threshold.

D. Access Control in Mimir

To answer user queries, Mimir enforces access control

based on role and user on its posting elements. Upon query,

The access of role ri for the 7th document

I
AC field

Uj

I
The access of user Ui for the 4th document

Fig. 3. Bitmap storage structure of ACt

the management server authenticates the user and determines

the roles to which the user belongs. For this purpose, the

management server records which roles a user belonged to,

and Mimir builds the access control index (ACI) to record

which documents in posting list are accessible to each role

or user. the ACI as in Figure 3 is stored in the management

server and encrypted as a whole. When Mimir is initiated,

the ACI is decrypted and placed into memory. The posting

list of ACI forms the access control bitmap for the indexed

documents. The term of ACI includes roles and users, and

the corresponding posting list contains n bits, where n is the

number of documents. The" I" in Figure 3 indicates the role

or user can access the corresponding document and the "0"
can not. Mimir can set access permission for role as well as

user, which increases system availability and flexibility.

Suppose user u has a role set R = (TO, ... , Ti), and query q
can be parsed into a term set T = (to, ... , t j). Let,

Sti is the result set of query term ti.

Sr.; is the result set of query role rio

SUi is the result set of query user Ui.

The search authority set SAC(u,R) for user u is defined in

equation (4).

SAC(u,R) = Su u c�
o

Srk) n Su (4)

If there is u in ACL, we filter the search results only according

to Su, otherwise, based on Sr where user u has role r.

The result set Sq for query q is defined in equation (5).

j

Sq = U (Stk n SAC(u,R))
k=O

(5)

For example, a user u has role set r1, r3, the query q is

"Beijing Olympic". The query result is refined as following:

(SBeijing n (Su U SrI U Sr3 n Su))

U (SOlympic n (Su U SrI U Sr3 n Su))

E. Dynamic Pipelined Search

(6)

Distributing the tasks of an information retrieval system

enables a number of desirable features, such as improving

the search efficiency. A major drawback that arises from

the distribution of tasks across a number of index servers is

the communication among these servers. Especially, all index

servers need to communicate with the single management

server and the retrieval results produced in the index servers

always have a huge scale. So the management server can be a

bottleneck as a large number of users simultaneously use the

system. Although the pipelined search which does search in

one-by-one mode can relieve the communication load on the

management server, it increases the retrieval delay as well, and

the query must bear the same search latency even in lower load

network.

In this paper, we dynamically adjust the size of pipelined

search based on the traffic load of the management server.

In search, the retrieval words are analyzed into multiple

search terms, and there is multiple index servers corre

sponding to these search terms. Let search group Si =

{ 5i, (til, ti2, ... , tin)} to express that the terms (til, ti2, ... , tin)

should be searched in the index server Si. Suppose that

query Q is parsed into n search groups (Sl, S2, ... Sn). If

the load of the management server is more than 90% of

full load, Mimir take full pipelined search to relieve the load

of management server. That is the management server sends

search group (Sl, S2, ... Sn) to the index server Sl to search

the terms (tn, t12, ... , t1n), then the index server Sl sends

the remaining search group (S2, ... Sn) to the index server S2

to search the terms (t21' t22, ... , t2n) and the index server S2

merges its results with the results from the previous index

server, and so on. In this way, the management server has

low communication load because it only receives the results

from the last index server, however, this full pipelined search

increases search delay. [f the load of the management server

is about 60% of full load, the management server divides the

search group in half and runs two pipe lined search. If the load

of the management server is less than 30% of full load, the

management server does not take pipelined search strategy

and sends the query to the index servers (51,82, ... 8n) to

parallel search. The last approach has the best search delay and

maximum communication overhead. According to dynamical

pipelined search, we can obtain a better traffic load and delay.

FUsing Mimir

In this section, we will describe distributed indexing and

search in Mimir.

1) Distributed Indexing: To index a document, the man

agement server extracts the document's terms, obtains their

key with Algorithm 2 and encrypts them in the encryption

server, gets their index servers with Algorithm I and sends

the cipher terms to the corresponding index servers to build

index. The document is encrypted as a whole, and then is

stored in a document server according to the hash value of

its title name. Meanwhile, the management server extracts the

access control bitmap of this document for role and user, and

updates the access control index.

To update a key, the management server finds the position

of the key from RKDB, inserts the new key into the cor

responding position of "Temp Key", and extracts the terms

corresponding the key firstly. Secondly, Mimir determines the

index servers of the terms according to Algorithm 1, encrypts

the terms with old key and new key, and sends the cipher terms

into the corresponding index server to update index. Thirdly,

in the index server, Mimir locates the terms position through

the old cipher terms, marks the terms as deleted terms in the

index, and builds a secondary cipher index for the terms whose

key are changed. Finally, the index servers return the result, the

index update is finished, to the management server, and Mimir

replaces the key with the new key stored in the "Temp Key"

filed. That the number of secondary index reaches a certain

threshold will trigger Mimir to merge indexes at idle.

2) Distributed Search: To execute a keyword query, the

management server firstly authenticates the user. [f the authen

tication is passed, the management server searches AC[based

on the user u and its role set R, and obtains the search authority

SAC(u,R) according to the equation (4). Processing queries in a

distributed fashion consists of determining which resources to

allocate from a distributed system when processing a particular

query. Secondly, Mimir parses the query into multiple terms,

and the parsing method is the same with indexing. To assign

the retrieval terms to correct index servers, the distribution

strategy which gets the index server location of the term based

on the term hash value is similar to indexing. The method

that a retrieval term obtain its corresponding index server is

described in Algorithm 3. Then the retrieval terms obtain their

key through Algorithm 2, and are encrypted into the cipher re

trieval terms at the encryption server. Thirdly, the management

server sends the cipher retrieval terms and their SAC(u,R) to

the corresponding index servers to perform dynamic pipelined

search based on its load. [n the index servers, also can be called

query servers as previous description, the cipher retrieval terms

are searched over cipher index with filter condition SAC(u,R),

and the result is merged with the result from the previous index

server, and the merged result is returned to the next index

server or the management server. Finally, the management

server receives the search results from only one index server

or multiple index servers, and shows the final results to the

users. If the users want to view or download a document, the

management server obtains the document from the document

servers and sends it to the users. Compared to the document

distribution, Mimir processes distributed search only over part

of the index servers. Therefore, Mimir reduces the load on the

100 100 100
Ij) Ij)

�
80

�
80 Ij)

�
80

"E "E "E
Ij) 60 Ij) 60 Ij) 60
u u u
'""' '- '-

Ij) Ij) Ij)
0.. 40 0.. 40 0.. 40

"0 "0 "0
cd cd cd
0 20 0 20 0 20 ,....1 ,....1 ,....1

0 0 0
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Document distribution Term distribution Mimir

Fig. 4. Distribution of the average load per node in document distribution, term distribution and Mimir.

system. Since only the terms are encrypted, the search strategy

of Mimir is the same with the plain retrieval engines through

converting the plain term into the cipher term. Compared to the

overall encrypted index, Mimir greatly improves the retrieval

efficiency. Meanwhile, the encryption and the access control

can guarantee the security of the secret documents as well.

Algorithm 3 Obtain Index Server (term t)

if f (t) > ithreshold then
lookup tin L and get I;

else

1= hash(t) mod p
end if
return I

IV. EVALUATION

In this section, we discuss Mimir's security guarantees and

then discuss its load compared to the document distribution

and normal term distribution, indexing performance and query

performance, using the Reuter Corpus whose volume is I.SSG.

The hardware used in all the experiments described in this

section is a Beowulf-sty Ie cluster of 7 computers, each a

2.SGHz Intel Xeon with 2GB RAM and 1 TB local S ATA

disk in a RAID-S configuration. One of the cluster acts as

the management server in which the encryption card replacing

the encryption server and RKDB are installed, and the other

six computers are acted as both the index servers and the

document servers.

A. Security Guarantees

The encryption scheme can protect data privacy and data

authenticity against adversaries that have access to the index

on a low enough level to bypass the access control scheme.

In Mimir, the secret documents are encrypted and stored in

document servers. The terms, as cipher text way, appear in

the distributed index for the secret documents and the posting

lists are not encrypted to improve search efficiency. As the

posting list does not contain the document content, and the risk

brought by plain posting lists can be reduced through taking

random key strategy. Therefore, the encryption strategies in

Mimir can protect data against illegal access to the index.

Unlike general retrieval engines, Mimir is used in the intranets,

and furthermore, the access control schemes based role and

user are put in place to protect the documents contents from

unauthorized access. As a result, Mimir can guarantee that the

secret information will not leak through its platform.

The encrypted storage for the secret documents and the

cipher index can guarantee the sensitive information, even the

encrypted data is obtained by the attackers. As the posting list

of the cipher index has not been encrypted, there is the risk

of statistical attacks. Mimir reduces this threat through taking

random key (RK) strategy. A term obtains its encryption key

based on its hash value from RKDB, so the key for encrypting

terms is different with each other. Even a key for a term is

cracked according to the frequency of the term, it cannot be

used to crack the other encrypted terms. RK strategy greatly

increases the difficulty of attack. Hence, Mimir can guarantee

data security, even that these data have been illegally stolen.

Partial key update can disturb the correspondence between

term and key, and is low cost because Mimir does not rebuild

the whole index. Therefore, Partial key update can be done

anytime to enhance system security further.

B. Load Balance

The major issue for throughput, in fact, is an uneven

distribution of the load across the index servers. Figure 4

illustrates the average busy load for each of the 6 index servers

of a document distributed system (left), a term distributed

system (middle) and Mimir (right). The dashed line in each

of the three plots corresponds to the average busy load on all

the servers. For document distributed systems, the majority

of the proposed approaches in the literature adopt a simple

approach, where documents are randomly distributed, and

each query uses all the index servers. Therefore, distributing

documents randomly across index servers can guarantee an

even load balance. However, the document distribution system

has the largest communication overhead compared to the other

two methods. In the case of the term distributed system,

there is an evident lack of balance in the distribution on

the load of the index servers, which has a negative impact

on the system throughput. To overcome this issue, Mimir

uses load balanced term distribution that would ensure the

access frequency of the index in each index server is similar.

The total load of Mimir is the same as the term distributed

(a) The throughput of indexing

8-888.88-81'-.8.88_88_8.88-88-8

PI --+-BEl ---�-Mimir - - - 8 - - -

1 00 '-----'------'-----''----'-----'-----'---'------'-----'-----'
o 10 20 30 40 50 60 70 80 90 100

Document number (10k)

�
.::
E '-'
<1)
E

E=

(b) Indexing time of dynamic indexers
700 ,-------,----.---.--------r---,

600, .
500
400
300
200
100

'X""" ,v

PI --+-BEl ---�-Mimir ----8---

.� A "

.. • .. 1'-. • .
" '.'x-------x ______ .::

2 3 4 5 6
Number of index servers

Fig. 5. Indexing performance.

system, while Mimir has better system throughput. Mimir and

document distributed system all have balanced load, but Mimir

has less communication cost. Therefore, Mimir has a better

load balance and efficiency compared to document distributed

systems and term distributed systems.

C Indexing Performance

In order to discuss the efficiency of the index build, we

analyze the indexing throughput which is the number of

articles whose volume is about 2k to be indexed in one second,

and the indexing time which is the total time spent on all

tasks performed to index a collection of a given size. We

take the Mimir with plain indexing (PI) and block encryption

indexing (BEl) to conduct a comparative analysis. PI is no

encryption inverted index strategy which is commonly used.

BEl divides the entire index into multiple blocks, and then

encrypts each block as whole, which is another project of our

research item. Figure 5(a) shows the throughput of indexing

with three different strategies. Since Mimir only encrypts the

critical terms, as a result, the encryption overhead introduced

by it is relatively small. The throughput of plain indexing can

reach 180 documents per second and Mimir is closer to PI. As

a large number of encryption overhead, the throughput of EPI

is relatively low. Of course, EPI has higher encryption strength

and can provide more security for confidential information.

Figure 5(b) shows the indexing time of dynamic index

servers with three different strategies for the collection of

Reuter Corpus. It is clear that as the number of dynamic index

servers increases, indexing time decreases. Mimir needs about

one hundred minutes to construct the distributed index of the

Reuter Corpus collection in six index servers, and the indexing

time of it is close to PI. However, the indexing time of BEl

is ahnost twice as much as Mimir for its overall encryption.

Although Mimir does not encrypt the index as a whole, it also

can ensure the security of the data through some mechanisms

discussed above. Mimir can maintain the similar efficiency

with plain indexing, and guarantee the data security as well.

D. Query Performance

We evaluate effectiveness of query processing by analyzing

latency of queries in which query latency is represented by the

average response time required to process a query. Figure 6(a)

represents the query response time with Mimir, PI and BEL

The query response of Mimir and PI is not affected by the size

of the index for the inherent retrieval efficiency of inverted

index. The query response time of Mimir can be achieved on

average 0.3 second and this can meet application requirement

of cipher retrieval. Due to decrypting the corresponding block

of search terms, the query response time of BEl will increase

with the size of the collection.

The dynamical pipelined search (DPS) in Mimir trades off

the load of the management server and the delay of search.

In order to analyze the efficiency of DPS, we let Mimir take

the pipelined approach (PA) proposed by Moffat [22] as search

strategy to compare performance. Figure 6(b) plots the average

search delay over 500 queries at a time for Mimir and PA.

When there are a lot of concurrent queries, the search delay

of Mimir and PA is similar because the pipelined search of

Mimir is the same with PA. However, when the management

server is not busy, Mimir do not take pipeline search strategy

to decrease the search delay. Therefore, Mimir can improve

system efficiency compared to PA.

V. CONCLUSION & FUTURE WORK

We present Mimir, a distributed cipher retrieval system for

sensitive documents. Mimir constructs the distributed indexes

based on term distribution for storing the index in a load

balanced way. Mimir takes encryption, key update, and access

control to protect sensitive data, in which it encrypts the terms

in indexes with random key for safety and efficiency, it utilizes

partial key update to decrease the potential risk of attacks

by malicious users, it uses the access control based on role

and user to control users to access the authorized data. It

uses dynamic pipe lined search strategy to balance the load

of the management server and reduce the search delay. Our

(a) Query response time
� 800 r--r--r--r--r--r--r--r--r--r-.
5 PI --+-
<l) 700 BEl ---�--
.8 Mimir - - - 8 - - - v_x_xx xx-xX +l 600

X x-x-�xx7'.
� 500 -)0< XX
q o 0.. rJl <l)
....

S ::l
CI

400

300

200

1 00 '-------'-------'-------1_-'------'-------'-_-'--------L------'------'
o 10 20 30 40 50 60 70 80 90 100

Document number (10k)

500

� 450

5 � 400

a:; 350 "0
300 L

250

(b) Search delay for 500 queries

PA ----*-Mimir ---A--·

200 '-------'-------'-------1'-------'-------'-------'_-"-----'-------'------'
o 50 100 150 200 250 300 350400450 500

Concurrent Query number

Fig. 6. Query perfonnance.

experiments show that Mimir can effectively protect secret

data and answer queries almost as fast as an ordinary inverted

index.

Currently, the index scale of Mimir is three million docu

ments, and the search can be achieved on average 0.3 second.

Our objective is to support larger data collection with similar

search response. A challenging extension is to improve the

scalability of term distribution in Mimir. Increasing new index

servers will lead to changing the structure of the distributed

cipher index. By doing so, the entire index needs to be recon

structed, which has a very large overhead. Another interesting

question is how to protect the information of the posting

list without encrypting it as whole, which can guarantee not

to leak probabilistic information without sacrificing retrieval

efficiency.

ACKNOWLEDGMENTS

This work is supported by National Natural Science

Foundation of China under Grant 60873225, 60773191,

70771043, National High Technology Research and Develop

ment Program of China under Grant 2007AAOIZ403, Nat

ural Science Foundation of Hubei Province under Grant

2009CDB298, Wuhan Youth Science and Technology Chen

guang Program under Grant 200950431171, Open Foundation

of State Key Laboratory of Software Engineering under Grant

SKLSE20080718, and Innovation Fund of Huazhong Univer

sity of Science and Technology under Grant Q2009021.

REFERENCES

[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Re
trieval. ACM Press / Addison-Wesley, 1999.

[2] Google, .. http://www.google.com ...
[3] C. S. Badue, R. A. Baeza-Yates, B. A. Ribeiro-Neto, A. Ziviani, and

N. Ziviani, "Analyzing imbalance among homogeneous index servers in
a web search system," Iif. Process. Manage., vol. 43, no. 3, pp. 592-608,
2007.

[4] A. Moffat, W. Webber, J. Zobel, and R. A. Baeza-Yates, "A pipelined
architecture for distributed text query evaluation," In! Retl:, vol. 10,
no. 3, pp. 205-231, 2007.

[5] T. Ge and S. B. Zdonik, "Fast, secure encryption for indexing in a
column-oriented dbms," in Proc. of the 23rd International Coriference
on Data Engineering, 2007, pp. 676-685.

[6] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati, "A
fine-grained access control system for xml documents," ACM 7)-ans. Iif.
Syst. Secur., vol. 5, no. 2, pp. 169-202, 2002.

[7] R. Chandramouli, "Application of xml tools for enterprise-wide rbac
implementation tasks," in Proc. of the 5th ACM Workshop on Role
Based Access Control, 2000, pp. 11-18.

[8] J. Hu, R. Li, and Z. Lu, "Rbac-based secure interoperation using
constraint logic programming," in Proc. of the 12th IEEE International
Conference on Computational Science and Engineering, 2009, pp. 867-
872.

[9] S. Zerr, E. Demidova, D. Olmedilla, W Nejdl, M. Winslett, and S. Mitra,
"Zerber: r-confidential indexing for distributed documents," in Proc. of

the I I th International Coriference on Extending Database Technology,
2008, pp. 287-298.

[10] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, "Plutus:
Scalable secure fi Ie sharing on untrusted storage," in Proc. of the
FAST'03 Coriference on File and Storage Technologies, 2003.

[11] E. Bertino, S. Castano, and E. Ferrari, "Securing xml documents with
author-x," IEEE Internet Computing, vol. 5, no. 3, pp. 21-, 2001.

[12] L. Seitz, J.-M. Pierson, and L. Bmnie, "Key management for encrypted
data storage in distributed systems," in IEEE Security in Storage

Workshop, 2003, pp. 20-30.
[13] G. Margaritis and S. V Anastasiadis, "Low-cost management of inverted

files for online full-text search," in Proc. of the 18th ACM Conference
on Iriformation and Knowledge Management, 2009, pp. 455-464.

[14] S. Gurajada and P. S. Kumar, "On-line index maintenance using horizon
tal partitioning," in Proc. of the 18th ACM Coriference on Iriformation
and Knowledge Management, 2009, pp. 435-444.

[15] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, "Fuzzy keyword
search over encrypted data in cloud computing," in Proc. of IEEE

INFOCOM 2010 mini-conference, 2010.
[16] D. Harman, W. McCoy, R. Toense, and G. Candela, "Prototyping a

distributed information retrieval system that uses statistical ranking,"
In! Process. Manage., vol. 27, no. 5, pp. 449-460, 1991.

[17] B. Cahoon, K. S. McKinley, and Z. Lu, "Evaluating the performance
of distributed architectures for information retrieval using a variety of
workloads," ACM 7)-ans. In! Syst., vol. 18, no. 1, pp. 1-43, 2000.

[18] L. A. Barroso, 1. Dean, and U. H6lzle, "Web search for a planet: The
google cluster architecture," IEEE Micro, vol. 23, no. 2, pp. 22-28, 2003.

[19] R. A. Baeza-Yates, C. Castillo, F. Junqueira, V Plachouras, and F. Sil
vestri, "Challenges on distributed web retrieval," in Proc. of the 23rd
International Coriference on Data Engineering, 2007, pp. 6-20.

[20] A. MacFarlane, J. A. McCann, and S. E. Robertson, "Parallel search
using partitioned inverted files," in Proc. of the Seventh International
Symposium on String Processing Information Retrieval, 2000, pp. 209-
220.

[21] W Xi, O. Sornil, and E. A. Fox, "Hybrid partition inverted files for
largescale digital libraries," in Proc. of Digital Librwy: IT Opportunities
and Challenges in the New Millennium, 2002, pp. 401-418.

[22] A. Moffat, W. Webber, and 1. Zobel, "Load balancing for term
distributed parallel retrieval," in Proc. of the 29th Annual International
ACM SIGJR Coriference on Research and Development in Iriformation
Retrieval, 2006, pp. 348-355.

