
Load Balancing and Quality of Service Constrained

Framework for Distributed Virtual Environments

Noah Dietrich

College Of Charleston

66 George Street

Charleston, SC 29424

Telephone: 001 843 805 5507

Email: ndietric@edisto.cofc.edu

Abstract-Distributed Virtual Environments (DVE) have be­
come increasingly popular over the last few years. Examples
of DVEs are Massively Multiplayer Online Games (MMOGs),
distributed interactive simulations, and shared virtual worlds.
The service providers of DVEs need to ensure that certain Quality
of Service (QoS) (messages delivered within a threshold delay) is
guaranteed for the users participating in the DVE. In addition
to ensuring QoS, the service providers want to balance the load
on the servers that maintain the DVE. In this paper, we propose
a framework for DVEs which provides QoS to the users and
balances the load among the servers. Our framework uses the
concept of a virtual server which is a piece of software that
does the processing for the DVEs. Each region in the DVE
is maintained by an overlay of virtual servers. We provide
a heuristic that maps the virtual servers to physical servers,
balances the load among the servers and ensures that the servers
are not overloaded with objects. We also present a heuristic
for creating a Degree and Diameter Bounded Multicast Tree of
virtual servers for each region in the DVE which guarantees QoS
for users in the DVE. We have conducted simulation experiments
to evaluate the performance of our proposed framework.

Index Terms-Distributed Virtual Environment, Quality Of
Service, Load Balancing.

I. INTRODUCTION

Distributed Virtual Environments (DYEs), wherein users

represented as digital entities collaborate in a networked

virtual environment, are fast becoming popular nowadays.

Examples of DVEs are Massively Multi-player Online Games

(MMOGs), distributed interactive simulations, shared virtual

worlds, as well as other virtual collaborative environments.

The main facet of DVEs is that its users are geographically

distributed all over the world. In this type of environment,

response time for user interaction is critical as delays in the

action can lead to a degraded performance. As long as events

and actions within the DVE are communicated to the user

within a threshold delay [1], the state of DVE will appear to

the users to be realistic. It is the responsibility of the DVE

providers to ensure that certain Quality of Service (QoS) is

guaranteed to the users of DVE. At the same time the DVE

providers want to balance the load on the servers and ensure

that the load placed on each server in the DVE does not exceed

the capabilities of that server. Here the load is quantified by

the number of objects of the DVE that the server manages. In

Shankar M. Banik

The Citadel

171 Moultrie Street

Charleston, SC 29409

Telephone: 001 843 953 5039

Email: shankar.banik@citadel.edu

this paper, we propose a framework for DVE which balances

the load among the servers and at the same time ensures QoS

for the users of DVE.

In our framework we have used Virtual Servers (VS)

which are applications running on Physical Servers (PS) that

manages a subset of objects in the DVE. We have also used

Application Layer Multicasting [2] [3] [4] [5] [6] where the

virtual servers in a DVE region will form an overlay multicast

tree to send messages to the users. To ensure QoS for the

users, we have restricted the diameter of the multicast tree to

a threshold value so that when a user changes the state of an

object of the DVE, notification of this change is delivered to

all the users in the DVE within the threshold value. At the

same time, we have restricted the degree of the multicast tree

since we want to evenly distribute the communication load

across the servers in the DVE.

There has been a significant amount of research done in

designing frameworks for DVE. In [7] the authors have used an

Interest Management Scheme which involves breaking up DVE

regions into smaller regions, with each region being handled

by a single server. As more clients enter a region, the region

can be sub-divided again and spread across more servers. In

[8], the authors have referred the regions as microcells and

divided them across multiple servers. Crowding is looked at

by authors in [9] where regions are repeatedly subdivided into

quad-trees, which are then assigned to servers. COlmnunication

architecture management is considered by authors in [10]

where they use Zoom-In Zoom-Out algorithm to select the

specific servers from the set of all possible servers in a cluster

to handle the region of a DVE while maintaining an equal

synchronization delay model. The drawback of their approach

is that the clients select the servers, and instead of load

balancing it uses only the minimum number of servers. In [11]

the authors have used Network Address Translation (NAT) to

hide the implementation of server infrastructure from clients.

None of these proposed frameworks have taken both load

balancing and QoS issues into considerations. Much research

has been done in peer-to-peer load balancing for DVE in [12]

[13] [14], but along with other researchers and gaming industry

we believe that the issues raised by trusting clients to run

essential functions of DVE has too many downsides including

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.22

security, cheating, failure, and synchronization issues.

In this paper we propose a framework for DVEs which

balances the load by creating virtual servers on the physical

servers to manage objects in the DVE, and then constructs a

Degree and Diameter Bound Multicast Tree (DDBMT) of the

virtual servers to ensure that users of the DVE will receive

messages within a specified threshold delay. Towards design­

ing our framework, we have proposed two heuristics - one for

mapping virtual servers to physical servers which considers

load balancing, and the other for creating a diameter and

degree bound multicast tree of virtual servers which considers

the QoS constraints of the DVE. We have also performed

experimental evaluations of our proposed framework. The

paper is organized as follows. In section 2 we describe the

system model of our framework. In section 3 we describe the

problem formulation along with examples. Section 4 describes

our proposed solutions. Section 5 describes our experimental

setup and results from performance evaluations. Section 6

concludes the paper.

II. SYSTEM MODEL

The servers that run the DVE reside in datacenters, which

are facilities with clusters of servers connected in a high

speed Ethernet Local Area Network (LAN) with very high

interconnect speeds between the servers (1 to 10 G-Bit links)

and extremely low latency. The datacenter provides power,

cooling, network, and server redundancy, and is connected to

the Internet through at least one Wide Area Connection (WAN)

link that can be as slow as a Tl (1.5 M-Bit) or up to a OC-3

Link (45 M-Bit) and greater, and which have greater latency

than LANs. Different datacenters are connected through the

public WAN infrastructure using a technology such as MPLS,

Frame Relay, ATM or a similar technology.

Every datacenter is capable of reaching every other datacen­

ter, and every server is capable of reaching every other server.

Each datacenter has at least one server that clients connect

through, called a connection server. Clients are geographically

distributed all over the world, and are pieces of software

on user's home computers which is responsible for sending

status messages about the user's movements and actions in the

DVE, and updating the client's view of the DVE. The servers

perform all positional calculations and processing affecting

the DVE, and the clients only display the results provided

by the servers. Clients connect to the closest connection

server through region-based DNS (Domain Name Service),

which looks at the client's IP (Internet Protocol) address and

identifies the connection server that is geographically closest

to the client, as shown in Fig. 1.

The infrastructure supports the addition and removal of

individual servers, clients, as well as entire datacenters. Servers

can be brought on- and off-line at any time, for failure or

maintenance, or to assist with heavy server load. As new

servers are added or removed, the servers that are still active

automatically compensate for the join or loss of servers, and

redistribute the load automatically.

c, c, GJeJ
Fig. 1: Physical Connections Between Clients and Servers

The DVE is sectioned into regions based on the position

within the virtual environment, and each region is represented

by a multicast overlay. Users, objects, and all other items in

the DVE are represented by Objects, which contain the objects

state and other relevant information. All servers that service

the region are a member of the multicast overlay for that

region, and use a virtual server to handle the overlay. A virtual

server is a piece of software running on a physical server

that does processing for a region, and which communicates

with other virtual servers participating in the same region to

maintain the state of the region. A physical server can run

many virtual servers at one time, and virtual servers can be

moved between physical servers, split onto multiple virtual

servers, or combined into fewer virtual servers (see Fig. 2).

In Fig. 2a we see the physical infrastructure, with four clients

connected to the DVE, and 2 connection servers (which only

pass information to the servers handling the DVE) and three

physical servers that host the DVE. In Fig. 2b, we show one

overlay and the virtual servers managing it: clients C1 and C3

connect to their connection server, which passes all messages

to virtual server V2. At the same time, we also have clients

C2 and C4 connecting to their own overlay (see Fig. 2c). This

overlay is made up of the virtual servers V2, V4, and V5. In

Fig. 2d we show how the virtual servers are mapped to the

physical servers. In this example, we can see that physical

sever 82 hosts two virtual servers, V2 and V6, which are

participating in different overlays.

Everything in the DVE can be represented as objects,

including clients, environmental objects (trees, rocks), artificial

characters (AI opponents), weapons and tools which the client

can use. Each virtual server is responsible for a subset of

objects from all objects in the region represented by the

DVE. The objects are distributed across the virtual servers

representing the DVE, and as objects interact, messages are

passed between the virtual servers hosting the interacting

objects. In Fig. 3a, we see two clients (objects) interacting

through the overlay. When client C1 wants to interact (send

a message) to client C2, it sends the message through its

connection server 81, which forwards the message to the

s,

(a) Physical Servers (b) Overlay One of Virtual
Servers

v.

(c) Overlay Two of Virtual
Servers

(d) Virtual Servers Mapped to Physical
Servers

Fig. 2: Individual Overlays and the Physical Mapping

virtual server VI. VI notes that the message is for client C2,

and sends the message up the hierarchy to the root node

of the overlay tree, which sends the message down to the

virtual servers hosting the client, which sends the message

to the connection server for client C2, which forwards the

message to C2. In Fig. 3b, we see a client in the same overlay

interacting with an object in the DYE (striking a rock in the

DYE, for example). The object the client is trying to interact

with is hosted on virtual server V3, so the message is sent

by client Cl to the connection server SI, which forwards the

message to the virtual server VI, which forwards the message

up the overlay tree to virtual server V2, where the message is

forwarded down to virtual server V3, which hosts the object

the client is interacting with. Any messages back to the client

from the interaction with the object would reverse the path

that the original message took.

When messages need to be passed to all clients or objects

in a region, a multicast tree for the overlay is used. We use a

shared multicast tree (made up of virtual servers), with the root

node of the tree being responsible for forwarding messages to

all nodes in the tree. In Fig. 4a, we show that if an event

happens on virtual server V2, the message passes up to the

root node of the multicast tree: VI (step 1), which multicasts

the message out to all its child nodes as shown in Fig. 4b,

(step 2). As each node receives the message, it forwards it

on to its children, (step 3). We use a shared multicast tree to

ensure that messages destined for all nodes in the tree receive

the message within a specified delay, and also it allows us to

maintain a single tree with a single root node, rather than a

multicast tree for each node in the graph.

Object-to-Object (including clients) QoS must be main­

tained in order for clients to receive relevant messages without

noticing a delay, which would impact the clients' experience

in the DYE. The primary requirement is for all clients to have

a Total Message Trip Time (TMTT) for messages to remain

under some constant, known as Maximum TMTT (often 150

ms in real life) [1]. TMTT is defined as the time it takes for

one object (the sending object) to send a message to the virtual

server hosting the recipient object, plus the time it takes for

the server to process the message, plus the time it takes for

the server to distribute the result of the message back to all

objects affected by the original message. Clients in the DYE

will feel as if the interactions they are having with the DYE

is real-time as long as all interactions they have with the DYE

occur within the Maximum TMTT. In Fig. 5, we show how

the TMTT is calculated as a client sends a message to another

client using the multicast overlay. In our example, client Cl

wants to send a message to client C2. The numbers on each

link in the virtual server overlay show the delay each link adds

to the TMTT calculation. As the message passes from client

Cl to its connection server SI, to the virtual server, down to

the connection server S2, and to client C2, we note that each

path adds to the TMTT calculation, giving us a total of 85 ms

for the message to complete the path from client Cl to client

C2.

If client Cl was attacking client C2, the message path would

be slightly different, because the processing for client Cl's

attack would be done at the server, and messages would have

to be passed back to clients Cl and C2, as shown in Fig. 5b.

When client Cl decides to attack client C2, a message is

sent by Cl to its connection server SI (step 1). SI sends

the message to the virtual server hosting the client (step 2).

When virtual server VI receives the message, it will process the

request, wait for any other events that happen within that time

slice, and then send the message back to the clients through

their respective connection server (steps 3 and then 4).

III. PROBLEM FORMULATION WITH EXAMPLE

We break the problem of how to construct a DYE given

a set of available resources while maintaining an acceptable

TMTT into two parts, first we map the virtual servers to the

physical servers, and then from the fully-connected graph of

·

I �.: I,,�g· �
(a) Client To Client Message

v,

v,

(b) Client To Server Message

Fig. 3: Clients Interacting With Clients and Objects

(a) Message Passing From V2 to
the Root

(b) Root to V2 Multicast's the
Message in the Overlay

Fig. 4: Message Passing in the Multicast Tree

v, \
5ms 5ms

G (0
35ms

(a) Link Delays Used for Calcu­
lating TMT T

(b) Steps Used in Calculating
TMTT

Fig. 5: Calculating TMTT

virtual servers, we construct a Degree and Diameter bound

Multicast Tree for each region in the DVE.

A. Mapping Virtual Servers to Physical Servers

The virtual servers participating in the overlay are free

to remove virtual servers from the overlay or have other

virtual servers join the overlay as processing needs increase or

decrease. Virtual servers are mapped to physical servers, and

multiple virtual servers can reside on one physical server. The

physical servers are mapped in a network that represents the

physical layout of all physical servers. We identify the load

for each physical server as the total number of objects that it

can be responsible for before response times are impacted. We

make this assumption because despite there being many types

of objects, some requiring larger memory and other requiring

more CPU cycles, in aggregate the objects will appear to put

equal load on a server. Each physical server will know the total

number of objects it can be responsible for, and the number

of objects held by the different virtual servers running on that

physical server. If a physical server can host 1000 objects,

and has 4 virtual servers running, with 200, 250, 400, and

100 objects for each respective virtual server, the total server

load will be 950 objects, which will work. If one of the virtual

servers gets an additional 100 objects, the physical server will

not be able to meet its load requirements (leading to delays

in processing messages) , and will ask the virtual servers to

reduce the load, either by moving the virtual server to another

physical server, or splitting one of the virtual servers into two

virtual servers, and moving the newly created virtual server to

another physical server.

In the example shown in Fig. 6 virtual server VI has 75

objects. If the DVE represented by VI grows in size, and VI

receives 50 objects, the physical server SI will know that it

cannot handle the current load, and asks VI to reduce load.

VI decides to split into two virtual servers, VI and V2, and

moves V2 to physical server S2 (Fig. 6b) . If messages need to

be passed between regions (between overlays), such as when

a client is near the border of a region and can interact with

objects in both regions at the same time, messages are passed

to the root node of the clients overlay, which are passed to the

root node of the overlay for the other region for processing.

B. Creating Degree and Diameter Bounded Multicast Tree

with Virtual Servers in a DVE Region

As long as the time for all messages that are sent and

received by clients are less than the Maximum TMTT, we

know that QoS requirement for clients has been met. We

consider the set of virtual servers that are managing the region

of the DVE that the clients are participating in, and the overlay

connecting the virtual servers. This set of virtual servers form

a fully connected graph, since the underlying physical servers

that the virtual servers are on are fully-connected, and the

virtual servers use the same links as the underlying physical

servers. These virtual servers can send messages directly to

other virtual servers in the overlay, which works well when

an object on one virtual server needs to send a message to a

single object on another virtual server in the overlay. However,

when one virtual server needs to send a message to all virtual

servers in the overlay, it would cause a bottleneck on the

sending virtual server to queue up that many messages for

all other virtual servers. To solve this issue, we construct a

Degree and Diameter Bound Multicast Tree (DDBMT) from

the overlay of virtual servers, and perform application-layer

multicast to send overlay-wide messages to all servers in the

DVE region. We choose to perform application-layer multicast

(at ISO OSI Layer 7) because in a network that spans network

links that we do not have control over traditional network-layer

(layer 2) where multicast might be blocked. We construct the

multicast tree as both a degree and diameter bounded spanning

tree. We are first concerned about maintaining the maximum

TMTT for all clients in the overlay, which is why the tree must

be diameter bound, with the diameter of the tree being half of

the client's maximum TMTT (since messages have to go from

the client to the server, and then back again). We bound the

tree's degree (a maximum degree for each single node), since

if we did not, we would wind up with a tree with a single

central node connected to each and every other node, and the

minimum diameter tree of a tree from a fully-connected graph

would produce just such a tree, and this would put a heavy

burden on the central node, having to pass each and every

message to all the other nodes in the tree. By bounding the

degree of each node in the tree, we ensure that a tree is formed

that evenly distributes the load of multicast messaging more

equally across the nodes in the tree, with each node in the

degree and diameter bound tree having to pass a message at

most to a small subset of all nodes (based on the maximum

permitted degree of the tree).

C. Extended Example

In our extended example, we assume that we have two

regions in our DVE, with clients CI and C3 involved in region

A, and clients C2 and C4 in the region B. We show the overlay

network of virtual servers for the clients in Fig. 7a, with Region

A shown on the left, and Region B shown on the right. The

physical network of servers and clients is shown in Fig. 7b,

with link delay in ms. The physical mapping of virtual servers

to physical servers is shown (Fig. 7c), with the maximum load

of each server (100 objects) and number of objects for each

virtual server shown. If the number of objects in region B

(represented by the overlay held by virtual server VEl grows

by 20 objects, the physical server S3 will be overloaded, and

will ask the virtual servers to reconfigure themselves to use

less resources. Virtual server VEl could split, and move the

new virtual serve VB2 to physical server S5, after ensuring

that the TMMT was less than the maximum TMMT for all

clients and servers in the overlay (Fig. 7d) .

IV. PROPOSED SOLUTIONS

We present heuristics here which are all required to con­

struct the framework of DVE, which comprises of mapping

virtual servers to physical servers, and then constructing a

degree and diameter constrained multicast tree. The first

heuristic maps a DVE to a series of virtual severs running

on physical servers, based on the free space available on the

physical servers. The second heuristic constructs the degree

and diameter constrained multicast tree of virtual servers for a

region of DVE. Due to layout constraints, we have presented

the heuristics at the end of the paper.

A. Mapping Virtual Servers to Physical Servers

For mapping virtual servers to physical servers, our first step

when given a physical environment made up of datacenters,

physical servers, link costs, and a DVE with a set number

of objects, is to map the DVE to the physical servers using

virtual servers on each physical server, to hold a subset of the

objects from the DVE. Our solution (as described in Heuristic

1 and 2) iterates through each datacenter, trying to choose a

physical server in that datacenter that has enough resources to

(a) Single Virtual Server (b) DVE Split Across Second Virtual
Server

Fig. 6: Load Balancing Objects

(a) Overlay Networks(Regions A and B) (b) Link Delays Across
Physical Network

(c) Virtual Servers for 2
DVE's Mapped to Physical
Servers

(d) New Virtual Server
Spawned

Fig. 7: Individual Overlays And the Physical Mapping

hold the total number of objects in the DVE divided by the

the total number of datacenters. If we can do this for each

datacenter, we have successfully mapped the environment. If

we cannot find a physical server in the datacenter that has

enough free resources, we take the physical server with the

best resources, and map that many resources. After iterating

through each datacenter, if we still have objects left to map,

we take and map as many as possible to the physical server

in each datacenter that has the most free resources, for each

datacenter. If once done with this, we still have objects to map,

we loop through each datacenter, continuing to map as many

objects to the physical server with the most free space until

we either map all objects, and our heuristic is complete, or

run out of physical servers to map objects to, at which point

we return an error. The problem of mapping virtual servers to

physical servers is similar to the Graph Embedding Problem

[15], which is NP-Hard. Our proposed heuristic for mapping

virtual servers to physical servers has a complexity of 0 (n 2).

The heuristic listed in Heuristic 1 requires D, a list of

datacenters, each datacenter containing a list P of physical

servers, which is broken into two separate sets, Pu, which are

the servers powered on, and PD, the set of servers that are

powered off. We use the POWER_ON function to move a

server from PD to Pu. Every server has L M, which is the

maximum number of objects the server can manage, and Le,

the current number of objects that the server is managing. We

have a DVE, consisting of a specific number of objects, which

we want to map to a series of virtual servers, which is mapped

to physical servers, using the MAP function.

B. Creating Degree and Diameter Bound Multicast Tree

To create the Degree and Diameter Bound Multicast Tree

(DDBMT), presented in Heuristic 3, we start with the fully­

connected, weighted graph of virtual servers given to us from

the earlier mapping heuristic. We start by selecting a starting

node, using a heuristic described later, and put that node in

our tree. From this starting node, we begin constructing our

tree using a modified version of Prim's algorithm [16]. From

all nodes in our tree (to start, only the starting node is in

our tree), we look at all the nodes that have a degree of less

than our maximum degree, DegMAx, and we find the link

with the lowest cost from a node which is not in the tree to a

node which has already been included in tree and its degree

has not exceeded Deg M AX. We add the node that has that

lowest link cost to the tree. We continue this process until we

have added all nodes to the tree. As we add each node to the

tree, we calculate the diameter of the new tree, and verify that

we have not exceeded our maximum TMTT using a heuristic

described later, otherwise we fail to construct a DDBMT, and

would need to either select a different starting node, or increase

our maximum degree for the tree. The problem of finding

a diameter and degree bound spanning tree is NP-Hard [15]

and our proposed heuristic has a complexity of O(n4). The

heuristic Creating DDBMT uses three sub-routines, which are

described below.

1) SubRoutine: SelectStartingNode(Graph G): When using

a greedy heuristic with a degree constraint to construct a

spanning tree from a fully-connected graph, the node that

we start with will affect the diameter and links selected for

the spanning tree. To select a node more optimally than a

random selection, we take the node with the best Diam M AX

links, based on the assumption that this node has the best

connections to its neighbors for all of it's links to neighbors.

We do not guarantee that this node is the best starting node,

but we assume that it is a good choice for a starting node.

2) SubRoutine: LongestPathLength(Tree T, Node s): When

constructing a diameter-constrained spanning tree from a fully­

connected graph, it is critical to check the diameter of the tree

as each node is added into the spanning tree. This subroutine

takes a tree: T, as well as a leaf node: s, and determines the

longest path in the tree containing (starting at) node s. Node

s is specified since we are constructing a tree by adding new

(leaf) nodes to the tree. We know that the tree diameter is less

than the DiamMAX prior to adding node s, so we just need

to know if adding node s creates a diameter for T longer than

DiamMAX.

3) SubRoutine: FindTreeCenter(Tree T, Node s): This sub­

routine is very similar to the LongestPathLength subroutine.

It begins by walking from the starting leaf node outward,

computing the distance from the starting leaf node for each

node. Once the longest path length is found, we know that the

center node is just past half that distance from the leaf node

along the path for the longest path. We remove leaf nodes

that are not the starting or finishing node, until we are left

with a linked list from the starting leaf node to the final node.

We travel down that list until we have passed half the total

distance, and that node is the center node for this tree, which

we return.

V. PERFORMANCE EVALUATION

For our experimental setup, we constructed a representation

of the physical environment using object instances in C++.
We have a class representation for each of the following:

datacenter, physical server, virtual server, link, and DVE. We

then create instances of all these objects and map them to

each other, using the mapping heuristic from above, then

use our second heuristic to construct a DDBMT. For our

results, we compiled and linked the application with profiling

enabled, and then we ran our program across a large number

of simulations with different input parameters to get graphs

showing how increasing the size of the environment affected

the execution time of our heuristics. We also compared how

adjusting the degree of the multicast tree (from DDBMT)

changed the diameter of the multicast tree as the diameter

of the multicast tree is closely related to the QoS provided

by the multicast tree. For our data gathering, we used 10-40

datacenters, with 5-20 servers per datacenter. We chose link

costs 2-5 ms for the links between physical servers in the

same datacenter, and link costs 20-100ms for physical servers

in different datacenters. When constructing our DDBMT, we

used degree values beetween 3 and 12.

A. Mapping Virtual Servers to Physical Servers

We first compare the execution time of the mapping heuris­

tic against the number of datacenters in the environment. From

Fig. 8 we observe that as the number of datacenters increases,

the execution time also increases.

250 ,-----�-�-�-�-�--�-�-__,

Number of Datacenters vs. Execution Time

200

I
150

0=
+ +

+ +
+

100
++

• ! + + + + +
50

; : *

* !

... + + + +
+*�*++ + * + '*'

0 ... of *' * + :I; -+
10 15 20 25 30 35 40 45 50

Number of Data Centers

Fig. 8: Number of Physical Servers vs. Execution Time

B. Creating Degree and Diameter Bound Multicast Tree

For the DDBMT heuristic, we first compare the execution

time for constructing the DDBMT for various number of

virtual servers, using a DegMAx of 7. In graphing execution

time versus the number of virtual servers, as shown in Fig. 9,
we observe that the execution time increases when the number

of virtual servers increases.

300 .--�-�-�-�-�--�-�---,

Execution Time of DDBMT Generation, Degree of 7 per number of servers

250

200
:.:
�
0=

j
150

100

50

0'�2 -�13-�'4--'�5-�'6-�'�7-�'8-�'9��20
Number of Servers

Fig. 9: Number of Nodes vs. Execution Time

For the DDBMT heuristic, we also plot the degree versus

the diameter of the multicast tree. From Fig. 10 we observe

that as we increase the degree (Deg MAX) in our heuristic, the

diameter of the multicast tree decreases as long as the degree

is below 6 which implies that if we increase the degree of

the multicast tree, we can achieve a better multicast tree in

terms of QoS. When the degree is greater than 6, there are

few changes in the diameter of the tree.

VI. CONCLUSIONS AND FU TURE WORK

In this paper we have proposed a framework for a DVE

which balances the load among the servers that maintain

the DVE and ensures QoS for the clients of the DVE. We

have used the concept of virtual servers which are mapped

to physical servers to ensure even mapping of resources for

the DVE, and then constructed a degree and diameter bound

multicast tree to ensure QoS for all clients participating in the

DVE. Our solutions are targeted at creating an even mapping

of resources for a DVE to physical severs while maintaining

QoS for clients and servers communications.

280 r---,-----.-----,-----,-----,------.-�,_____-,________,

Comparison of diameter vs degree of constructed tree

140

1203 L -�-�-��-L--l----'------',LO --,L,----.J
12

Degree

Fig. lO: Number of Nodes vs. Execution Time

We have run extensive simulations to analyze the heuristics

of our proposed framework. Using simulated objects and

environment, we have varied input parameters across a range

that represents both small, medium, and large DVE imple­

mentations. From the simulation results we observe that the

execution time for Heuristic 1 increases with an increase on

the number of datacenters in the DVE. We also observe that

the execution time for Heuristic 3 increases when the number

of virtual servers increases. We are able to show that virtual

servers could be mapped to physical servers using our heuristic

as long as there are enough resources in the environment for

the mapping, and we could construct trees of varying degree

and diameter from the graph of virtual servers.

We also observe that the parameter (Deg M AX) has an

impact on the diameter of the multicast tree constructed by

our heuristic DDBMT. If we increase (DegM AX) we can have

a better multicast tree in terms of QoS which implies that we

will have a multicast tree with less diameter.

Future work should focus on using the feedback from the

DDBMT heuristic to our virtual server to physical server

mapping heuristic instead of constructing the tree from the

completed mapping of the virtual servers to physical servers.

Other areas of future research could focus on decreasing the

construction time of the tree by mapping nodes that are close

to each other together prior to constructing the entire tree.

REFERENCES

[1] M. Claypool, K. Claypool, "Latency and Player Actions in Online
Games," in Communications of the ACM, Vol 49, No 11, November
2006, pp. 40-45.

[2] Sherlia Y. Shi, Jonathan. S. Turner,"Multicast Routing and Bandwidth
Dimensioning in Overlay Networks," in IEEE Journal on Selected Areas
in Communication, Vol 20, Issue 8, October 2002, pp. 1444-1455.

[3] Eli Brosh, Yuval Shavitt,"Approximation and Heuristic Algorithms for
Minimum Delay Application-Layer Multicast Trees," in IEEE INFO­

COM 2004,March 2004.

[4] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, S.
Khuller,"Construction of an Efficient Overlay Multicast Infrastructure
for Real-time Applications," in IEEE INFOCOM 2003,March 2003.

[5] Anton Riabov, Zhen Liu, Li Zhang, "Overlay Multicast Trees of
Minimal Delay," in 24th IEEE International Coriference on Distributed
Computing Systems ICDCS 2004, 2004.

[6] S. Banerjee and B. Bhattacharjee, "A comparative study of application
layer multicast protocols," 2001.

[7] D. Lee, M. Lim, and S. Han, "Atlas - a scalable network framework
for distributed virtual environments," in 4th International Coriference

on Collaborative Virtual Environments, 2002.

[8] M. Assiotis and V. Tzanov, "A distributed architecture for mmorpg,"
in NetGames '06: Proceedings of 5th ACM SIGCOMM workshop on

Network and system support for games. New York, NY, USA: ACM,
2006, p. 4.

[9] J. Lim, J. Chung, J. Kim, and K. Shim, "A dynamic load balancing for
massive multi player online game server," in ICEC, ser. Lecture Notes in
Computer Science, R. H. R. Harper, M. Rauterberg, and M. Combetto,
Eds., vol. 4161. Springer, 2006, pp. 239-249.

[10] K.-w. Lee, B.-J. Ko, and S. Calo, "Adaptive server selection for large
scale interactive online games," Comput. Netw., vol. 49, no. I, pp. 84-
102,2005.

[II] F. Lu, S. Parkin, and G. Morgan, "Load balancing for massively
multi player online games," in NetGames '06: Proceedings of 5th ACM
SIGCOMM workshop on Network and system support for games. New
York, NY, USA: ACM, 2006, p. 1.

[12] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito, "A distributed event
delivery method with load balancing for mmorpg," in NetGames '05:

Proceedings of 4th ACM SIGCOMM workshop on Network and system
support for games. New York, NY, USA: ACM, 2005, pp. 1-8.

[13] P. Morillo, W. Moncho, J. M. Ordua, and J. Duato, "Providing full
awareness to distributed virtual environments based on peer-to-peer
architectures," in Lecture Notes on Computer Science, 2006, p. 2006.

[14] S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, T. Teifel, and
G. Carle, " Clustering players for load balancing in virtual worlds," Int.

J. Adv. Media Commun., vol. 2, no. 4, pp. 351-363,2008.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). W. H. Freeman & Co Ltd, January 1979.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2001.

Heuristic 1 Mapping VS to PS, Part 1

Require: D, a list of Datacenters {DI' D2, ... , Dd, each

datacenter holding between 1 and IFI servers from P.
Require: P, a list of physical servers {PI, P2, ... , Pj }, with

each P E Di.
Require: Pu, a list of all servers Pu E P which are powered

on.

Require: PD, a list of all servers PD E P which are powered

off.

Require: Every Member of Pu � PD.
Require: LM(Pi): The maximum load for server Pi, in terms

of number-of-objects.

Require: Lc(Pi): The current load for server Pi, in terms of

number-of-objects.

Require: DVE: A Region in a Distributed Virtual Environ­

ment, made up of N objects, to be mapped to a set of

virtual servers, V, which are mapped to a subset of Pu.
Require: A function MAP(V(t), P(t), n) which maps a

virtual server to a physical server with N objects. Le (t)
will be decreased by n, and N will be decreased by n.

Require: A function Power _On(p), which powers on a

server (removes it from PD and adds it to Pu).
1: for all SED do

2: for all t E Pu WHERE Pu E S AND Le(t) < LM(t)
do

3: if NIIDI < LM(t) - Lc(t) then

4: MAP(V(t), P(t), N IIDI)
5: GOTO next S
6: end if

7: end for

8: for all t E PD WHERE PD E S do

9: if NIIDI < LM(t) then

10: Power _On(t)
11: MAP(V(t), P(t), N IIDI)
12: GOTO next S
13: end if

14: end for

15: a = 0

16: b = NULL
17: for all t E P WHERE PES do

18: if a < LM(t) - Lc(t) then

19: b = t
20: a = LM(t) - Lc(t)
21: end if

22: end for

23: Power _On(b)
24: MAP(V(b),P(b),a)
25: end for

Heuristic 2 Mapping VS to PS, Part 2 (continuation of

Heuristic 1

26: if N > 0 then

27: for all Servers r E DVE do

28: MAP(V(r), P(r), LM(r) - Lc(r))
29: end for

30: end if

31: if N > 0 then

32: for all sED do

33: for all t E Pu WHERE Pu E sAND Le(t) <

LM(t) do

34: MAP(V(t), P(t), Lc(t) < LM(t))
35: GOTO Next s
36: end for

37: end for

38: end if

39: while N i= 0 do

40: for all sED do

41: for all t E PD WHERE PD E s do

42: Power _On(s)
43: M AP(V(t), P(t), LM(t))
44: end for

45: end for

46: if PD = {} then

47: HALT, Not enough free space on all servers for this

DVE to start.

48: end if

49: end while

50: return A mapping between V and P which satisfies load

and response constraints.

Heuristic 3 Creating DDBMT

Require: G = (Vc,Ec).
Require: DiamMAX.
Require: Deg M AX.
Require: A function CalculateStartingVertex(GraphG)

which selects the starting node to construct the multicast

tree.

Require: A function c defined as c(u, v) for u, v E Vc that

gives the cost for the direct link between u and v. c(u, v)
will return 00 if there is no direct link between u and v,
and will return 0 if u = v.

Require: A function LongestPathLength(TreeT, Nodes),
which returns the length of the longest path containing a

leaf node s from all other nodes in the tree.

Require: A function FindTreeCenter(TreeT, Nodes),
which returns the center node of a weighted tree.

1: VT = {}
2: ET = {}
3: 9 = 0

4: h = NULL
5: S = CalculateStartingVertex(GraphG)
6: VT = VT U {s}
7: while VT i=- Vc do

8: W = {}
9: for all u E VT do

10: if Deg(u) < DegMAX then

11: W=WU{u}
12: end if

13: end for

14: for all u E W do

15: q = 00

16: m = NULL
17: X = Vc - VT
18: for all yEW do

19: for all z E X do

20: if c(y, z) < q then

21: q=c(y,z)
22: m = (y,z)
23: end if

24: end for

25: end for

26: VT = VT U {z}
27: ET = ET U {m}
28: e = LongestPathLength(VT, z)
29: if e > Diam M AX /2 then

30: need a new starting node

31: end if

32: if e > 9 then

33: h = FindTreeCenter(VT, z)
34: 9 = e
35: c = {h}
36: end if

37: end for

38: end while

39: return A Multicast Tree T = (VT' VE) where for each

node v E VT,Degree(v) :s; DegMAx, and the diameter

of tree T:S; DiamMAX.

