
Introducing Collaboration In Single-user

Applications through the Centralized Control

Architecture

I1aria Manno*, Furio Belgiomo*, Delfina Malandrino*, Giuseppina Palmieri*, Donato Pirozzi*, Vittorio Scarano*

*ISISLab, Dip. di Informatica ed Applicazioni "R.M. Capocelli"
Universita di Salerno, Fisciano (SA), 84084, Italy

Email: {furbel.delmal.manno.palmieri.vitsca}@dia.unisa.it

Abstract-In this paper we describe a novel Model-View­
Controller based architecture, Centralized Control, that intro­
duces collaboration in single-users applications. The architecture
is able to add collaboration with no need to modify the source
code of the original single-user application, and providing also
the capability to introduce group semantics into the new, collab­
orative application that is obtained. The architecture is shown
in practice, by introducing CollabXMind, a collaborative mind
map tool, that is based on a well-known single-user tool, XMind.

I. INTRODUCTION

Collaborative applications can be designed and implemented
from scratch or by using existing applications to support real­
time collaboration. Implementing a groupware system from
scratch has the same advantages and disadvantages of a blank
sheet: the system can be implemented with all required func­
tionalities but, at the same time, the designers are responsible
of each detail related to these functionalities and of all the
aspects of users' interactions.

This choice is feasible if the development from scratch is
compatible also with the specific requirements coming out
from the context where the system will be used. Indeed, the
collaboration functionalities are not a value in themselves
but they can be useful only if adequately integrated in the
(ordinary) work process and environment, otherwise these
collaboration functionalities may require the users an overhead
to manage the collaboration beyond the standard work flow.
Moreover, it should be said that most of the work activities
use specific applications, answering to specific requirements,
with a long history of usage and well known procedures as
well as a huge quantity of data related to these applications.

These considerations motivate the studies about the possi­
bilities of making collaborative the single-user applications,
a well known approach that dates back to the 90s [1]. In
fact, multi-user applications, specifically designed to support
collaborative functionalities, exhibit a clear disadvantage com­
pared to single-user applications: groupware features are used
less frequently than single-user activities. As a consequence,
users have no or little incentive to abandon their favorite

individual application for a new application that, in addition,
may show compatibility issues. The idea, therefore, is to
investigate approaches that allow to efficiently add groupware
features to single-user applications.

Making collaborative a single-user application implies a
great saving of time and development efforts: we can reuse
advanced applications (traditional office automation software,
like Microsoft Word, Powerpoint, etc.) in a collaborative
manner without developing them again to add collaboration
functionalities. Of course, crucial in this process is the choice
of the distributed architecture to be employed in making
multiuser a single-user application.

In this paper, we present a distributed architecture named
Centralized Control, based on the Model-View-Controller
(MVC) design pattern, which shows several advantages with
respect to the repertoire of available architectures that have
been presented in literature. In particular, our architecture is
able to add group semantics to the operations performed (en­
larging, therefore, the functionalities of the application) while
preserving the independency from the application itself (no
modification is needed to the code) and from the underlying
operating system. To wit the advantages of our architecture
we show a significant example of its application, making
collaborative XMind, a well-known mind-mapping tool. Then,
we will compare our architecture to the state of the art of the
currently known techniques to make collaborative a single-user
application, in order to provide a detailed comparison and to
show how the Centralized Control is, indeed, different by the
previously known models.

Structure of the paper: Firstly, we introduce the mind
maps and some examples of collaborative software for mind­
mapping, including XMind (in Sec. II) and then, we show
CollabXMind (in Sec. III), the collaborative version of XMind.
The architecture of CollabXMind is then described in Sec. IV.
Finally (in Sec. V), we will compare our architecture to the
state of the art of the currently known techniques to make
collaborative a single-user application, in order to provide a
detailed comparison.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.19

II. COLLABORATIVE MIND MAPS

A mind map [2] is a graphic representation of ideas

structured around a central theme. Each idea is represented

graphically as a node of the map and can be linked to other

nodes with a semantic relationship. For this reason mind maps

highlight the semantic interconnections between ideas. Each

idea can be enriched with images, hyper links to Web pages

or other resources. In this way mind maps try to improve

the "recall", the human capacity to retrieve information from

the past. Mind maps are useful for the organization of ideas,

especially for the activities of note-making and note-taking.

Mind maps are strongly dynamic because they are mainly

used when the organization of information and ideas are not

clear. Mind-mapping software systems support the instanta­

neous reorganization of ideas with the drag-and-drop of nodes.

Software applications for mind-mapping are commonly used

to create diagrams which represent ideas in relationship with

other concepts or different kinds of data. A quite exhaustive list

of these kind of applications can be found on Wikipedia [3].

The research in CSCW and CSCL that explores the po­

tentialities of collaboration is using, as one of the tools, the

software for collaborative mind-mapping [4], [5] that seems

to exhibit several advantages, especially in brainstorming

activity. Recently, also, a quantity of Web-based tools for

mind-mapping have been developed, such as Mindjet Catalyst

[6], MindMeister [7] and bubbl.us [8], most of which allow

collaborative work. The simplest tools allow collaboration only

in tum-taking style, while others support synchronous collab­

oration. A comparison between tum-taking access and parallel

access in collaborative mind-mapping has been experimented

in 2002 by Prante et al.[4], who conclude that tum-taking

blocks the generation of the ideas and also leads to a structure

blocking effect.

Some systems enforce the collaboration by providing other

communication tools (chat or Web conferencing). In general,

the limitations of Web-based applications are that they ex­

plicitly need an infrastructure (a Web server for hosting the

collaboration) and furthermore, some privacy problems may

arise in case of an external Web server. Moreover, an Internet

connection should be available, and, in some cases, this can be

unreasonable, since some organizations may limit the Internet

access via specific filtering and firewall policies.

In 2009, Shih et al. [5] presented an experiment on

the GroupMind system, a collaborative software for mind­

mapping based on FreeMind [9]. The experiment analyzes the

impact of collaborative mind-mapping on generating ideas.

Two group settings have been tested: an interaction group,

in which members can interact with one another to generate

new ideas, and a nominal group, in which each member has a

different task assigned, and then the ideas generated are com­

bined together. The experiment has been run in two different

ways: using the GroupMind system or a traditional whiteboard.

The evaluation has been based on the number of unique ideas

generated, which is one of the most measured performance

indicators in brainstorming processes[1 0], [11], [12], [13]. The

results show that GroupMind has performed better than the

whiteboard in both group settings, so confirming the advantage

of using a collaborative mind-mapping system.

A limitation of GroupMind system, besides the fact that

is still a prototype as referred in the article, and of similar

systems, such as the commercial product Visual Mind [14],

is that they only support an open interaction mode, in which

each user can do anything. In a sense, there is no semantic

difference between single-user mode and multiple-user mode,

that is, in practice, only the multiplexing of the same single­

user action with the same semantics.

The last tool is XMind [15], a single-user standalone mind­

mapping software system that enables the user to create

his own mind-maps and that we have used as an example

to convert single-user applications to multi-user applications.

XMind is based on the metaphor of a workbook that contains

multiple sheets. The user can create his own mind-map on a

sheet: around the central topic grows a graphic representing

related ideas and concepts. The appearance of each item

can be customized with icons, colors and so on. One of

the most interesting feature is the opportunity to change the

structure of interconnected ideas: the structure can represent

a map, a tree, a logic chart, a fishbone and a spreadsheet.

XMind is an open source project and is designed as an

Eclipse-based application: it uses the core of Eclipse, the Rich

Client Platform. XMind has been named the 'Best Commercial

Eclipse Rich Client Platform (RCP) Application' in 2008 in

the Eclipse community, and the 'Best Project for Academia'

in 2009 in the SourceForge community.

III. COLLABXMIND

A wide community of users use XMind every day and are

familiar with its features and functionalities. For this reasons,

our idea is to convert the single-user application XMind into

collaborative one: we aim to design and develop a collabora­

tive real-time mind-mapping application named CollabXMind

that enables mUltiple users to cooperate in parallel way on

a shared map. In particular, CollabXMind enables multiple

participants that are into same place at the same time, to

simultaneously contribute on the same map. CollabXMind

is a synchronous face-to-face collaborative system in which

each member (Participant) can contribute adding new ideas

on a shared map, created and managed by the Coordinator.

CollabXMind is a real-time system, in which each Participant

can contribute adding a new idea to map that is visible

immediately to other users.

CollabXMind's user interface is similar to XMind mind­

mapping application, so CollabXMind inherits most of

XMind's features and preserves the original usability. Fig.

1 shows CollabXMind on the Coordinator side, where the

classic menu and tool bars of XMind are shown on the top.

In the middle, a collaborative workbook is shown with an

example of a mind map created with contributions from all the

users. Obviously, each collaborative system must have team­

awareness features: in our system the Control Panel has a list

of all connected Participants. The Floor control in our system

'< Collab XMlnd Server@I72.16.15.133 I
File Edit View Insert Modify Help

bilc=;1liI 1<:1 1)(J � I a ""<I \! 'q;, I � � 8 I'Ji � � o;} t" I � J'
!:ie.ntrol � U'*Workbook 1 � .
� Groups Console �

Participants
It Angela
It Gianna
e Cristofaro
e Donato

=El
�

(Dc ..

(iVQ&A �Gb.Ckground I �

s1 .r,
Conbnue
Gini Index:

� Participant Details �

Partecipants name: No p
Connected at:
IP address:

Activity [current step I
0- Console �

Block specific participant(s) ..

Block team

Activate team

TOpic (The 22 minute

<tlon

de �- conclusion
� goal

�PPositions

.!..I
Sheet 11 180% 10 .'

1 (D The 22 mlnutt!
meeting 0," objective

100

� E) motivation j

-

I .r
® @ Ir Anonimity I Client Modality: Owner Editing :I

_ t5' x

gc Outlin�� *Chat Tool """" =El

I$i) Chat Tool r Anonymity yes/no

Teache.r: Hi 'there!
Donato: Hello!
Teache.r: Start the mee'ting!

I
II

�Proper '!:3" ![] Marker
_
1

_
� *Prese.l = EI

Jopie t:' �1
.... Structure .!:

� Map (Clockwise) �

.... Text

Tahoma � :T
10 �fBI-."'"

.... Shape

o Rounded Rectangle � • -
.... Line

/ <;�":>i ... h� . .:::J

Fig. I. A screenshot of CollabXMind on the Coordinator side.

�kollaboratlve XMlnd Chent - Participant name: "'''''''Oonato·'''·

I:;J Users

� Angela
I Cristoforo
� Donato
Q Gianna

Tool

Modify Help

there!
onato: Hello I

Start the
eeting!

Topic (call for action) - Owner: Donato

=El

180% 10 ..

Fig. 2. A screens hot of CollabXMind on the Participant side.

=El
.!:l

obje

�
®®

_ t5' x

=El

OOUJ
�

,

El � Workbook
B'� Sheet I

B'-'@] The 22 minute meetil
EI"� background

: .. {!l controlling
: [!J work motivat
:···-00 productivity

$-'-� objective
:····00 opening
i...·_oo no more Ion.;;

t--.IM] motivation £
-I 1 •

Prop !llj Mark =El

�
Vj Topic

.... Structure

� Map (ClockWise)

.... Text

Tahoma �

10 � B I �

.... Shape

.!h. Underline

.... Line

.J Rounded Elbow

- Thinnest � I
.... �umbering £ -I

allows the blocking/unblocking of a specific user, a group of

users or all Participants; all floor control operations are in

the bottom part of the Control Panel. When the Coordinator

blocks a Participant, Participant's user interface will be frozen.

Our system provides also a chat tool that supports discussion

between users; it is placed on the right of the user interface.

Our system supports anonymity, since it is known to increase

the number of contributions from Participants. Besides, the

Coordinator at any time can change the Participants' interac­

tion mode. Both features can be controlled by specific widgets

near to the zoom control bar.

On the Participant side, CollabXMind inherits all func­

tionalities of XMind except the operations that concern the

creation/opening/import of collaborative workbooks, managed

by the Coordinator. On Participants' user interfaces there are

two views: the chat tool and the presence tool, respectively,

for discussions support and team awareness (see Fig. 2).

A. Interaction modes

In a collaborative system it is necessary to coordinate users

and define when and how they can work on the artifacts: in

different moments of the collaboration, different interaction

modes may be used, according to the goals to perform [16].

As an example, at the beginning, one may want to allow

Participants to study and read the whole map, before they

start to contribute. In a successive phase, for example, a free

access to the map may be granted for brainstonning, where

each Participant can create hislher own branch of mind map

that represent his/her thoughts. To finish our example, in a

final phase, the Coordinator may want to "refine" the map,

allowing a face to face discussion, where the Coordinator is

the one that merges, reduces and summarizes branches.

In CollabXMind, each node is associated with its creator,

and the operations that can be done, are dictated by the

"interaction modes". CollabXMind provides four interaction

modes: clone, view, owner editing and open editing. A very

useful feature of our system, is that Participants interaction

mode can be changed in any time during collaborative session

by the Coordinator.

In the clone interaction mode the whole user interface of

Participants is disabled. Each Participant sees exactly the same

map of the Coordinator side and all users' inputs are discarded,

included zoom and bars scrolling. Obviously, the XMind

workbook of Participants has exactly the same map content

of the Coordinator. Indeed, each map editing performed by

coordinator triggers an immediately updates of mind map on

Participants maps.

With the view interaction mode, each Participant can now

zoom and scroll independently from the Coordinator, can

hide/show branch of the map, and all the visualization op­

erations. The content is still dictated by the Coordinator, but

the read access depends on each Participant's needs.

An increased collaborative mode is the owner editing mode,

where each user can add nodes in parallel. It is a mode that

aims at bringing the parallelism in contributions to Partici­

pants, while retaining a certain control over the editing of the

nodes. In fact, each node is given an owner (the Participant

who created it) and the modifications (editing, deletion, change

of style, shape color, etc.) are allowed only to owners. This

is an important characteristics of CollabXMind that we would

like to emphasize: with this architecture it is possible to over­

impose additional group semantics to the model, as we did in

CollabXMind by adding the owner, and imposing a policy over

this information. The effect is important for brainstorming:

every Participant can see others' contributions, can add nodes

below it, place connections, but cannot modify its content and

appearance. As shown in Fig. 2, in the owner editing mode,

as visual cue, all nodes owned by Participant on its host are

marked with an icon representing a man with a pencil, to

distinguish from other nodes that cannot be edited.

Finally, of course, in the open editing mode where every­

body is free to modify every aspect and content of the map.

IV. COLLAB XMIND : THE ARCHITECTURE

XMind is an open source application founded on the core

of Eclipse, a component-based Java IDE which provides its

core to build plug-in based applications named rich client

applications. XMind is implemented in Java, is multi-platform

and does not provide API adequate to introduce collaboration

functionalities. Our aim was to introduce collaboration func­

tionalities allowing mUltiple users to work concurrently on the

same mind map without modifying the original application, so

that an easier update is possible with new versions of XMind.

Our approach introduces collaboration functionalities by in­

tercepting the users'input in the Model-View-Controller imple­

mentation of XMind and then the input intercepted is passed

to the framework providing communication functionalities.

Our solution does not change the source code of the original

application and use a framework which provides support to

achieve advanced collaboration functionalities. In the next

section we provide the detailed description of the architecture

of CollabXMind, whose overview is shown in Fig. 3).

The architecture is partially replicated: each user has an

instances of CollabXMind (the Client in Fig.3) and the

users' input are merged in a single stream managed by the

server of CollabXMind. Indeed, the server is responsible of

the merging of users'input and of applying policies.

XMind implements the Model-View-Controller pattern to

separate the data visualization from the data model. The other

layers are the components we have developed to make collab­

orative XMind without any change on the original application

or its source code. The basic idea is to intercept the events of

the application and pass them to a framework which provides

the collaboration infrastructure:

• the CollabXMind layer is responsible of intercepting the

users'input and to pass them to the communication layer

and vice versa; on the server side, it applies policies and

access control;

• the CAFE tool server (lclient) is the layer responsible of

connecting the CollabXMind layer with the communica­

tion layer;

Server

Collaborative XMind

Replicated layer

Centralized layer

Communication
layer

o XMind components 0 CollabXMind components • Communication components

Fig. 3. The Architecture of CollabXMind is composed by the original application XMind, and by a layer CollabXMind responsible of bridging the original
application with the communication layer.

• the CAFE layer is responsible of communication func­
tionalities and of advanced collaboration features.

In this architecture, we identify a server application and
a client application, with a partially replicated design: the
XMind application and the CollabXMind layer are replicated
on each instance of CollabXMind, while the Policy controller
is centralized on the server, and is responsible to manage
the sequence of events (to ensure the state synchronization
among the replicas) and to apply policies and access control.
The design of CollabXMind layer and the functionalities
provided by CAFE are described in detailed in the following
subsections. Further functionalities can be envisioned both in
CAFE and in CollabXMind according to the aim to achieve.

A. The CollabXMind layer

The CollabXMind layer is responsible of intercept the
events of the XMind application. An high level description of
the mechanism is depicted in Fig. 3, which describes how the
input provided by user playing as client is shared. The user
provides input to its local View component; the user input
generates a request that is caught by CollabXMind layer and
passed to the communication layer which sends the request to
the server; the server side of the CollabXMind enqueues the
request (to ensure synchronization among all the requests),
then it checks if the user is allowed to execute the request and
eventually it passes the request to the controller of XMind;
the Controller of XMind processes the request as it comes
from the local View and updates the Model, which notifies
all its listeners of the change; the CollabXMind layer has a
listener on the Model which serializes the notified event and
passes it to the communication layer; the communication layer
sends the event to all the clients; the CollabXMind layer of
the clients handles the event updating the Model of XMind,
which updates the View (through the Controller).

XMind implements the pattern Model-View-Controller
through GEF (Graphical Editing Framework) [17]. GEF is an

GEF Model-View-Controller

Implementation

§-:iew
The View sends

the user's input

.

to the EditDomain

The Edi'Part Edit
updates Domain
the View The EdilDomain

dispatches the request
�-� to the right EditPart

The model notifies The EditPart applies

the listeners the changes on tile Model

�
Fig. 4. The GEF implementation of the Model-View-Controller pattern.

Eclipse plugin! supporting the creation of graphical editors.
The developer can then take advantage of the many common
operations provided in GEF and/or extend them for the specific
domain. The components defined by GEF are the Model,
the View and the EditPart (i.e. the Controller) and their
interactions are depicted in Fig. 4. In an high level description
of the system, the Model manages a set of listeners that are
notified when the changes happen. The EditPart is a listener of
the Model and when receives the notification events updates
the View. When the View receives the user's input, it sends a
request to an EditDomain component, which, on the basis of
the nature of the request, dispatches the request to the right
EditPart, which applies the change on the Model.

The general idea of our approach is to intervene in the
implementation of the Model-View-Controller pattern adding
our components to intercept the users'requests and send them
to the server, which processes them and sends the resulting
events to all the clients. The Fig. 5 depicts the details of
the architecture built on the GEF Model-View-Controller im-

I Indeed, GEF is implemented as two plugins

ends me e,e,,, ___
to Ihe clients

Client

�iew .
. _. �� J Requests

CollabEdilDomain
. Domain ... ;;::��:

EK / 'otifie,

The events are
received by an handler

(. �oty"e'effi
applies the event

to the Model

o XMind components 0 CollabXMind components • Communication components

Fig. 5. The CollabXMinds components intervene on the implementation of the model-view-controller pattern to bridge users'input and communcation layer.

plementation, illustrating the process of input of a client. On

the client side, CollabXMind replaces the original EditDomain

of XMind with a CollabEditDomain. This replacement does

not requires changes on the source code of XMind because

can be done through the API of GEF. The CollabEditDomain

intercepts the requests going from the View to the EditPart

(and prevents the requests to be processed by the EditPart) and

sends them to EditPart on the server side through the commu­

nication layer. On the server side, all the clients' requests are

enqueued and then processed by a Policy Controller added

by CollabXMind. The Policy Controller checks the user's

permissions and passes the request to the XMind EditPart,

which applies the operations on the Model which notifies the

listeners. CollabXMind has a listener on the Model which

sends all the change events to the clients. On the client side, an

handler defined by CollabXMind receives the change events

and updates the Model. The Model notifies of the change its

listeners, including the EditPart which updates the View.

The process of a request of the user playing as coordinator

is slightly different: its input is normally processed by the

XMind EditDomain and then by the XMind EditPart; when the

EditPart updates the Model, it notifies the listeners, including

the CollabXMind Model Listener which sends the event to all

the clients.

B. The Collaboration Framework

So far we have described our solution to introduce collab­

oration speaking in general term of a communication layer
which provides communication functionalities and support to

achieve advanced collaboration functionalities. The framework

we have used is CAFE (Collaborative Application Frame­

work). It derives from CoFFEE [18], [19], [20], a collaborative

environment to support the face to face learning. CoFFEE has

a server and a client application named CoFFEE Controller

and CoFFEE Discusser, which are used by the teacher and

the students. CoFFEE provides a set of collaborative tools

integrated in the environment to support specific aims and

contexts: the Threaded Discussion tool supports tree-structured

discussions, the Graphical Discussion tool provides a shared

graphic workspace, the Positionometer supports votings; a de­

tailed description of CoFFEE and its tools is provided in [20].

CoFFEE is available since July 2008 on SourceForge [19].

CoFFEE has a component based architecture, founded on

Rich Client Platform (RCP), the core of Eclipse. The core

of CoFFEE provides the communication and collaboration

functionalities used by the CoFFEE applications and tools.

The plug-in based architecture of CoFFEE inherited by Eclipse

allowed us to define the environment so that each collaborative

tool is implemented as a plug-in. A detailed description of the

architecture of CoFFEE is provided in [18], [20]. To create

CollabXMind as a CAFE based application, we have defined

a CAFE tool which bridges the CollabXMind layer and the

CAFE framework. The CAFE tool has a server side and a

client side, and each side is integrated on CAFE through

the Eclipse extension-point mechanism. In the following we

describe the set of functionalities that CAFE provides to

CollabXMind.

Communication functionality. Obviously, the first essen­

tial functionality is the communication. The communication is

implemented in CAFE through ECF (Eclipse Communication

Framework) [21]. This high level of abstraction allowed us to

implement communication easily.

Server Discovery. CAFE implements an automatic mech­

anism to allow the clients discovering the server on the local

network. This functionality simplifies the initial phase of

connection of clients to the server.

Authentication. CAFE allows the initial registration of

users, allowing to choose if the connection can be free or

should be authenticated against a list of known users. Cur­

rently, the authentication does not implement any sophisticated

security mechanism, but just a check on a list of names.

Tools life cycle management. CAFE provides the possibil­

ity to load at runtime any CAFE tool: this allows to use any

CoFFEE tool within CollabXMind. Tools like the Presence

tool or the Chat as well as the Threaded Discussion tool

can support the meta-communication around the collaborative

activities on the mind map: they can provides awareness about

the team composition (presence tool), a channel for simple

communications (i.e., the chat), a textual structured space (the

Threaded Discussion tool).

Team Awareness. CollabXMind uses on the server side a

view named Control Panel provided by CAFE, showing the

Participants list. The CollabXMind client currently can have

feedback about the list of Participants through the Presence

tool provided by CoFFEE.

Floor Control. The floor control provided by CAFE allows

the coordinator to block/unblock selectively the users: by the

Control Panel the coordinator can block/unblock a single user,

a group of users or all the team.

Latecomers management. The latecomers management is

provided by CAFE to support the late joining of clients and

the synchronization of their state. Details about the mechanism

implemented are presented in [18].

V. DISTRIBUTED ARCHITECTURE FOR MAKING

COLLABORATIVE SINGLE-USER APPLICATIONS

Many studies have faced the question of introducing col­

laboration functionalities in existing single-user applications.

A review and a comparison of existing approaches to make a

single user collaborative is provided in [22]: they organize the

existing studies the basis of the approach used to introduce

collaboration in single-users systems.

An approach involves the need to modify the source code

of the existing single-user application. Obviously, this requires

the availability of the source code and the appropriate license.

The evident drawback is represented by the need to update

the multi-user application source code for any update of the

single-user counterpart.

Toolkits (TO): In literature several studies describe the

use of toolkits to support the creation of new collaborative

application. An examples of work based on this approach is

DistEdit [23], a groupware toolkit to convert existing single­

user editors (MicroEmacs and GNU Emacs) into group editors

by requiring little changes on the source code of the original

editors. In another work [24] it is also addressed the problem

of interoperating groupware systems by providing concurrency

control policies. It proposed to build a bridge programmed

to provide communication and interoperation functionalities.

However, it assumes the internal source code and groupware

applications knowledge. Several works on groupware have

employed the MVC to realize collaborative architectures. In

particular, the Clock groupware toolkit implements a semi­

replicated MVC architecture as described in [25]. It support

the development of synchronous groupware in high-level MVC

style: the model is implemented on a centralized server while

each user's view/controller is implemented on a separate client

node. Another example of using MVC to realize collaborative

architecture is implemented in the Rendevous framework [26],

that provides a centralized MVC architecture and a program­

ming language to simplify the construction of applications for

real-time collaboration. The approach proposed in this work

is characterized by a model centralized on a server node and

shared by several remote client views.

Shared Windows S ystems (SWS): these systems, also

known as Collaboration Transparency Systems, were one of

the first approaches to make collaborative single-user applica­

tions [1] without access and modify the source code. Examples

include SharedX [27], Microsoft Meeting Space [28] and

SunForum [29]. The aim was to develop a generic solution

to make collaboration functionalities available to any single­

user application. The idea is to intercept at operating system

level the users input and share it by means of conference

agent interposed between the application and the window

system provided by the operating system. The conference

agent merges the inputs coming from all the windows systems

of the users, creating a single stream and sending it to the

application. This kind of approach is independent from the

specific application involved in the collaboration but it strongly

depends on the underlying operating system (which manages

the windows system). The dependency from the operating

system may represent a problem if the application involved

in the collaboration is multi-platform.

Intelligent Collaboration Transparency (ICT): The In­

telligent Collaboration Transparency [30], an evolution of the

approach described before, has been specifically designed

for heterogeneous applications of the same category (such

as text editors). Both the the ICT and SWS approaches are

independent from the specific application involved in the

collaboration but are strongly dependent from the underlying

operating system. This dependence may represent a problem if

the application involved in the collaboration is multi-platform.

Component R eplacement (CR): The Component Re­

placement (also named Flexible Collaboration Transparency)

[31] approach shifts the focus from the operating system

level to the application level, defining a replicated architecture

where each user has a replica of the application. The collab­

oration is introduced without modify the source code of the

original application through the replacement of selected single

user components ('the combination of data and behavior') of

the application with collaborative ones. The goals of this ap­

proach were to introduce collaboration allowing unanticipated

sharing, support concurrent work and relaxed WYSIWIS,

providing group and work awareness, accommodating late

comers. The runtime component replacement proposed in this

approach requires that the original application uses a platform

allowing the runtime replacement of components and the dy­

namic binding (the runtime resolution of a function invocation

or data access); the accommodation of late comers through the

image copy of the shared application requires the support of

the process migration; the synchronization among the replica

happens through the merge of users'input in a single stream

(at each replica). This approach has been realized in Flexible

JAMM [31], implemented on Java and based on JOS (Java

Object Serialization) to support the process migration and on

Swing to support the component replacement. As the authors

recognize in the limitations of the approach, several constraint

coming from the method (the runtime component replacement)

and from the implementation (based on Java, Swing and

JOS) restrict the set of shareable applications to a subset of

serializable Swing based Java application.

Transparent Adaptation (TAJ: This approach is oriented

to specific applications and is not generic as shared windows

systems. The idea is to introduce collaborative functionalities

by using its API without modifying the original application.

This approach has been used for example in Co Word and

CoPowerPoint [32], [33] to allow multiple users to view and

edit any objects at the same time over the Internet. In the

transparent adaptation approach the developers do not need to

change the source code of the application. This approach is

based on the use of the application APIs to get users's local

interactions and on Operational Transformation technique to

ensure consistence among the replicas; the approach requires

that the single user application provides API suitable to inter­

cept the input events and that the API and the application data

are adaptable to the operational transformation which ensure

the synchronization and consistency among the replicas.

Flexible Coupling (FC): This approach faces a new

aspect about the introduction of collaboration features in single

user applications: the users participating in the collaboration

may wish to share selected parts of the application content.

This approach has been applied as case study to introduce

collaboration in GraphDraw [34]. In the case study, the users

may wish to share the graph that they are creating but not their

personal annotations. The basic idea of the Flexible Coupling

approach is to define several layers corresponding to several

aspects of the collaboration: for instance, in the case study of

GraphDraw the layers were the graph (corresponding to the

model in the MVC architecture), the graph view (correspond­

ing to the manipulable graphic representation of the graph),

the figures layer (corresponding the users' annotations), the

appareance (corresponding to the graphic widgets which do

not affect the model, like the scroll bar) and the window

(corresponding to all the previous together). This approach

allows the users to choose which layer should be shared: for

instance they can share the graph view but not the figures.

The Flexible Coupling requires to define specific layers for

each application in which the programmers are introducing

collaboration and requires changes to the source code of the

original application.

Component Mapping (CM): This approach discusses

mappings to extend single-user application to support col­

laborative activities. This approach has been used to con­

vert ArgoUML, a widely used open-source CASE (Computer

Aided Software Engineering) tool to a multi-user tool called

CoArgoUML [35]. This mapping assumes that the single­

user application has been implemented using the MVC ar­

chitecture sty Ie and that changes on the source code of the

original application will be required. This paper derives that

four minimal collaborative requirements should be applied to

single-user applications to make them collaborative, that is,

communication, group awareness, session management and

concurrency control.

These approaches have been studied and classified and their

classification [22] is presented in table I. The table reports for

each approach the requirements on the Source Code (no need

of source code, need of OS API, need of application API,

need of knowledge of the source code, need modifications on

the source code), about technical requirements (need to use a

specific language, need to develop a software layer, need of a

specific architecture) and the final MVC architecture. The last

column, MVC architecture, indicates the model resulting in the

MVC pattern for each approach, according to Pichiliani [22]

on the basis of the MVC architectures presented by Suthers

in [36]. The defined architecture are Centralized, Replicated,

Distributed and, finally, Hybrid and are shown in Fig. 6,

models a), b), c) and d).

The table reports for each approach the requirements on the

Source Code (no need of source code, need of OS API, need

of application API), about technical requirements (need to use

a specific language, need to develop a software layer, need of a

specific architecture) and the final MVC architecture. The last

column, MVC architecture, indicates the model resulting in the

MVC pattern for each approach, following the MVC architec­

tures presented by Suthers in [36]. The defined architecture,

shown in Fig. 6 are Centralized, Replicated, Distributed and,

finally, Hybrid.

In all the cases, both Suthers [36] and Pichiliani [22],

describe the distribute model of the MVC pattern as a result

of the introduction of collaboration in existing systems.

A. Centralized Control Architecture

Our approach, reported in the last row of table I, tries

to introduce collaboration in a single user application by

intervening in the implementation of the MVC pattern to

intercept the users' input defining a Centralized Controller

architecture (CC), shown in Fig.6, model (e). Our architecture

does not need to modify the source code, even if we need

the source code to understand which are the components that

implements the MVC pattern. Our approach has no need of

APIs neither of the OS nor of the application, so it is operating

system independent and is suitable for applications which

does not provides adequate API. The requirement to access

to the source code and the no need of API make the approach

suitable for open source applications (as XMind) but not for

commercial application (as Word).

The implementation of our approach has been presented in

detail in the previous section, and here we want just to describe

and summarize its principles: the Centralized Control MVC

architecture. As shown in Fig. 6, each user has a replica of

the View, Model and of the Control display (the Controller part

responsible of updating the View on the changes of the Model).

Users' input on the replicated Views are sent to the Centralized

Control. The Centralized Control applies the changes on the

local View and Model, and the latter sends the changes to the

replicated Models. Finally, the replicated Models update, by

means of the Control display, the local Views. The cornerstone

of the architecture is the Centralized Control: it is responsible

of the events ordering and then of the consistence among

Approach Source code Technical Regs. MVC Arch.
Collaboration Transparency Systems No specific lang. prog. Centr
Intelligent Collaboration Trasparency Systems OS API need software layer C or D
Trasparent Adaptation App.API new software layer R
Component Replacement knowledge of source code components progr language R
Flexible Coupling modifications on source code definition of layers R
Component Mapping modifications on source code MVC pattern H
Centralized Control Architecture knowledge of source code MVC pattern CC

TABLE I
COMPARISON OF THE TECHNICAL ASPECTS OF THE APPROACHES TO MAKE COLLABORATIVE SINGLE-USER APPLICATIONS.

Machine: A

-1
MachineS M(lchineA

I Control view I I Control

.'\. 1
I Model I. I Model I

e)

MexhineB

I � � c) � I

d)

I
View I

MQchine:A

, I �
I �

view

.I Mode!

Machine C

� E Control

Control I
/'

I

Fig. 6. MVC-style architectures: a) Centralized architecture [36], b) Replicated architecture [36], c) Distributed architecture [36], d) Hybrid architecture [36],
e) Centralized Control architecture (this paper).

the replicas, it has the possibility to applies policies and to

add semantic to the application events (like the author of the

command, in our example for CollabXMind).

In the comparison with other models, our approach presents

some advantages and some drawbacks. Our approach provides

concurrent work and relaxed WYSIWIS, and allows us to

apply semantic to the operations (like the author of the

operation) and then (editing) policies. Our approach does not

require modifications on the source code, has no need of OS

API (so it is independent from the OS and can be applied to

multiplatform applications) and has no need of the application

API, so it is suitable to application which does not provide

API. On the other hand, our approach requires that the original

application implements the MVC pattern and that provides the

source code, even if we do not need to modify the original

application, but we need to understand how tht pattern is

implemented to intercept the users'events.

VI. CONCLUSIONS

In the CSCW and CSCL fields several approaches and

examples have been proposed to introduce collaboration in

single-users applications, with different advantages and draw­

backs. The collaborative architectures resulting from the tech­

niques presented in literature use the MVC architectures

defined by Suthers in [36]. Our approach defines a new

MVC architecture, named Centralized Control, with the aim of

introducing collaboration in single-users applications without

modify the source code of the original ones, by intervening

in the implementation of the MVC pattern to create a collab­

orative structure with a centralized controller. Compared with

other techniques, the Centralized Control technique allows

us to add semantic information to the users'operation and

to apply editing policies on the basis of these information.

Our technique has been implemented to introduce collabo­

ration functionalities in XMind, an Eclipse-based single-user

application to create mind maps. XMind is open source and

does not provide API suitable to introduce collaboration. It

implements the MVC pattern via GEF. The implementation of

the Centralized Control technique has allowed us to introduce

collaboration without modify the source code and to provide

a flexible set of editing policy. The main drawbacks of the

Centralized Control technique are the requirement of the

implementation of the MVC pattern on the original application

and the availability of the source code to understand how the

pattern is implemented. On the other hand, this technique

is OS independent and does not requires application API,

so it seems more suitable for open source applications (as

XMind) rather than for commercial applications (as Microsoft

Word or Power Point). The implementation of the Centralized

Control technique has produced CollabXMind, an application

that allows multiple users to collaboratively work on a shared

mind map. CollabXMind has been developed using CAFE

as underlying layer that provides collaboration functionalities.

Here we want also emphasize that, beyond the communication

and collaboration functionalities, CAFE has enriched the final

result by providing the possibility of using other CAFE-based

tools (coming from the CoFFEE environment), providing

further collaboration channels.

Further studies will concern both CollabXMind and the

Centralized Control approach: of course, future works will

include experimentations to evaluate the effectiveness and the

usability of the integration of the collaboration features in

CollabXMind. Moreover, further studies about the Centralized

Control approach will be on the possibility of developing a

generic implementation able to introduce the collaboration in

the MVC pattern. First steps in this direction will be about the

GEF-based implementation, to develop a collaborative GEF by

generalizing our current implementation to offer collaborative

features for other GEF-based applications.

REFEREN CES

[I] J. c. Lauwers, T. A. Joseph, K. A. Lantz, and A. L. Romanow, "Repli­
cated architectures for shared window systems: a critique," SiGOiS Bull.,
vol. II, no. 2-3, pp. 249-260, 1990.

[2] T. Buzan and B. Buzan, The Mind Map Book: Available from Ama­
zon.comShared Visions Unlimited Reviews Home PageHow to Use
Radiant Thinking to Maximize Your Brain's Untapped Potential. E.
P. Dutton, 1994.

[3] "Wikepedia." [Online]. Available: http://en.wikipedia.org/wikilLisCoC
mind_mappin/Lsoftware

[4] T. Prante, C. Magerkurth, and N. Streitz, "Developing cscw tools for
idea finding -: empirical results and implications for design," in CSCW
'02: Proceedings of the 2002 ACM conference on Computer supported
cooperative work. New York, NY, USA: ACM, 2002, pp. 106-115.

[5] P. C. Shih, D. H. Nguyen, S. H. Hirano, D. F. Redmiles, and G. R.
Hayes, "Groupmind: supporting idea generation through a collaborative
mind-mapping tool," in GROUP '09: Proceedings of the ACM 2009
international coriference on Supporting group work. New York, NY,
USA: ACM, 2009, pp. 139-148.

[6] Mindjet Catalyst. [Online]. Available: http://www.mindjet.com/products/
mindjet-catalyst/overview

[7] MindMeister. [Online]. Available: http://www.mindmeister.com
[8] bubbl.us. [Online]. Available: http://www.bubbl.us
[9] FreeMind. [Online]. Available: http://freemind.sourceforge.net

[10] T. Bouchard, "Personality, problem-solving procedure, and performance
in small groups." Journal of Applied Psychology, vol. 53, 1, pp. 1-29,
1969.

[11] R. Gallupe, A. Dennis, W. Cooper, 1. Valacich, L. Bastianutti, and
J. Nunamaker, "Electronic brainstorming and group size." The Academy

of Management Journal, vol. 35, 2, pp. 350-369, 1992.
[12] M. Diehl and W. Stroebe, "Productivity loss in brainstorming groups:

Toward the solution of a riddle." Journal of Personality and Social
Psychology, vol. 53, 3, pp. 497-509, 1987.

[13] R. O. Briggs, B. A. Reinig, and M. M. Shepherd, "Quality as a function
of quantity in electronic brainstorming," in HiCSS '97: Proceedings of
the 30th Hawaii international Conference on System Sciences. Wash­
ington, DC, USA: IEEE Computer Society, 1997, p. 94.

[14] Visual Mind, Mind Technologies. [Online]. Available: http://www.
visual-mind.com/

[15] "Xmind." [Online]. Available: http://www.xmind.net/
[16] S. Noel and J.-M. Robert, "Empirical study on collaborative

writing: What do co-authors do, use, and like?" Computer
Supported Cooperative Work (CSCW), vol. 13, pp. 63-89,
2004, 10.1023/B:COSU.0000014876.96003.be. [Online]. Available:
http://dx.doi.org/10.1023/B:COSU.0000014876.96003.be

[17] "Graphical Editor Framework," last access on june 2010. [Online].
Available: http://www.eclipse.org/gef/

[18] R. De Chiara, A. Di Matteo, Ilaria Manno, and V. Scarano, "CoFFEE:
Cooperative Face2Face Educational Environment," in Proceedings of the

3rd international Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom 2007), November 12-
i 5, 2007, New York, USA, 2007.

[19] CoFFEE, "CoFFEE at Sourceforge:," http://sourceforge.net/projects/
coffee-soft, 2010. [Online]. Available: https://sourceforge.net/projects/
coffee-soft/

[20] R. De Chiara, 1. Manno, and V. Scarano, in Educational Technologies for
Teaching Argumentation Skills. Bentham eBooks, in press, ch. CoFFEE:
an Expandable and Rich Platform for Computer-Mediated, Face-to-Face
Argumentation in Classroom.

[21] ECF, "Eclipse Communication Framework," 2010,
http://www.eclipse.org/ecf/. [Online]. Available: http://www.eclipse.
org/ecf/

[22] M. C. Pichiliani and C. M. Hirata, "A technical comparison of the
existing approaches to support collaboration in non-collaborative ap­
plications," Collaborative Technologies and Systems, international Sym­
posium on, pp. 314-321, 2009.

[23] M. 1. Knister and A. Prakash, "Distedit: a distributed toolkit for
supporting multiple group editors," in CSCW '90: Proceedings of the
i990 ACM conference on Computer-supported cooperative work. New
York, NY, USA: ACM, 1990, pp. 343-355.

[24] P. Dewan and A. Sharma, "An experiment in interoperating hetero­
geneous collaborative systems," in Proceedings of the Sixth European
coriference on Computer supported cooperative work. Norwell, MA,
USA: Kluwer Academic Publishers, 1999, pp. 371-390.

[25] T. C. N. Graham, T. Urnes, and R. Nejabi, "Efficient distributed
implementation of semi-replicated synchronous groupware," in UIST

'96: Proceedings of the 9th annual ACM sympOSium on User intel/ace
software and technology. New York, NY, USA: ACM, 1996, pp. 1-10.

[26] R. D. Hill, T. Brinck, S. L. Rohall, J. F. Patterson, and W. Wilner,
"The rendezvous architecture and language for constructing multiuser
applications," ACM Trans. Comput.-Hum. interact., vol. I, no. 2, pp.
81-125, 1994.

[27] D. Garfinkel, B. Welti, and T. Yip, "HP Shared X: a tool for real time
colalboration," HP Journal, vol. 45,2, pp. 23-36, 1994.

[28] "Windows Meeting Space." [Online]. Available: http://www.microsoft.
com/indialwindows/windows- vista/features/meeting-space.aspx

[29] "SunForum." [Online]. Available: http://docs.sun.com/app/docs/doc/
805-4479-12

[30] D. Li and R. Li, 'Transparent sharing and interoperation of heteroge­
neous single-user applications," in CSCW '02: Proceedings of the 2002
ACM conference on Computer supported cooperative work. New York,
NY, USA: ACM, 2002, pp. 246-255.

[31] J. Begole, M. B. Rosson, and C. A. Shaffer, "Flexible collaboration
transparency: supporting worker independence in replicated application­
sharing systems," ACM Trans. Comput.-Hum. interact., vol. 6, no. 2, pp.
95-132, 1999.

[32] S. Xi a, D. Sun, C. Sun, D. Chen, and H. Shen, "Leveraging single­
user applications for multi-user collaboration: the coword approach,"
in CSCW '04: Proceedings of the 2004 ACM coriference on Computer
supported cooperative work. New York, NY, USA: ACM, 2004, pp.
162-171.

[33] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai, "Transparent
adaptation of single-user applications for multi-user real-time collabora­
tion," ACM Trans. Comput.-Hum. interact., vol. 13, no. 4, pp. 531-582,
2006.

[34] V. Roussev and P. Dewan, "Supporting high coupling and user-interface
flexibility," in ECSCW'05: Proceedings of the ninth coriference on
European Conference on Computer Supported Cooperative Work. New
York, NY, USA: Springer-Verlag New York, Inc., 2005, pp. 45-64.

[35] M. Pichiliani and C. Hirata, "A guide to map application components to
support multi-user real-time collaboration," international Conference on
Collaborative Computing: Networking, Applications and Worksharing,
vol. 0, p. 2, 2006.

[36] D. Suthers, "Architectures for computer supported collaborative learn­
ing," in Proc. of the IEEE International Coif. on Advanced Learning
Technologies (iCALT 200i), 2001, pp. 25-28.

