
Combining Access Control and Trust Negotiations
in an On-line Social Network

(Invited Paper)

Stefano Braghin
DICOM

University of Insubria
Varese – Italy

s.braghin@uninsubria.it

Elena Ferrari
DICOM

University of Insubria
Varese – Italy

elena.ferrari@uninsubria.it

Alberto Trombetta
DICOM

University of Insubria
Varese – Italy

a.trombetta@uninsubria.it

Abstract—Protection of On-line Social Networks (OSNs) re-
sources has become a primary need since today OSNs are the
hugest repository of personal information on the Web. This
has resulted in the definition of some access control models
tailored to the protection of OSN resources. One of the key
parameter on which access control decisions in OSNs should
be based is represented by the trust between OSN users. A well-
known approach for the management of trust relationships is
represented by trust negotiations [1], [2]. In this paper, we show
how access control and trust negotiation can be combined in a
framework for the protection of OSN resources. Moreover, we
show how the outcome of a trust negotiation can be exploited to
dynamically adjust the trust level between OSN users.

Index Terms—social network, access control, trust negotiation,
trust management

I. INTRODUCTION

Hundreds of millions of users interact and share their
information and resources via On-line Social Networks (OSNs,
for short). As a result, users store they personal profiles,
messages, photos, videos and the like in sites like Facebook,
MySpace, Orkut, Flickr and hundreds of other OSNs, which
have become the main means of sharing and exchanging
(personal) information on the Web. Recently, organization and
companies as well have started to use OSNs in order to share
information and doing their businesses. The introduction of Se-
mantic Web technologies, such as FOAF (Friend Of A Friend)
[3], [4] has simplified – on one side – the automatic sharing of
information among different OSNs, while – on the other side
– has required a stricter control from the users on the diffusion
of their information. In fact, most of the current OSNs allow
users to specify the state of their data (i.e., public, private,
or readable only by authorized users like direct friends, for
example). Along this line, some access control models tailored
to OSNs have been proposed (see [5] for a survey). Almost all
these proposals express access control/privacy requirements as
constraints on OSN users social graph. Such constraints are
usually stated in terms of the type, depth and possibly the trust
level of the relationships that must hold between two users u
and u′ because u can access one of u′ resources.

A complementary approach for a controlled resource release
is represented by trust negotiation [1]. Trust negotiation
allows two mutually initially untrusting parties (which do not

have any shared, previously agreed access policies to their
respective resources) to eventually agree on the disclosure
of resources protected by local access policies by acquiring
a certain level of trust. This is reached by exchanging –
upon an initial resource request – the local access policy
for the requested resource, which in turn may ask other
resources (protected by other local policies) and so on. The
policy exchange is carried on until a resource not protected
by any further resource is found. This triggers the exchange
of the resources mentioned in the exchanged policies, until
the initially requested resource is disclosed. In the case that
unprotected resources are not found, the corresponding trust
negotiation fails and the initially requested resource is not
disclosed. In the past few years, there have been several
research efforts that have resulted in frameworks specifying
proper negotiation languages and prototypes enforcing trust
negotiations in distributed environments [1], [6], [7], [2], [8].
However, none of these proposals consider the OSN scenario.
Our aim in this paper is to combine access control and
trust negotiation into a framework for the protection of OSN
resources to exploit the benefits of both the paradigms. More
precisely, aim of the present work is the introduction of trust
negotiations within the access control framework for OSNs
defined in [9]. In [9], access control policies are expressed as
access rules that specify authorized users in terms of attributes
like relationship type, depth and trust among users in the
social network. The enforcement of such access policies is
performed client-side. Thus, a user is guaranteed access to a
given information or resource when she/he is able to prove
to the information/resource owner that she/he satisfies the
corresponding access rules.

More precisely, our contribution is twofold. First, we extend
the framework in [9] by allowing a resource to be disclosed
by means of a trust negotiation, besides through the satis-
faction of a set of access control policies. In such a way
we provide a more flexible way according to which access
control requirements of a resource owner can be specified and
managed. Second, we relate the trust level existing between
two OSNs users to the outcomes of the negotiations they
have previously carried out. More precisely, we propose a
method to dynamically adjust the trust level of a relationship

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.18

existing between two users within the OSN on the basis of
the results of previous trust negotiations between them. This
is achieved by dynamically modify the OSN’s graph, both in
term of existing relationships and in terms of trust associated
with such relationships. In the paper, we also discuss how
to take advantages of such relationships in the access control
procedure.

The remainder of the paper is organized as follows: Sec-
tion II discusses related work, whereas in Section III we
present a brief overview of OSN’s access control models
and trust negotiation mechanisms. In Section IV we describe
how to extend the access control model in [9] to include
resources as requirements and to let it interact with a trust
negotiation infrastructure. Section V presents our proposal to
take advantage of trust negotiations to dynamically adjust the
trust between two OSN users and to speed up the access
control process. In Sections VI and VII we present the
complexity analysis of the proposed access control system
and some experimental results which we performed on such
system, respectively. Finally, Section VIII summarizes some
conclusions.

II. RELATED WORK

To the best of our knowledge, we are not aware of proposals
aiming at combining access control and trust negotiation in
the framework of OSNs. Indeed, research work focusing on
OSN privacy and security is quite recent. As far as privacy
is concerned, current work is mainly focusing on protecting
private information while performing social network analysis
[10]. In contrast, research in the field of access control has
resulted in the definition of some access control models and
related mechanisms aiming to overcome the restrictions of
the protection mechanisms provided by current OSNs (see [5]
for a survey). One of the common characteristics of almost
all the defined access control models is that access control
is relationship-based, that is, authorized users are denoted
on the basis of constraints on the relationships the requester
should have with other network users. Such constraints refer
to the depth of the relationship and/or its type. Some models
(e.g., [9]) also support constraints on the trust level of a
relationship. However, the problem of how to compute the trust
of a relationship, which is addressed in the current paper, has
not been deeply addressed so far. The only work we are aware
of considering the interplay among trust and access control in
OSNs is [11], in which a privacy-preserving mechanism has
been defined able to help an OSN user to compute the trust
values to be assigned to other network nodes. The approach
makes use of an audit file, which stores relevant information to
estimate OSN user trust. More precisely, each node in the OSN
is equipped with an audit file, which reports an anonymized
version of all the user decisions with respect to the release of
resources and personal data, plus some additional information
that makes the other nodes in the network able to evaluate
whether the decisions are compliant or not with the specified
privacy preferences/access control policies without violating
user privacy. In the current paper, we propose a different

approach for trust computation, where trust can be estimated
based on the result of previous trust negotiations.

Even if not oriented to OSNs, trust negotiation for web-
based applications has been an extensively investigated re-
search area in recent years. The idea of trust negotiation
was originally introduced by Winsborough et al. [1], which
also present different strategies to conduct on-line transactions
between strangers.

The research following the work by Winsborough et al. has
mainly focused on three issues: i) the definition of languages
for expressing resource access policies (e.g., [6], [12], [7],
[13]), ii) the design of protocols and strategies for conducting
trust negotiations (e.g., [14], [8], [2]), and iii) the development
of logics for reasoning about the outcomes of these negotia-
tions.

Trust negotiation systems have also been investigated with
respect to privacy. Work along this direction has focused on the
protection of sensitive policies and credentials. Winslett and
Yu [8] have developed a unified scheme, known as Unipro,
to model resource protection, which applies to both the actual
resources to be protected and policies. A formal framework
for trust negotiations has been proposed by Winsborough and
Li [15]. Their approach to safe enforcement of policies focuses
on a privacy-preserving credential exchange. A formal notion
of safety in automated trust negotiation is given, stating when
a negotiation is secure against inferences that a party may
make against the profile of the other party.

Finally, this work has its roots in the Trust-X system.
Trust-X includes an XML-based language for policy and
credential specification, and an engine to carry on trust nego-
tiations. Trust-X unique features include support for efficient
negotiations, using caching and trust tickets [2], compliance
with privacy policies, and P2P framework [16], and recovery
support [17], [18].

III. BACKGROUND

In this section we will briefly introduce some basic notions
which are required in the remainder of the paper.

A. A brief introduction to OSN access control

Similarly to other networks, an OSN SN can be represented
as a labeled graph, where each node denotes a user in the
network, whereas edges represent the existing relationships
between users, and their trust levels. Edge direction denotes
which node specified the relationship and the node for which
the relationship has been specified, whereas the label asso-
ciated with each edge denotes the type of the relationship.
Figure 1 shows an example of OSN graph.

The number and type of supported relationships depend on
the specific OSN and its purposes; our only assumption is that
there exists at least one relationship type. We also assume that,
if RT denotes the set of supported relationship types, given
two nodes A,B ∈ SN , there may exist at most |RT | edges
from A to B (from B to A, respectively), all labeled with
distinct relationship types. We can now formally define OSNs
as follows.

(colleagueOf, 0.3)

(colleagueOf, 0.8)

(friendOf, 0.4)

(colleagueOf, 0.5)

(colleagueOf, 0.3)

(friendOf, 0.4)

(friendOf, 0.4)

(colleagueOf, 0.3)

(colleagueOf, 0.7)
(colleagueOf, 0.6)

(friendOf, 0.2)

(friendOf, 0.8)

A

C

B

E

D

F

Figure 1. An example of OSN labeled graph

Definition 3.1 (OSN): [9] An OSN SN is a tuple
(VSN , ESN , RTSN , φSN), where RTSN is the set of sup-
ported relationship types, VSN and ESN ⊆ VSN × VSN ×
RTSN are, respectively, the nodes and edges of a directed
labeled graph (VSN , ESN , RTSN , φSN), whereas φSN :
ESN → [0, 1] is a function assigning to each edge ESN a
trust level t, which is a rational number in the range [0, 1].

An edge e = vv′ ∈ ESN expresses that node v has
established a relationship of a given type rte ∈ RTSN with
node v′.

In this paper, we assume that OSN resources are protected
according to the model presented in [9]. According to this
model, access control requirements of OSN users are ex-
pressed in terms of access rules specified by resource owners.
Access rules denote authorized members in terms of the type,
maximum depth and minimum trust level of the relationships
they must have with other network nodes. Such constraints are
expressed as a set of access conditions (v, rt, dmax, tmin),
where v is the node with which the requesting node must
have a relationship of type rt, whereas dmax and tmin are,
respectively, the maximum depth and the minimum trust level
that the relationship must have. If v = ∗ and/or rt = ∗, v
corresponds to any node in the OSN and/or rt corresponds to
any supported relationship type. Whereas if dmax = ∗ and/or
tmin = ∗, there is no constraint concerning the depth and/or
trust level, respectively.

Example 3.1: Referring to the OSN in Figure 1, suppose
that Alice (A) holds a resource r that she wants to share only
with her colleagues or the colleagues of their colleagues no
matter of their trust level. She can encode such requirement by
the following access condition (A, colleagueOf, 2, ∗). More-
over, if a resource is protected by the following access rule
{(A, friendOf, 1, 1)}, it means that it can be accessed only
by A more trusted direct friends.

In [9], access control is client-based, according to which

the requester must provide the resource owner with a proof
of being authorized to access the requested resource. As
access rules constraint relationships, the proof has to show the
existence of a path in the network satisfying the constraints on
depth and trust level imposed by the rule. In order to generate
valid proofs, it is assumed that a “relationship certificate” is
associated with each relationship, containing information on
the relationship (i.e., users involved, trust, depth, type), which
is signed by both the involved users. A relationship certificate
can be seen as a proof that between the involved users there
exists a direct relationship of a certain type and with a certain
trust level. Proofs of indirect relationships can therefore be
generated through a set of certificates confirming the existence
of a path of a specified type between them. Certificates are
managed by a trusted authority CS which is in charge of path
retrieval and delivering to a resource requester.

More details can be found in [9], here we just briefly recall
the access control protocol, which is graphically depicted in
Figure 21, taken from [9], since it is required in the following
of the paper. The explanation of the protocol is provided in
Figure 3.

R O

CS

3.EPKCS
(ESKR

(AC(AR), N))

1.EPKO
(ESKR

(rid))

4.EPKR
(ESKCS

(CP, N))

2.EPKR
(ESKO

({(AR1, N1), . . . , (ARn, Nn)}))

5.EPKO
(ESKR

(rid,π, ESKCS
(CP, N)))

6.EPKR
(ESKO

(rsc))

Figure 2. Access control protocol. R is the node requesting a resource
with identifier rid, O is the node owning the resource, whereas CS is the
certificate server.

B. A brief introduction to the Trust-X framework

Trust-X is a comprehensive framework for defining and
managing on-line trust negotiations [2]. It is based upon a peer-
to-peer architecture and a rule-based policy language called
X -RNL [19].

A Trust-X negotiation is an interactive process between two
parties – called respectively Requester and Owner – having
the goal to establish mutual trust in order to release a given
resource. We assume that the resource description is encoded
into a credential, that is, a list of relevant attributes of the
resource, along with the corresponding values. We further
assume that a resource is protected by a disclosure policy
(held by the Owner), which details what conditions are to
be satisfied by the Requester before the Owner releases the
resource. Typically, the Requester’s conditions are encoded

1In the figure, Ek(d) denotes the encryption of d with key k.

1) R submits to O an access request for resource rsc,
with identifier rid.

2) If the resource is public, access is granted. Other-
wise, O returns to R the set of access rules AR =
{AR1, . . . , ARn} regulating the access to rsc. With each
access rule ARi ∈ AR, i ∈ [1, n], a distinct nonce value
Ni is associated as a session identifier.

3) R chooses from AR an access rule ar and sends CS the
nonce value N associated with ar and the corresponding
condition set AC(AR). each ac ∈ AC(AR) is set to
NULL.

4) CS returns R the set CP of shortest certificate paths, if
any, related to the relationship constraints expressed by
the access conditions in AC(AR), along with the nonce
N associated with AR; otherwise, CS returns a failure
message. In the latter case, R goes back to step 3 and
chooses another access rule, until CS returns the set
CP , if any, or all the access rules have been processed.

5) Based on the certificate paths in CP , R tries to generate
a proof π of the existence of a path satisfying ar.
If a proof is not obtained, R goes back to Step 3 and
chooses another access rule; otherwise, he/she sends O
a message, which contains the resource identifier, the
proof π, and the certificate paths obtained from CS.
CP and N are kept encrypted with the private key of
CS in order to grant their authenticity.

6) O sends R the requested resource in case the proof π is
valid and the nonce value N corresponds to the correct
session identifier.

Figure 3. Description of the access control protocol depicted in Figure 2

into predicates about credentials, which are to be disclosed
themselves to the Owner, in order to check whether they
satisfy the disclosure policy. It may be well the case that such
credentials contain sensitive information and, hence, they may
be protected by another disclosure policy (held this time by the
Requester). Henceforth, a negotiation between Requester and
Owner (composed of interleaved, mutual credentials’ requests)
ensues. The negotiation successfully ends in case both parties
agree on a set of credentials that can be unconditionally
disclosed.

As such, the negotiation process is divided into three distinct
phases:

1) introductory phase: the parties identify the resource R
to be released;

2) policy evaluation phase: the parties iteratively exchange
disclosure policies, in order to possibly agree upon a set
of credentials to be exchanged for the release of R;

3) credential exchange phase: the parties actually exchange
the credentials according to the disclosure policies,
agreed in the previous phase.

The phases of the negotiation process described above have
been extended in several ways to provide different features
such as:

• the renegotiation of a request upon a negative reply [20];
• the recovery of a crashed negotiation [17] and
• safely perform a trust negotiation during distinct negoti-

ation sessions [18].
Note that in the present work we use the basic negotiation pro-
cess. Nevertheless it is trivial to exploit the features provided
by the advanced versions of Trust-X by enabling such features
in the framework and by using more advanced constructs in
the trust negotiation language.

We now briefly introduce a relevant data structure – the
negotiation tree – that is used by Trust-X for carry out
trust negotiations. As we will show in Section IV, such data
structure plays an important role in the proposed access control
protocol.

During the policy evaluation phase, the negotiating parties
create a negotiation tree, which is the data structure which
tracks the evolution of the negotiation. Moreover, the negotia-
tion tree also indicates all the resources which the negotiating
parties have to disclose in order to successfully terminate the
trust negotiation.

More formally, given two parties O, the resource owner, and
R, the resource requester, such that with each negotiating party
a set of resources Rk and a set of disclosure policies2 RPk

with k ∈ {O,R} are associated. Let r ∈ RO be the resource
requested by R. A negotiation tree is defined as follows.

Definition 3.2 (Negotiation tree): [2] A negotiation tree for
a resource r ∈ RO is a multi-edge tree defined as 〈N , r, E , φ〉
where N is a set of tuples of the form 〈n, s, p〉, where n is a
resource condition3, s ∈ {DELIV,UNDELIV,OPEN} is
the state of the node, and p ∈ {O,R} is the owner of the node.
E is a set of edges. e ∈ E may assume one of the following
form:
• e = (n1, n2) with n1, n2 ∈ E and ∃p ∈ RPO∪RPR. An

edge of such form is called simple edge (see Figure 4(a)).
• e = {(n, n1), (n, n2), . . . , (n, nk)} with n, n1, . . . , nk ∈
N . An edge of such form is called multi-edge (see
Figure 4(b)).

φ is a labeling function which associate a state with each node
of the tree.

Informally, the state of node defines whether the resource
identified by the node is deliverable or not. Namely a node n
is DELIV if there exists a proof of the existence of a set of
resources which satisfies at least a disclosure policy associated
with n. On other hand, a node is UNDELIV when such set of
resources is proved as not existing. Finally, a node is OPEN
when it is still unknown whether the node is deliverable or
not.

Figure 4 shows the graphical notation for negotiation trees
used in the following of the paper.

2A disclosure policy is an expression of the form rsc← c1, . . . , c3, where
rsc is the resource protected by the policy and each ci is a requirement which
has to be satisfied for the disclosure of rsc. The translation from disclosure
policies to access rules is trivial

3Informally a resource condition is a expression identifying a resource by
means of its name – or its identifier – and, eventually, names and values of
some of its attributes. We refer to Definitions 4.1, 4.2 and 4.3 for a formal
definition.

r0

r1

(a)

r0

r1 r2

(b)

Figure 4. The graphical notation to represent negotiation trees

Definition 3.3 (Valid view): Given a negotiation tree
NT = 〈N , r, E , φ〉 for a resource r ∈ RO, a valid view is a
subtree of NT defined as 〈N ′, r, E ′, φ〉 where N ′ ⊆ N and
∀ 〈n, s, p〉 ∈ N ′, s = DELIV .

More informally, a valid view is a subtree of the negotia-
tion tree containing the resources exchanged in a successful
negotiation.

Example 3.2: Suppose that Bob (B) asks to access a re-
source r owned by Alice (A) and that such resource is
associated with the following disclosure policy:
• (r, {(r1,∅), (r2, {(a2,=, 2)})}), which means that r is

released upon the presentation of a resource named r1
and a resource r2, the latter with attribute a2 equal to 2.

• (r, {(r3,∅)}), which imposes that the disclosure of the
resource r is conditioned by the previous disclosure of
r3.

Suppose that B owns all the resources required by the
above described disclosure policies and that, for simplicity,
the disclosure policies associated with B’s resources are the
following:
• (r1,∅)
• (r2, {(r4,∅), (r5,∅)}
• (r2, {(r6,∅)}
• (r3, {(r7,∅)}
A owns both r4, protected by (r4, {(r8,∅)}), and r6, which

is deliverable, while she does not own r5 and r7.
Before sending to B the disclosure policy for r4 and r6, A

discovers that the negotiation tree which she is building with
B contains a subtree with leaves only labeled as deliverable.
Such subtree is highlighted in Figure 5.

Therefore, A communicates to B to switch to the credential
exchange phase and sends him r6. Upon the verification of the
correctness of r6 – which means to verify if r6 satisfies the
disclosure policy which required it – B sends r2 to A, the
resource made deliverable by the disclosure of r6, and r1.

Finally, after having verified that r1 and r2 satisfy the
disclosure policy for r, A is able to deliver B the originally
requested resource r.

IV. EXTENSION OF THE ACCESS CONTROL RULE
DEFINITION LANGUAGE

In order to introduce trust negotiations in the framework
presented in [9], we need to first extend the language to specify

r

r1 r2 r3

r8

r7r6r5r4

Figure 5. An example of negotiation tree and valid view

access rules. More precisely, we aim at extending the access
rule language in order to allow the inclusion of resources – or
credentials – as conditions in access rules.

First of all, we need to define the building blocks of a
resource/credential condition. We assume the existence of a
set RN of resource names, a set AN of attribute names and
– for every attribute name a ∈ AN – a corresponding set Va
of attribute values.

The formal definition of resource follows.
Definition 4.1 (Resource): A resource is a tuple

(R,AttrList) where R ∈ RN and AttrList is a set
of tuples (a, v), where a ∈ AN and v ∈ Va.

In what follows, given a tuple t, we denote with comp(t)
the value of the component comp of tuple t. Therefore,
R(t) corresponds to the resource name of the tuple t and
AttrList(t) denotes the attribute list of t. We next give precise
definitions of attribute and resource conditions.

Definition 4.2 (Attribute condition): An attribute condition
AC is a tuple (a, pred, v) where a ∈ AN , v ∈ Va and pred
is one of the binary predicates in {<,≤,=,≥, >}.

Definition 4.3 (Resource condition): A resource condition
RC is a tuple (rn,AS) where rn ∈ RN is a resource name
and AS is a set, eventually empty, of attribute conditions.

We can now define when a resource satisfies a resource
condition.

Definition 4.4 (Resource condition satisfaction): A
resource condition rc is satisfied by a resource r if and
only if, for each access condition (a, pred, v) ∈ AS(rc),
there exists (a′, v′) ∈ AttrList(r) where a′ = a and
pred(v′, v)4is true.

After having defined resource conditions, we are now able to
extend the definition of access rules given in [9] (cfr. Section
III) to support both resource and access conditions.

4pred(v′, v) denotes the predicate pred applied to values v′ and v.

Definition 4.5 (Access rule): An access rule AR is a tuple
(rid,AC) where rid is the identifier of resource rsc, whereas
AC is a set of access and resource conditions. Such set AC
expresses the requirements a node must satisfy in order to be
allowed to access resource rsc.

Resources associated with an access rule ar with AC(ar) =
∅ are always accessible. Such resources are fundamental for
the successful execution of trust negotiations.

Definition 4.6 (Deliverable resource): We define a re-
source rsc identified by an identifier rid as deliverable re-
source – DELIV for short – if and only if, for each access
rule ar with rid(ar) = rid, AC(ar) = ∅.

With the introduction of resource conditions, we need to
modify the protocol described in Figure 3. More precisely,
if the access rule AR exchanged in Step 2 contains a re-
source condition rc, the current access control procedure must
temporarily pause in order to perform the disclosure of the
resource rn(rc). This is achieved by extending the protocol
in such a way that it takes advantages of the features described
in Section III-B. The procedure is described in Figure 6.

3.0 R chooses from AR an access rule ar.
3.1 For each resource condition rc ∈ ar, R starts a

trust negotiation procedure according to the protocol
described in Figure 7.

3.2 If one of the trust negotiations does not terminate
successfully then R returns to Step 3.0.

3.3 R sends CS the nonce value N associated with ar and
the corresponding condition set AC(ar).

Figure 6. Modification to the access control protocol in Figure 2 to support
trust negotiations

Example 4.1: Suppose that Bob (B) asks to Alice (A) re-
source rsc, with identifier rid. A defined for rsc the following
access rule:

(rid, {(rsc′, {(att1,=, 5), (att2, <, 3)}), (rsc′′,∅)})
stating that, for the disclosure of rsc it is required that the

requester provides a copy of the resource rsc′, having attribute
attr1 equal to 5 and attribute attr2 less then 3, and a copy of
the resource rsc′′.

Also suppose that B owns resource rsc′, with identifier rid′

and that the corresponding access rule is:

(rid′, {(B, friendOf, 4, 2)})
stating that, for the disclosure of rsc′ B requires the

existence of a path between him and the requester, labeled
with the relationship friendOf with maximum depth 4 and
having trust value greater then or equal to 2. Moreover, the
access rule defined by B for resource rsc′′ is:

(rid′′, {(rsc′′′,∅)})
For simplicity, suppose that resource rsc′′′ is deliverable.

Let O be the resource owner, R be the resource requester
and rc be the resource condition requested by R.

1) O initiates a negotiation tree rooted with rn(rc).
2) O sends R all the access rules ar, where rn(ar) =

rn(rc) and add all the access rules to the negotiation
tree as leaves of the root. More precisely, each rule is
added as an AND-node

3) If there exists a subtree of the negotiation tree consist-
ing only of AND-nodesa and with leaves only labeled
as DELIV then go to Step 6 else, for each access rule
ar received, R sends O the access rule corresponding
to the resources in ar. Moreover, R adds the rules to
a local copy of the negotiation tree.

4) If there exists a subtree of the negotiation tree consist-
ing only of AND-nodes and with leaves only labeled as
DELIV , then go to Step 6 else, for each access rule ar
received, O sends to R the access rule corresponding
to the resources in ar and it updates the negotiation
tree adding the rules sent.

5) Go to Step 3
6) The party which found a subtree of the negotiation

tree with leaves labeled as DELIV communicates the
counterpart to switch to the credential exchange phase
using the identified subtree as valid view.

7) The parties iteratively send to the counterpart the
resources, one level at a time, beginning from the max
level, and according to the owner of the resources.

aA node n is defined AND-node if it is part of a multi-edge (see
Section III-B).

Figure 7. Trust negotiation protocol

Therefore, if A is able to proof the path required by the
above access rule, then B will release rsc′. After having
verified the validity of resource rsc′, finally, A will release
the resource rsc to B.

The negotiation tree built during the trust negotiation is
presented in Figure 8.

rsc

rsc' rsc''

B
friend
Of

rsc'''

Figure 8. Negotiation tree for Example 4.1

V. DYNAMIC RELATIONSHIPS AND TRUST LEVEL
ADJUSTMENT

In a realistic setting, the outcome of a negotiation between
two nodes in an OSN may influence the trust level occurring
between them. This may occur in a rather natural way:
namely, in the case the negotiation is successful, the trust
level increases, while, in the opposite case, the trust level is
bound to decrease. Our aim in this section is to show how
to extend the model described in Section III-A in such a
way that negotiation outcomes influence trust levels of the
participants in such negotiations. This is achieved by adding
some private relationships to the OSN graph, whose trust
level is adjusted on the basis of the negotiations performed
so far. Such relationships can then be exploited to speed up
subsequent access requests.

A. Trust computation

Since the trust relationship between two nodes is asymmet-
ric, the trust level of the first node towards the second and the
trust level of the second node towards the first are adjusted in
an independent way, by the corresponding nodes. The value
of the updated trust level depends on – apart from the positive
outcome of a negotiation, of course – the relevance of the
resources involved in the negotiation. How a node measures
the relevance of its own resources is a far from trivial matter
that would deserve a more in-depth investigation than the one
presented here. In the following, we limit the presentation on
what is strictly needed in the context of the present work.

Definition 5.1 (Relevance of a resource): Given a resource
r of a node n protected by an access rule ar, the relevance
relar(r) of resource r given access rule ar is a numeric value
computed by aggregating the relevances of the access condi-
tions contained in the access rule ar. The aggregation function
used for this purpose can be chosen from {sum,max,min}.

With respect to a resource protected by a set of access rules,
our approach is quite similar: suppose a resource r is protected
by a set AR of access rules and that with each access rule
ari ∈ AR there is associated a corresponding relevance value
relari(r). Thus, the relevance relAR(r) of resource r with
respect to the access rules set AR is given by aggregating the
relevances relari(r) using as aggregating function a function
in {sum, avg,max}, analogously to what has been done for
computing resource’s relevance with respect to a single access
rule.

In the case that a resource r is not protected by any access
rule, the relevance of r is decided by the resource owner by
simply assigning it a (possibly normalized) numeric value.

Taking advantage of the concept of relevance of a resource,
it is possible to modify the relationships of a user, and the
trust levels associated to such relationships, with respect to the
resources granted and accessed. Note that such relationships
are local to the user, which means they are unknown to the
CS.

If a negotiation for a resource r between two users A
and B successfully ends, then each user update her/his trust
level relative to the other user. Such update depends both on

the relevance of the negotiated resource and the previously
existing trust level.

Namely, we propose to update the trust level according to
the following equation:

φ(e) = φ′(e) +Relevance(r) · (1− φ′(e))
where φ is the function described in Definition 3.1, e is a
the edge representing the relationship whose trust level has
to be updated. We denote the value of the function previous
to the update with φ′. Similarly, if the negotiation fails to
successfully end then the trust level is updated to reflect such
failure lowering the trust level associated with the relationship.
Algorithm 1 presents the procedure to update the trust level
of the relationships of the OSN interacting users. Note that,
according to our OSN model (cfr. Definition 3.1) the trust
level of a relationship between two users may depend on
the type of the relation (for instance, I can trust a user
more as my friend than as my colleague). Therefore, once
two nodes end a negotiation for the first time, two dynamic
edges are created between the two, of type disclosedTo and
receivedFrom, respectively to which the dynamic computed
trust level is assigned.

The variations of the trust levels (a variation for each user)
depend – apart from the negotiation outcome – on the current
trust levels of the negotiating users, in such a way that the
higher the trust levels, the lesser the variations. In other words,
if the users trust each other with an high degree, it will take a
negotiation involving highly relevant resources to significantly
modify the corresponding trust levels.

Data: (VSN , ESN , RTSN , φSN), the social network
graph; rtO, rtR ∈ RTSN , the relationship type for
dynamic edges, respectively for the resource owner
and for the requester

Input: R requester id, O owner id, out ∈ {−1, 1} result
of the negotiation, r the resource requested by R

begin
if the edge e = (O,R, rt) does not exist in ESN then

Create eO = (O,R, rt);
ESN = ESN ∪ {eO};

Update φSN such that φSN (eO) =
φ′SN (eO) + (out · Relevance(r) · (1− φ′SN (eO)));
if the edge eR = (R,O, rt) does not exist in ESN

then
Create eR = (R,O, rt);
ESN = ESN ∪ {eR};

Update φSN such that φSN (eR) =
φ′SN (eR) + (out · Relevance(r) · (1− φ′SN (eR)));

Algorithm 1: Updating of the social network graph’s
edges and the associated trust levels

We show our approach through the following example.
Example 5.1: Consider the scenario described in Exam-

ple 4.1 and let us suppose Alice (A) and Bob (B) never

interacted before and that the access control procedure ends
successfully. Let us also suppose that the resource r has
relevance 0.5 for A and 0.3 for B.

After the successful ending of the access control procedure
two new edges are added to the OSN graph. The first one,
from A to B, labeled with the relationship type disclosedTo
and the second one, from B to A, labeled with the rela-
tionship type receivedFrom. The trust level associated with
e = (A,B, disclosedTo) is computed as follows:

φ(e) = φ′(e) + (Rel(r) · (1− φ′(e)) = 0 + (0.5 · 1) = 0.5

On other hand, the trust level associated with e′ =
(B,A, receivedFrom) is computed as follows:

φ(e′) = φ′(e′) + (Rel(r) · (1− φ′(e′)) = 0 + (0.3 · 1) = 0.3

Consider, instead, a subsequent scenario in which B re-
quests a resource r′ to A. Let us suppose that such resource
has relevance 0.3 for both users and that the access control
protocol fails. In such a case, the trust level associated with the
edges e and e′ previously introduced is modified as follows:

φ(e) = φ′(e)−(Rel(r′) ·(1−φ′(e)) = 0.5−(0.3 ·0.5) = 0.35

φ(e′) = φ′(e′)+(Rel(r′)·(1−φ′(e′)) = 0.3−(0.3·0.7) = 0.09

B. Practical usage of dynamic relationships

The considered access control model does not limit the
number of access rules that may be associated with a given
resource, and this may result in an increase of the time required
to process an access request. In this section, we show how it is
possible to take advantage of the relationships introduced as a
result of a negotiation to speed up subsequent access requests.
This is achieved by creating alternative access rules, which
exploit the relationship disclosedTo as a shortcut in the access
control procedure.

Let us explain how this works by means of an example.
Example 5.2: Suppose that Bob (B) wants to access the

resource rsc which belongs to Alice (A). Also suppose that
the access rule defined by Alice is:

(rid, {(A, friendOf, 3, 0.6), (rid′, {(a = 5)})})
where rid is the resource identifier of rsc, and rid′ is the

identifier of resource rsc′. Note that the resource condition
(rid′, {(a = 5)}) indicates that, to be satisfied, the resource
rsc must have an attribute name a whose value is 5.

Such access rule states that, if there exists a path between
Alice and Bob, labeled by the friendOf relationship, with
maximum depth 3 and with a trust level greater than or equal
to 0.6 and if Bob releases to Alice resource rsc′, then he can
access rsc.

Let us suppose that Bob accesses resource rsc, thus satis-
fying the access rule. Because of this, a relationship of type
disclosedTo between Alice and Bob with trust level 0.7 is
created. Also suppose Alice defined the following access rule
for rsc:

(rid, {(A, disclosedTo, 1, 0.5)})

After some time, Bob requires again to access resource rsc.
After the request from Bob, Alice verifies the existence of the
relationship of type disclosedTo with Bob, having a trust level
greater than 0.5. Thus, Alice grants access to the resource rsc
to Bob without contacting CS and without negotiating for
rsc′.

Clearly an important issue when dealing with the introduced
dynamic relationships concerns their lifespan. To avoid misuse
of the access rules exploiting such relationships, we associate
with each dynamic relationship a time limit after which the
relationship is removed from the OSN’s graph. Such time
limit is user-defined, but it directly depends on the trust level
of the relationship, in such a way that the expiration of the
relationship is obtained as

expe = tl · φSN (e)

where e is an edge with rt(e) equal to disclosedTo or received-
From, φSN is the function which associates the trust level with
each edge, and tl is the time limit defined by the user v(e)
(see Section III-A). Note that such time limit is renewed after
each interaction between the users which modify the trust level
associated with the edge.

Example 5.3: Consider, again, the scenario presented in
Example 5.2. Supposing the time limit tl defined by Alice
is 10 days, the relationship identified by the edge e =
(A,B, disclosedTo) expires after 10 · φSN (e) = 7 days.

Another way to use dynamic relationships is to improve
the probability that a user can access a required resource.
Consider a user B who requires to access a resource rsc.
If B has requested the same resource to another user A,
in a near past, then she/he would try to request the same
resource from the same user A to improve the chances to get it.
Hence, the relationship receivedFrom acts as a reminder of past
interactions with the users of the OSN. Moreover, considering
that a resource can, and probably will, be owned by more
than a single user in the OSN, requesting such resource from
a trusted user would further slightly improve the chances of a
successful interaction.

A natural consideration which came out from the presented
usage of the relationship types deliveredTo and receivedFrom
is that relationships of such types are, somehow, too general.
Indeed, a relationship which refers directly to the negotiated
resource would be more significative. However, choosing to
keep a fine-grained history of all the transactions between
users of the OSN would result in an explosion of private
relationships; consider, for example, the number of distinct
resource disclosures which took place between two Facebook’s
users. To address such issue, we propose that the users specify
in their preferences a set of relationship types which keep track
of the access to specific key resources, such as rare or high
value ones, or those more frequently accessed. In such a way,
it is possible to customize the number of relationships that are
inserted in the OSN graph as an outcome of trust negotiations.

VI. COMPLEXITY ANALYSIS

We now discuss the complexity of the proposed access
control protocol.

As explained in [9], Step 4 (see Figure 3) represents the
most expensive task of the protocol. More precisely, during
such step, given an access rule ar, CS discovers the shortest
certificate paths referring to the set of access conditions
AC(ar) received by the requester node. This is achieved by
exploring the OSN’s graph. Such operation requires either
O(VSN+ESN) or Θ(VSN+ESN) time complexity, depending
on the used search technique, for each ac ∈ AC(ar). However,
it is possible to reduce the size of the graph which has to be
explored taking advantage of the constraints on the relationship
type and depth specified in the access conditions. Hence, in
the general case, the time complexity required to evaluate
an access condition ac is O(

∑
rt∈RT (ac)(VSNrt

+ ESNrt
)),

where RT (ac) is the set of relationship types specified in the
access condition ac and VSNrt

, ESNrt
are, respectively, the

sets of nodes and edges of the OSN’s graph with relationship
type rt. Finally, since an access rule consists of one or
more access conditions, evaluating an access rule ar requires
O(

∑
ac∈AC(ar)

∑
rt∈RT (ac)(VSNrt +ESNrt)). We refer to [9]

for a more detailed discussion about the results here reported.
To analyze the time complexity of the Trust-X framework

we need to analyze the interactions between the negotiating
users in each phase composing the negotiation.

During the introductory phase a fixed number of messages
are exchanged, depending on which features of the Trust-X
framework are used, therefore the time complexity is constant.

The subsequent phase, the policy evaluation phase, is the
most time consuming one, because it is the one in which
the policies which compose the negotiation tree are ex-
changed. The number of messages exchanged is therefore
linear with respect to the height of the tree while the size
of the message exchanged in each turn i is linear to the
number of nodes of the tree at deep i. Hence, given an
OSN (VSN , ESN , RTSN , φSN), the execution of the policy
evaluation phase between two nodes A,B ∈ VSN requires
O(|RA| + |RB |) messages, where |Ru| is the number of
resources owned by node u ∈ VSN .

The credential exchange phase is where the required re-
sources are actually exchanged. As mentioned in Section III-B,
the resources which have to be exchanged in order to suc-
cessfully end the negotiation are the nodes of the selected
valid view. Such valid view is a subtree of the negotiation
tree constructed during the policy evaluation phase. Hence, the
height of the valid view is at most the height of the negotiation
tree. Thus, we can state that the credential exchange phase
requires at most O(|RA|+ |RB | messages.

Globally, a trust negotiation executed between two nodes A
and B of an OSN requires at most 2 ·O(|RA|+ |RB |).

Considering the composition of the two frameworks, it is
possible to state that the overall time complexity to evaluate
an access rule ar is given by the maximum between the
time complexity to evaluate the same access rule purged

of resource conditions, and the maximum time complexity
to negotiate, in parallel, the previously mentioned resource
conditions. Such computational parallelism is ascribable to
the fact that the negotiation for each resource condition is
independent from the others. Similarly, the proof computed
by CS is independent from the negotiations, therefore they
can be simultaneously computed.

VII. EXPERIMENTAL RESULTS

The evaluation of the proposed approach has been prelim-
inary done performing several experiments using a Trust-X
prototype. The integration with the access control mechanism
described in [9] is currently under development. The prototype
has been developed using Java 6.

To run our experiments we used a network of two computers
with the following configurations:
• Linux, kernel 2.6.30, CPU 2.20GHz
• Macbook, OS 10.6, CPU 2.53GHz

We took advantage of a MySQL database version 5.1 to store
both resources and access rules.

First of all, we evaluated the time required by two nodes to
perform a trust negotiation for a given resource with respect
to the number of credentials which have to be exchanged.

Figure 9 shows how Trust-X performances are linear to
the number of credentials. More precisely, the performance
depends on the structure of the access rules exchanged.
For the simplest negotiations, which involve the exchange
of two resources, represented by a negotiation of the form
(rid, {(rid′,∅)}) with (rid′,∅), it is required in average 226
milliseconds, with a lower bound of 188 milliseconds. On the
other hand, to negotiate and exchange 50 resources Trust-X
requires 3859 milliseconds.

Figure 9. Time required to successfully end a trust negotiation with respect
to the number of credentials involved

We also performed a series of tests in order to evaluate
the scalability of our prototype with respect to the number of

parallel negotiations. To be able to compare the results, we
performed a crescent number of parallel negotiations. Each
trust negotiation involves the same resources and, therefore,
the same access rules. The results are presented in Figure 10.

Figure 10. Scalability of the prototype with respect to the number of
simultaneous trust negotiations

VIII. CONCLUSIONS

We have presented an extension of the framework intro-
duced in [9], aimed at the integration of trust negotiations
with an access control mechanism for resources in OSNs.
This has been achieved by properly extending the language for
expressing access control policies and integrating the relevant
features of the Trust-X framework. Further, a feedback mecha-
nism that takes into account the outcome of a trust negotiation
between two nodes to dynamically set their trust level has been
presented. Finally, several experiments have been carried out
in order to show the feasibility of our approach.

We are currently working at the integration of the Trust-
X prototype within the access control mechanism presented
in [9]. Further extensions we plan to work on are related to
the automatic setting of the lifetime of dynamic relationships,
the automatic identification of key resources and to the devel-
opment of methods to compute the relevance of a resource.

ACKNOWLEDGMENTS

The work reported in this paper is partially funded by
the Italian MIUR under the ANONIMO project (PRIN-
2007F9437X).

REFERENCES

[1] W. H. Winsborough and N. Li, “Towards practical automated trust
negotiation,” in Proceedings of the Third International Workshop on
Policies for Distributed Systems and Networks (Policy 2002). IEEE
Computer Society Press, Jun. 2002, pp. 92–103.

[2] E. Bertino, E. Ferrari, and A. C. Squicciarini, “Trust-X : A Peer-to-Peer
Framework for Trust Establishment,” IEEE Trans. Knowl. Data Eng.,
vol. 16, no. 7, pp. 827–842, 2004.

[3] D. Brickley and L. Miller, “FOAF vocabulary specification 0.91. Names-
pace Document,” Online: http://xmlns.com/foaf/0.1., Nov 2007.

[4] L. Ding, L. Zhou, T. W. Finin, and A. Joshi, “How the semantic web is
being used: An analysis of foaf documents,” in HICSS. IEEE Computer
Society, 2005.

[5] B. Carminati and E. Ferrari, “Privacy-aware Access Control in Social
Networks: Issues and Solutions,” in Privacy and Anonymity in Informa-
tion Management Systems, J. Nin and J. Herranz, Eds. Springer, to
appear.

[6] E. Ferrari, A. C. Squicciarini, and E. Bertino, “X-TNL: An XML
Language for Trust Negotiations,” 4th IEEE Workshop on Policies for
Distributed Systems and Networks, Como, Italy, June 2003.

[7] W. Nejdl, D. Olmedilla, and M. Winslett, “PeerTrust: Automated Trust
Negotiation for Peers on the semantic web,” in Workshop on Secure
Data Management in a Connected World (SDM’04), Toronto, Canada,
Aug. 2004.

[8] T. Yu and M. Winslett, “A unified scheme for resource protection
in automated trust negotiation.” in IEEE Symposium on Security and
Privacy, 2003, pp. 110–122.

[9] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access control in
web-based social networks,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1,
2009.

[10] F. Bonchi and E. Ferrari, Eds., Privacy-aware Knowledge Discovery:
Novel Applications and New Techniques. Chapman and Hall/CRC Press,
2010.

[11] J. Nin, B. Carminati, E. Ferrari, and V. Torra, “Computing Reputation
for Collaborative Private Networks,” in COMPSAC ’09: Proceedings
of the 2009 33rd Annual IEEE International Computer Software and
Applications Conference, 2009, pp. 246–253.

[12] T. Y. K.E. Seamons, M. Winslett, “Protecting privacy during on line trust
negotiation,” in 2nd Workshop on Privacy Enhancing Technologies, San
Francisco, CA, April 2002.

[13] N. Li and J. C. Mitchell, “Datalog with constraints: A foundation for
trust management languages,” in Proceedings of the Fifth International
Symposium on Practical Aspects of Declarative Languages, Jan. 2003.

[14] K. E. Seamons, M. Winslett, and T. Yu, “Limiting the disclosure of
access control policies during automated trust negotiation.” in NDSS,
2001.

[15] W. H. Winsborough and N. Li, “Safety in automated trust negotiation.”
in IEEE Symposium on Security and Privacy, 2004, pp. 147–160.

[16] E. Bertino, E. Ferrari, and A. C. Squicciarini, “Privacy-Preserving
Trust Negotiation.” Proceedings of 4th Privacy Enhancing Technologies
Workshop, Toronto, CA, May 2004.

[17] A. C. Squicciarini, A. Trombetta, and E. Bertino, “Supporting Robust
and Secure Interactions in Open Domains through Recovery of Trust
Negotiations,” in ICDCS. IEEE Computer Society, 2007, p. 57.

[18] A. C. Squicciarini, A. Trombetta, E. Bertino, and S. Braghin, “Identity-
based long running negotiations,” in Digital Identity Management,
E. Bertino and K. Takahashi, Eds. ACM, 2008, pp. 97–106.

[19] A. C. Squicciarini, F. Paci, E. Bertino, A. Trombetta, and S. Braghin,
“Group-based negotiations in p2p systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 99, no. PrePrints, 2010.

[20] S. Braghin, I. Nai Fovino, and A. Trombetta, “Advanced trust ne-
gotiations in critical infrastructures,” International Journal of Critical
Infrastructures, vol. 6, no. 3, pp. 225–245, 2010.

