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Abstract-Short playback lag is preferred in many urgent and 
interactive scenarios such as live sports and distance education. 
However, measurement studies have shown that many popular 
P2P live streaming systems still suffer from long playback lag, 
say, more than 100 seconds, which makes the live streaming 
less realtime. Due to the unstructured nature of P2P networks, 
it is really a challenge to reduce the playback lag in P2P live 
streaming system under limited server bandwidth. In this paper, 
we propose a novel P2P live streaming system - Agiler that aims 
at reducing the playback lag in lag-sensitive applications under 
limited server bandwidth. In Agiler, we first group the peers into 
clusters according to the Autonomous System Number (ASN) and 
then spread the broadcast in ripples that gradually increase in 
playback lag as we move away from the media server. It adopts 
synchronous playback within a cluster to accelerate the chunk 
diffusion and asynchronous playback among different clusters to 
facilitate the chunk swarming. Combined with the partitioned 
buffer strategy and the proportional playback lag strategy, the 
newly generated fresh chunks can be delivered to all peers in time. 
The proposed system is evaluated through extensive packet-level 
simulations, which show the bandwidth utilization ratio of the 
peers is improved and the average playback lag is significantly 
reduced. 

I. INTRODUCTION 

In recent years, both the academia and industry have shown 
strong interest in P2P streaming systems. P2P streaming 
systems have become one of the most popular technologies 
for distributing streaming videos to end users, which has been 
proved by the successful deployments of conunercial P2P 
streaming systems such as PPLive [1] and PPStream [2]. Only 
with a dedicated streaming server of limited bandwidth like 
several Mbps, are P2P streaming systems able to provide video 
service to thousands of users at the same time. For example, 
the PPLive system has had more than 100,000 simultaneously 
online users for a live broadcast of a popular TV program [3]. 

Nowadays, mesh-pull architecture is widely adopted by 
many real-deployed P2P streaming systems such as the sys­
tems mentioned above according to [3, 4]. In the mesh-pull 
architecture, a live video is divided into media chunks at 
an original media server and then these media chunks are 
injected into the system (actually the chunks are requested 
by the average peers). The mesh-pull architecture lacks of 
a structured overlay and the peers communicate with each 
other using gossip-like protocols. Each peer exchanges chunk 
availability information periodically (i.e., once per /:).t) with 
its neighbors and determines which chunk is to be requested 
from which neighbor accordingly. The mesh-pull architecture 
has several advantages as follows: (i) overlay construction and 
maintenance are very simple, (ii) each peer are more likely 
to have diverse paths which in turn reduces the probability 

of chunk shortage, the resulting overlay is very resilient to 
churn. (iii) the outgoing bandwidth of most participating peers 
is effectively utilized, it is self-scaling. 

We shall first explain several important concepts before we 
go a step further. Source-to-end delay is the time needed to 
transfer the media chunk generated by the media server to a 
certain peer, which is mentioned in many previous literature. 
Playback lag of a peer refers to the interval from a chunk 
is generated at the media server to the moment it is played 
at the peer. Start-up latency is the time interval from when 
one channel is selected until actual playback starts on the 
screen. The start-up latency and the playback lag are two very 
important metrics for the user experience and this paper lays 
stress on the playback lag in P2P live streaming systems. 

Learned from the measurement study [3], the playback lag 
in PPLive [l], one of the most popular P2P streaming systems 
in the world, is more than 100 seconds. The large playback 
lag makes no difference when users are watching a channel 
without lag requirement, such as pre-recorded TV shows, 
movies. Indeed, most real-world P2P streaming systems work 
in this fashion, having users experiencing minutes of playback 
lag. However, there are a series of live channels that require 
short playback lag. Fox example, live sports and distance 
education that are broadcast live. In these scenarios, long 
playback lag definitely has a bad influence on user experience. 
Increasing the server bandwidth definitely could shorten the 
playback lag, but the server bandwidth is limited and costly. 
Therefore, it is urgent for us to reduce the playback lag under 
limited server bandwidth. 

In this paper, we seek to design a more realtime P2P 
live streaming system with low playback lag for lag-sensitive 
applications. It is a challenge due to following two important 
reasons: (i) the limited availability of future media chunks in 
live streaming applications, and (ii) the media chunks must 
arrive the peer before their playback deadlines. Overlay topol­
ogy construction, chunk scheduling algorithms and playback 
lag setting strategy are the three important factors influencing 
the in-time arrivals of fresh media chunks. Therefore we start 
from these three aspects when designing this new system. 

We propose a novel asynchronous playback P2P live stream­
ing system - Agiler, in which peers within an overlay (peers 
who are watching the same video or channel) are grouped into 
clusters based on the ASN. The peers in the same cluster is 
synchronized in playback and the playback lag of a cluster is 
in proportion to the network distance between the cluster and 
the media server (actually the playback lag is calculated by the 
first few online peers of a cluster). Combined with our special 
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partitioned buffer strategy, Agiler can provide good streaming 

quality with low playback lag. As our design, analysis and 

simulation studies have illustrated, Agiler is able to take full 

advantage of a limited pool of server bandwidth to achieve 

shorter playback lag without degradation of the performance 

compared with synchronized strategies. 

To sum up, the primary contributions of this paper are as fol­

lows. We propose Agiler, a more real-time P2P live streaming 

system that reduce the average playback lag by more than 20% 

under limited server bandwidth. And the ratio is up to 40% for 

the superior peers near the media server. AS-based clustering 

strategy is verified to be an effective way to construct an 

optimal overlay topology that can reduce the playback lag. 

The proportional playback lag strategy and partitioned buffer 

strategy are brought forward and evaluated by simulations 

in Agiler. In addition, biased neighbor selection algorithm 

is combined with our proportional playback lag strategy in 

Agiler, which can decrease the transmission delay and bring 

down the costly cross-ISP (Internet Service Provider) traffic. 

The remainder of this paper is organized as follows. In 

sec. II, we discuss the originality of our work in the context of 

related work. The detailed design of our system is presented 

in Sec. III. In Sec. IV, we present our results from a series 

of simulations to demonstrate the efficiency of our design. We 

conclude the paper and describe our future plans in Sec. V. 

II. RELATED WORK 

As a matter of fact, there are many measurement studies 

of real-world P2P live streaming systems showing that large 

playback lag exists in popular P2P live streaming systems. 

Ali et al. [5] analyze the performance and characteristics of 

the most popular P2P live streaming systems - PPLive and 

SOPCast, which is the first one of that kind of studies. This 

study presents a framework to analyze P2P applications from 

one single point and then analyze the probable operation 

mode, resource usage, locality and stability of data in P2P 

live streaming systems. It is worth noticing that there is no 

locality-awareness when a peer selects neighbors, which cause 

unnecessary transmission cost and inefficiency of the system. 

X. Hei et al. [3] build a buffer map crawler and deploy passive 

sniffing nodes to study the performance and characteristics of 

PPLive, one of the most popular P2P streaming systems. This 

study find that users in the measured P2P streaming system 

still suffer from long start-up latency and large playback lag, 

ranging from several seconds to a couple of minutes. 

Many existing works on P2P live streaming systems focus 

on overlay construction [6], scheduling of media chunks [7], 

incentives [8]. Other works exploit the coding techniques 

such as network coding [9], multiple description coding [10] 

and scalable video coding [11] to simplify the scheduling 

and enhance the resilience of the system. They try every 

mean to improve the streaming quality and scalability of 

the system but ignore the long playback lag. Consequently, 

there are few works addressing the playback lag in P2P live 

streaming systems, which is of great importance for lag­

sensitive applications. 

There are some theoretical studies exploring the delay issues 

in P2P live streaming systems. D. Ren et al. [12] design an 

overlay which achieves low source-to-end delay. It aCCOlmno­

dates the asymmetric and diverse uplink bandwidth and is 

robust to peer dynamics. They first formulate the minimum 

delay mesh problem and show that it is NP-hard. Then they 

propose a centralized heuristic algorithm based on complete 

knowledge to minimize source-to-end delay. However, some 

parameters needed in the centralized heuristic algorithm is 

hardly to obtain, so it is unpractical to use this heuristic 

algorithm to reduce the delay in the mesh-based P2P live 

streaming systems. Besides, low source-to-end delay does not 

mean short playback lag. Other strategies are required to 

effectively reduce the playback lag. 

Y. Liu theoretically studies the impact of the inherent delay 

constraint and derive the minimum delay bounds for real 

time P2P streaming systems based on a snow-ball streaming 

algorithm in [13], which is inspirational for proposing good 

solutions to reduce delays in P2P live streaming systems. Per­

formance gap between the fundamental limits and the actual 

performance of mesh-pull protocol has been mathematically 

analyzed using a unified framework based on trellis graph 

techniques [14], in which source-to-end delay and start-up 

latency is studied. 

iGridMedia, proposed by Zhang et al. [15], investigates 

the relationships between playback lag guarantee and the 

consumption of server bandwidth. Both R2 and iGridMedia 

adopt the synchronized playback algorithm in which all peers 

play the same media chunk simultaneously. In more recent 

works, D. Wu et al. [16] propose a radically different cross­

channel P2P streaming framework, called View-Upload De­

coupling (VUD). VUD strictly decouples peer downloading 

from uploading, which could bring stability to multichannel 

systems, enable cross-channel resource sharing and achieve 

lower switching delay and playback lag. However, VUD is in 

its juvenility so there is much work to be done to turn VUD 

into a real system that could be wildly deployed. 

A full implementation of live P2P streaming system with 

improved playback called SonicStream is presented in [17]. 

With the use of network coding, SonicStream can improve 

the chunk availability and decrease the frequency of buffer 

map exchange, leading to the improved playback lag. Our 

previous work [18], builds a 3-level, hierarchical overlay 

where the peers are grouped according to their degrees of 

activity. Consequently, an optimal overlay construction is built 

and superior peers who contribute more are guaranteed with 

low playback lag. In this paper, we seek to propose a P2P 

live streaming system with low playback lag from a different 

perspective. The clustering strategy based on ASN in over­

lay construction, biased chunk scheduling and proportional 

playback lag strategy are designed with elaboration to reduce 

playback lag. 



III. SYSTEM DESIGN 

A. Problem Description 

In Fig. 1, we illustrate the segment dissemination in mesh­
pull based P2P live streaming systems. A media segment 
consists of several consecutive media chunks. The segment 
dissemination can be interpreted as a two-phase process. 
Diffusion phase: first different media chunks of the segment 
are rapidly delivered to a different subset of peers, as shown 
by the straight arrows in Fig. l. Swarming phase: participating 
peers exchange their media chunks until each peer has a proper 
number of media chunks for the segment, as shown by the 
curly arrows in Fig. 1. Every rectangle marked with dotted 
lines in Fig. 1 represents a diffusion subtree. At the end of the 
diffusion phase of a segment, all peers in the overlay have at 
least one media chunk of the segment. During the swarming 
phase of a segment, participating peers pull the missing media 
chunks of the segment from other diffusion subtrees. 

Level 1 

Level 2 

Level 3 

Fig. 1. Chunk dissemination in a mesh-pull overlay. Some connections are 
not shown for clarity of the figure. 

Now let's take a look at the chunk diffusion delay in a 
diffusion subtree that is rooted in a peer at level l. Without 
loss of generality, we assume the chunk size is one, and 
choose the streaming rate as the bandwidth unit. Accordingly, 
the chunk transmission time on a unit bandwidth link is 1 
time slot, which equals to the chunk playback time. For the 
convenience of analysis, let's assume that the propagation 
delay between two any peers is dominated by the chunk 
transmission delay, thus it can be ignored. Based on the above 
assumption, we can get the following theorem according to 
[13]. If peers in a diffusion subtree form a M-Ievel hierarchy 
with TI�=l Nk peers on level i with uploading capacity of 
Cd Ci > Ci+l � 1), there exits a continuous streaming 
schedule such that chunks can be streamed to all peers with a 
delay of T) = M + L�l ilo92 (N2iC,-1))1 , where Co = 2. In a 
P2P live streaming system the following condition should be 
satisfied (T) + ¢) :::; w, where ¢ denotes the swarming interval 
and w represents the playback lag. 

In order to reduce the playback lag in P2P live streaming 
systems, intuitively, we should minimize the delay for delivery 
of a segment. Based on the analysis above, we make efforts 
from the following two aspects. On one hand, we construct 

a more "flatten" overlay, which could reduce the number of 
hops for a chunk to reach all peers in a diffusion subtree. 
Increasing the degree of peers and selecting the "nearest" peers 
as neighbors contribute to constructing a "flatten" overlay. It 
would take less time for a chunk to be transmitted to peers in 
the same AS than peers from other ASes. On the other hand, 
the proportional playback lag setting among different clusters 
and caching media chunks that have been played can reduce 
the swarming interval. We set the playback lags of different 
clusters according to the network distance between the cluster 
and the media server. In doing so, the chunks have been played 
by peer in the top levels are reserved and relayed to the peers in 
other diffusion subtrees, which facilitate the chunk swarming. 

B. System Overview 

The system architecture of Agiler is showed in Fig. 2. It uses 
the mesh-pull architecture which have been adopted by many 
real-world cOlmnercial P2P streaming systems. The newly 
joined Agiler peer (we call it a newcomer) contacts the locality 
server to query the ASN and other geographic information 
about itself if the newcomer runs for the first time or detects 
that the network ID has changed. Similar to many other P2P 
streaming applications, the newcomer retrieves channel list or 
just update it from the channel server. Then it registers itself 
to a tracker and downloads the meta data for the channel that 
has been selected to watch. The tracker replies with a list of 
initial peers who are watching the same video. Afterwards, 
the newcomer contacts some of the initial peers according 
to certain rules to get the chunk availability information and 
request media chunks from them. The media server for this 
channel could be regarded as a special peer and is likely appear 
in the initial peer list. 
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Fig. 2. System architecture 

Just like many typical P2P streaming systems, there are 
several servers in Agiler working together to guarantee the 
smooth running of the system. The locality server is usually 
not deployed in P2P systems, which is responsible for locality 
information queries. The locality server does not need to be 
deployed by ourselves because Prefix WhoIs [19] can do this 
job for us. Prefix WhoIs uses the Internet's global routing table 
as gleaned from a number of routing peers around the world to 



disclose various up-to-date routing information, such as ASN, 

latitude, longitude and country name. Furthermore, it provides 

server software, client software and software development 

libraries for public use, so we could retrieve peer locality 

information from Prefix Whols database. The channel server is 

in charge of distributing the latest channel lists to newcomer, 

which include the channel information such as channel title, 

streaming rate, IP and port number. 

The AS path server is a specific component of Agiler, 

one of which can serve many trackers. It is in charge of 

calculating the k (usually 2) shortest path from the source AS 

(the AS that the media server located in) to the destination AS 

(the AS that the newly joined peer located in). We can use 

the AS relationships provided by C AIDA [20] to calculate 

these AS paths. Each file from inferred AS relationships 

dataset of C AIDA contains a full AS graph derived from 

BGP table snapshots taken at 8-hour intervals over a 5-day 

period. The AS relationships available are customer-provider 

(and provider-customer in the opposite direction), peer-to-peer, 

and sibling-to-sibling. 

Dijkstra algorithm could be used to find the shortest path 

and the second shortest path from source AS to destination 

AS. We also can employ the algorithms [21] proposed by 

David Eppstein to find the k shortest paths. The algorithms he 

proposed output an implicit representation of these paths in a 

digraph with n vertices and m edges in time O(m+nlogn+k). 
Moreover, the algorithms find the k shortest paths from a 

given source s to each vertex in the graph in total time 

O(m + nlogn + kn). It is worthy to notice that there already 

exist several implementations of these algorithms. We can 

find the k closest upstream neighbor ASes if we have got 

the k shortest paths. The k ASes should meet the following 

requirements. (i) the playback lags of the k ASes are shorter 

than the playback lag of the AS the newcomer located in, 

and (ii) the gap in the playback lag between them should be 

minimized. 

As we know, the tracker is a very important component 

of a P2P system. It is responsible for maintaining a list of 

participating peers for each channel. In a P2P live streaming 

system, one tracker serves many channels, generally hundreds 

of them. The tracker is given another job in Agiler: find the 

peers from the closest upstream clusters as neighbor candidates 

for the newcomer. It queries the AS path server to get the 

closest upstream clusters. Peers are grouped into different sets 

according to their ASN and peers within the same AS are in 

one peer set. All the relative information is maintained in the 

tracker, as shown in TABLE I. "Peer Set" in TABLE I is a 

linked list consisting of peer information, including IP, port 

number, country name, province name, latitude and longitude. 

When requested by a newcomer, the tracker replies with a 

initial peer list including Kl peers from the same AS and K2 

peers from the closet upstream neighbor ASes. N (on the order 

of lO's, ego 50) denotes the size of peer list, Kl = ex x N and 

K2 = (1 - ex ) x N. If there are not enough qualified peers, 

the missing peers are selected randomly. 

The media server is the source peer in a P2P live stream-

TABLE I 
STRUCTURE USED IN TRACK SERVER 

AS NO. Cluster ID I Peer Number I Playback Lag I Peer Set I 

ing system, in which a live media is encoded and divided 

into chunks identified with chunk ID (continuously assigned 

sequence numbers). These chunks are injected into the sys­

tem by means of being requested by other peers within the 

overlay. Since a media sever serves many channels, the media 

server can not supply one channel with unlimited bandwidth or 

connections. We have to impose restrictions on the bandwidth 

or connections that each channel consumes to ensure that every 

channel could obtain corresponding resource. Besides, cross­

ISP traffic is limited and valuable. Fox example, in China 

if one peer is from ChinaCom and the other peer is from 

ChinaNet, the connection speed between them is very slow. 

Thus we could use a double-access media server, which have 

accesses to both ChinaCom and ChinaNet. Peers from both 

ISPs can connect to the media server to fetch for newly 

generated media chunks and this definitely could reduce the 

diffusion delay. 

C. Agiler Peer Structure 

The main job of an Agiler peer is to retrieve (relay) media 

chunks from (to) other peers and assemble them into an 

original streaming. Each peer cooperates with each other to 

keep the whole system smoothly running. Distributed coop­

eration contributes to the resilience and scalability of P2P 

applications. As depicted in Fig. 3, there are three key modules 

that compose an Agiler peer: 

• the overlay manager 

• the scheduling buffer 

• the scheduler 

Scheduler Media Player 

Network Interface 

Fig. 3. Agiler Peer Structure 

The overlay manager is responsible for the overlay construc­

tion. It establishes and maintains the relationships with other 

peers and count the traffic between itself and its neighbors. A 

newcomer will receive a initial peer list in the startup process. 

After receiving the list, the newcomer selects some peers of 

the list as neighbors using biased neighbor selection algorithm, 

which is described in section III-E. 



The scheduling buffer is used to store media chunks re­
trieved from other peers and supply resembled chunks to the 
media player. Every peer in the system has a buffer organized 
by chunks. The availability information of chunks that is 
exchanged between a peer and its neighbors is called buffer 
map. A buffer map consists of an offset indicating the chunk 
ID at the buffer head and a sequence of {O, I} indicating the 
availability of chunks in the peer. For example, a value of 1 at 
ith position indicates that the chunk with an ID offset + i-I 
is stored in the buffer. We name the buffer size of a peer as 
the difference between the largest chunk ID advertised in the 
system and the smallest chunk ID advertised by the peer. All 
the Agiler peers have fixed buffer size and work in the fashion 
of sliding window. 

Unlike other P2P live streaming systems, we use the par­
titioned buffer strategy in Agiler, in which the chunks that 
have just been played are reserved for sharing instead of being 
discarded. We name jp(t) as the ID of the chunk which is 
being drained by the media player of peer p at time t. As 
showed in Fig. 4, the scheduling buffer is partitioned into two 
sections by the chunk jp(t). The backward buffer stores the 
chunks with ID which is smaller than jp(t) and the forward 
buffer stores the chunks with ID larger than jp(t). Any chunk 
in both sections of the buffer could be requested by other peers 
in the system. 
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Fig. 4. Buffer Structure 

The media chunks in the backward buffer could be used 
to serve other peers whose j(t) is smaller than jp(t). For 
example, in Fig.2 the media chunks in the backward buffers of 
peers in cluster 1 could be requested by peers in cluster 2 and 
3. The chunks have not been played and latest received chunks 
are stored in the forward buffer. In Agiler, the buffer sizes of 
peers within the overlay are fixed but the forward buffer size 
and the backward buffer size are diverse in different clusters. 
The peers within a cluster have the same size of both default 
forward buffer and backward buffer. The forward buffer size 
of a peer denotes the playback lag of it, which means a peer 
with smaller forward buffer has shorter playback lag than those 
who have large forward buffers. How to set the forward buffer 
size is described in section III-F. 

The scheduler is in charge of scheduling the media chunks: 
requesting (sending) media chunks from (to) its neighbors. The 
scheduler maintains the latest buffer maps of its neighbors and 
gets the latest neighborhood information and statistical results 
from the overlay manager. Based on the above information, 
the scheduler determines to request which chunk from which 
neighbor so as to ensure the smooth playback of the peer. 
The scheduling strategy used in Agiler is a hybrid chunk 
scheduling strategy. If the first p% (default 30%) of the 
forward buffer is filled with chunks, rarest-first algorithm 
would be employed, in which the newest available chunks 
are to be requested. Otherwise, greedy algorithm is to be 
employed, in which the chunks close to the playback point 
are to be requested. Furthermore, the transmission time of a 
chunk is calculated before the chunk is requested in order to 
avoid unnecessary traffic. If the expected downloading finish 
time is later than the playback deadline of the chunk, the chunk 
would not be requested. 

D. Locality-aware Clustering 

Nowadays, the P2P traffic accounts for more than 60 
percentage of total network traffic in some regions. W hat is 
more, due to the unstructured nature of P2P overlay networks, 
they could generate excessive network traffic, especially the 
unwanted cross-ISP traffic that increases ISPs' operational 
cost. Hence locality-awareness should be one of the essential 
characteristics for P2P systems. 

In recent years, many locality-aware algorithms have been 
proposed to keep traffic locality, reduce cross-ISP traffic and 
improve the performance of P2P systems. Network coordinate 
systems (NCS) like Vilvadi [22] have been used to enhance 
locality-awareness in P2P systems, but it is not applicable be­
cause of its computation overhead and inaccurateness. Besides, 
NCS requires a substantial amount of time before it can deliver 
accurate information, which definitely increase the startup 
latency of a peer. Bindal et al. [23] proposed a new approach 
called biased neighbor selection to enhance BitTorrent traffic 
locality, in which a peer chooses its neighbors mostly from 
those peers within the same ISP. In [24], network views 
gathered at low cost from content distribution networks are 
used to drive biased neighbor selection without any path 
monitoring or probing. 

Within the Internet, AS is a collection of connected Internet 
Protocol (JP) routing prefixes under the control of one or 
more network operators that present a common, clearly defined 
routing policy to the Internet. A unique ASN is allocated to 
each AS for use in BGP (Border Gateway Protocol) routing. 
AS numbers are important because they uniquely identifies 
each network on the Internet. Internet currently consists of 
more than 30,000 advertised ASes [25]. It is much easier 
to communicate with each other for two peers in the same 
AS than two peers from different ASes because there is no 
need to change routing protocol to BGP routing and compete 
for the limited outbound bandwidth of ASes, especially for 
those ASes not operated by the same ISP. Liu et al. [26] 
find that locality-awareness can help existing P2P solutions to 



significantly decrease load on the Internet, and achieve shorter 

downloading time. Furthermore, they found minimizing the 

total number of AS hops result in significant improvement on 

the performance of P2P applications. In light of these facts, 

we take AS as the unit in our clustering strategy. 

The clustering operation in Agiler processes as follows. 

The newcomer sends a message containing ASN, country 

name, longitude and latitude to the tracker. The tracker adds 

a corresponding item about this peer to one of the peer sets 

according to the ASN. The peers within the same AS form a 

cluster. In Fig. 5 we illustrate the locality-aware clustering 

using a simple network model with only 8 ASes. In this 

example, the media server is located in ASl and other peers 

are scattered in all the 8 ASes. Most neighbors of a peer are 

from the same AS and the remaining neighbors are from the 

closet upstream ASes. The more further the cluster is from 

the media server, the more larger the playback lag of the 

cluster is. For instance, the playback lag of peers in AS 1 is 20 
seconds and the playback lag of peers in AS 2 is 25 seconds. 

This clustering strategy increases the matching degree of the 

physical network and the P2P overlay, leading to faster chunk 

diffusion. 

Fig. 5. Clustering in Agiler 

E. Neighbor Selection Algorithm 

Biased neighbor selection is employed in Agiler to choose 

proper neighbors. We use both the geolocation and the round 

trip time (RTT) to select the closed neighbors. Htrae [27] is 

a good example of this kind, which combines two disparate 

approaches to latency prediction, network coordinate systems 

(NCS) and geolocation. However, Htrae is very complicated 

and not easy to implement, we use a simple but practical 

algorithm in Agiler to measure the network distance between 

two peers. Let Di,j = a x Gi,j + b x Ri,j be the network 

distance from peer i to peer j, where G i,j represents the 

geographic distance between two peers, which is calculated 

using the latitude, the longitude. Ri,j represents the RTT from 

peer i to peer j. Gi,j is measured in kilometers and Ri,j is 

measured in milliseconds. Let Lati and Loni be the latitude 

and longitude of peer i measured in radian, Gi,j could be 

calculated using Equation 1. There are two constants a and b 

where a, bE [0,1]. 

G;,j = 2 arcsin JSina2 + COS Lat; x COS Latj x sinb2 x 6378.1 

Lat; - Latj a = --'--=-2----"-
b 

= 

Lon; - Lonj 
2 

(1) 

(2) 

An Agiler peer (we call it a host) uses Algorithm 1 to select 

neighbors. SNi denotes the set of neighbors from the same AS 

with the host and SNo denotes the set of neighbors from other 

ASes. SPi denotes the set of partners from the same AS with 

the host and SPo denotes the set of partners from other ASes. 

N flow and N high denote the low bound and upper bound 

of the number of neighbors within the same AS a peer can 

connect. NOlow and NOhigh denote the low bound and upper 

bound of the number of neighbors from other ASes a peer can 

connect. The peers who are not selected as neighbors in the 

overlay are called partners and they are neighbor candidates. 

The host keeps getting regular updates about more partners 

through gossip-like protocol. 

Algorithm 1 Neighbor Selection Algorithm 

Peer P selects neighbors 

while sizeo!(SNi) > Nhigh do 

Find the neighbor Pi with the least contribution 

SNi +-- SNi - Pi 
end while 

repeat 

Find the peer Pi E S Pi with the minimum network 

distance Di,j 
SNi +-- SNi U {Pi} 
SPi +-- SPi - Pi 

until sizeo!(SNi) � N flow 
while sizeo!(SNo) > NOhigh do 

Find the neighbor Pi with the least contribution 

SNo +-- SNo - Po 
end while 

repeat 

Find the peer Po E S Po with the mlllUllum network 

distance Do,j 
SNo +-- SNo U {Po} 
SPo +-- SPo - Po 

until sizeo!(SNo) � NOlow 

In normal condition, the host calculates the network dis­

tances with its partners and sorts them in ascending order. 

Based on the network distance and the traffic statistical result, 

the host eliminate the most poorly performed neighbor and 

select the peers with low network distance from partners as 

neighbors periodically. In the startup process, only geolocation 

information is used when selecting neighbors because there 

is no time to probe the RTTs in order to reduce the startup 

latency. Selecting peers from the same AS as neighbors can 

decrease the transmission delay and keep traffic locality while 

selecting peers from other ASes with little gap in playback 

lag as neighbors can accelerate the swarm of newly generated 

chunks and keep the whole overlay connected tightly. 



F. Proportional Playback Lag 

The most significant characteristic in Agiler is that the 

default playback lag of a cluster is in proportion to the network 

distance between the cluster and the media server. Our model 

is motivated in part by the work of Hei et.al. [3]. In their work, 

the results they got demonstrate a tiering effect on the playback 

lag by examining buffer map traces collected from peers with 

different geographical locations and different network access. 

Another finding of them is that the playback lag of one peer 

is stable within a session and the lag is very large (usually 

more than 100 seconds). 

We name the initial offset as the chunk ID that a newcomer 

chooses as a start point for its buffer. Initial buffering time is 

the interval from when the first chunk is requested until actual 

playback starts on the screen. The initial offset placement in 

P2P live streaming systems and the real deployed placement 

method in PPLive have been studied in [28]. The large buffer 

approach and the small buffer approach are the two implemen­

tations of P2P streaming systems. The large buffer approach 

outperforms the small buffer approach in many aspects except 

the large playback lag. The large buffer approach is used in 

Agiler skillfully with the assistance of the partitioned buffer 

strategy. 

In a synchronized playback P2P live streaming system with 

a large number of peers, undesirable overlay increase the 

playback lag. In Agiler, peers in the same overlay are grouped 

into clusters according to the ASN. We adopt synchronized 

playback intra-cluster to accelerate the chunk diffusion and 

asynchronous playback among different clusters to facilitate 

the chunk swarming. The peers within the same AS or ASes 

with peering relationships with the newcomer's original AS 

are favored when selecting neighbors. As a result, the peers in 

ASes near the media server could get the media chunks they 

need much earlier. Thus they do not have to wait and can start 

to play first. How to set the default playback lag of a cluster 

is described in following. 

The playback lag of peer i depends on the initial scheduling 

offset and the initial buffering time, so we can set the playback 

lag of a peer by tuning these two parameters. Assuming e and 

T is the initial offset and the initial buffering time respectively. 

Let Lp be the playback lag of peer P and s(t) be ID of the 

newest chunk generated by the media server at time t and we 

have Lp = s(t) - jp(t). We use the improved initial offset 

placement based on playback lag (lPP) scheme to determine 

the playback lag of a cluster in Agiler. The playback lag of a 

cluster is calculated using Equation 3 in IPP scheme, where 

jp(to) and Lp are the playback point and playback lag of 

peer P respectively. Peer P is the first neighbor from upstream 

clusters and it reports its playback lag to peer i. ex is a constant 

coefficient and ex < 1. We hope that that the playback lag is 

larger than that of peer P, so we have jp(to) + ex x Lp < 

jp(to) + r x T. The simplified form of it is 0 < ex < 7
;

T
. 

P 

() = fp(to) + a x Lp (3) 

If we put Equation 3 as a mathematical form Xn+l = aXn + 

c we can obviously find that it is a contraction mapping. By 

doing so, the peer within clusters near the media server have 

short playback lag and the peers located in clusters far from 

the media server have long playback lag, just as illustrated in 

Fig. 5. The stable point of Equation 3 is Ls = 
r�

T
, so the 

maximum playback lag of all clusters is Ls = 
r�

T
. 

As described in Algorithm 2, the playback lag of a peer 

is decided as follows. As soon as a peer selects a channel 

to watch, it sends a request to the tracker for that channel. 

The reply from the tracker is a message that contains a list of 

initial peers and the referencing playback lag. If the peer is 

one of the first k online peers of the cluster, the peer calculate 

the playback lag of the cluster using Equation 3 and feed the 

result back to to the tracker. The maximum one of the results 

is selected as the referencing playback lag of the cluster if the 

mean square deviation of them is less than 5 seconds. If the 

streaming quality of a peer is very poor, the playback lag of 

it would be increased by 10% each time until the streaming 

quality is acceptable or the playback lag is maximized. 

Algorithm 2 Playback Lag Algorithm 

Pi sends a message containing AS number, longitude and 

latitude to the tracker Ti 
if Pi is the first k online peers from cluster Ck then 

Calculate the playback lag of cluster Ck using Equation 3 

Record Lagi into Ti database 

else 

Ti reads the playback lag Lagi of Ck from database and 

sends it to Pi 
end if 

IV. PERFORMANCE EVALUATION 

A. Simulation Setup 

We implement an event-driven packet-level simulator coded 

in C++ based on the source code provided by [29] to conduct 

a series of simulations in this section. In this simulator, all 

streaming and control packets and node buffers (a node refers 

to a peer) are carefully simulated. For the underlying topology, 

we use the AS-level topology and find AS relationships 

collected and analyzed by CAIDA [20]. There are thousands 

of ASes in one file and we derive a Level-l model of AS­

level topology in China for the simulation. This model is a 

topology with 800 nodes distributing in 8 ASes as shown in 

Fig. 6. The network distance between two nodes is set to be in 

proportional to the distance metric of the resulting topology. 

Di,j equals to 50 if peer i and peer j are within the same AS 

and Di,j is randomly selected from [100,600] if they are from 

separate ASes. The details can be found in Fig. 6. 

In our simulation, as commonly assumed in previous P2P 

system studies, we simulate an environment where the peer 

access links are the only bandwidth bottleneck. Therefore, in 

our simulation, the default streaming rate is set to 300 Kbps. 

Each node selects 25 other nodes as its neighbors. Each chunk 

has the same size of 6250 bytes. Each node estimates the 

bandwidth allocated from a neighbor with the traffic received 



from it in the past M seconds, for example, M = 10. The 
neighbor contributes the least would be replaced by a random 
new one with a probability of Pe (eg. 0.25). Moreover, we 
set the default forward buffer size to 30 seconds and the 
default backward buffer size to 20 seconds. The configuring 
parameters in detail is shown in TABLE II. In addition, 
we assume all peers have enough bandwidth to download 
the chunks for the channel they are watching. To simulate 
the bandwidth heterogeneity among peers, we configure the 
capacities of peers according to TABLE III. 
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Fig. 6. Underlying Topology Used in Simulation 

For comparison, we also implement a popular P2P stream­
ing system similar to PPLive [1], one of the most popular 
large-scale mesh-pull P2P streaming system. Because PPLive 
use the proprietary protocols, so we implement this system 
according to the measurement studies dissecting PPLive [3, 4]. 

It serves as a baseline to evaluate the performance of Agiler 
system. In the following, the baseline system is referred 
as PPLive-like. In PPLive-like the large buffer approach is 
employed and playback lags of peers are set to be as close 
as possible to each other, almost to be synchronized. A peer 
in PPLive-like does not reserve the played chunks and thus 
it only has large forward buffer, the size of which denote the 
playback lag. 

We extensively evaluate the effectiveness of the algorithms 
adopted in Agiler and PPLive-like through simulation and 
then make comparisons between them. To be fair, except the 
partitioned buffer strategy and the proportional playback lag 
strategy, other strategies adopted in Agiler and PPLive-like 
are the same. Random neighbor selection and synchronized 
playback are adopted by PPLive-like in simulation. Period­
ical elimination of the worst neighbor is performed in both 
systems. To be more precise, for each point in the figures 
below, we average the results by repeating 9 runs with different 
random seeds and data is collected when the system is stable. 

B. Simulation Results 

Then we show the performance of our proposed algorithms 
and make a comparison with the PPLive-like. First of all, let's 

TABLE II 
CONFIGURATION PARAMETERS 

Notations Value I Explanation 

R 300 Kbps streaming rate of a channel 

NBR 25 the number of neighbors a peer has 

Interval 800 ms the interval for sending buffer 
map periodically 

Block size 6250 bytes the size of a media block 

Pe 

Q 

0.3 

0.8 

the probability that the neighbor 
contribute the least be eliminated 

the ratio of neighbors in the same 
cluster to all neighbors 

TABLE III 
BANDWIDTH DISTRIBUTION 

Type Outbandwidth 

Osl / Ethernet 1024 Kbps 

Osl / Ethernet 512 Kbps 

Osl / Ethernet 256 Kbps 

introduce some simulation methodology and metrics. Static 
environment means that no peer quits after joining. We use 
Weibull(a, (3) distribution with a CDF f(x) = 1 - e(x/a)(3 
to randomly generate the lifetimes of the peers in dynamic 
environment. Given the simulation period of one run is 300 
seconds, we use Weibull(200,2) distribution to generate the 
lifetimes of peers in the dynamic environment. And we assume 
the joining process of peers is a Poisson Process with rate of 20 
peer per second and the maximum online user number is 800 in 
both environments. Moreover, to evaluate the performance, we 
define a metric, playback continuity. We define the playback 
continuity as the number of chunks that arrive at the node 
before playback deadline over the total number of chunks 
encoded in the streaming. 

We first investigate the relationship between the forward 
buffer size and the playback lag. Fig. 7 depicts the change 
of the playback lag corresponding to different forward buffer 
sizes. We can see that the playback lag of Agiler is much less 
than that of PPLive-like and the difference between them get 
large as the forward buffer size increase. Due to the adoption 
of the proportional playback lag strategy and the partitioned 
buffer strategy, the playback lag of Agiler is in a quadratic 
relationship with the forward buffer size. PPLive-like adopts 
the large buffer approach, in which the forward buffer sizes of 
peers are set to be as close as possible to improve the chunk 
availability. The average playback lag of PPLive-like shows 
a linear relationship with the forward buffer size. The short 
average playback lag of peers in Agiler verify the effectiveness 
of our algorithms. 

Since the average playback lag of Agiler is reduced greatly 
compared to PPLive-like, we may raise a question that whether 
the streaming quality of Agiler is affected. As shown in 
Fig. 8, with the growth of forward buffer size, the peers have 
more time to fetch the chunks to be played, so the playback 
continuity of both Agiler and PPLive-like get better and better 
in both static and dynamic environment. At the same time 
the playback lag grows with the forward buffer size, which 
is not what we want. Thus the forward buffer size should 
be set to a proper value where most peers can enjoy good 
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Fig. 7. Average playback continuity with 
respect to different forward buffer sizes, server 
bandwidth: 700 Kbps. 

Fig. 8. Average playback lag with respect to 
different forward buffer sizes, server bandwidth: 
700 Kbps. 

Fig. 9. Average packet distance index of media 
packets, server bandwidth: 800 Kbps. 
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Fig. 11. Average playback continuity with Fig. 12. Average playback continuity with 
respect to different node numbers, server band­
width: 800 Kbps. 

respect to different server bandwidths. 

streaming quality. It is obvious that both Agiler and PPLive­
like perform better in static environment than in dynamic 
environment. In dynamic environment, Agiler perform better 
than PPLive-like all the time, which indicates that Agiler 
can adapt to dynamic environment better. Due to the optimal 
overlay construction and biased neighbor selection, the impact 
caused by the departures of peers is reduced. So we can 
conclude that the reduction of the playback lag in Agiler does 
not affect the streaming quality. 

In Fig. 9, we study the advantages of locality-awareness 
in Agiler compared to PPLive-like. We name packet distance 
index (PDI) as the average network distance a media packet 
travels until it reaches its destination node. PDI is a significant 
index indicating how effective a P2P streaming system is. As 
shown in Fig. 9, the PDI of Agiler is much smaller than 
that of PPLive-like (about second three of it). The reason is 
that Agiler nodes are ISP-friendly and request most media 
chunks from nodes within the same AS while PPLive-like 
nodes request media chunks from random nodes in all ASes. 
Consequently, the time for transmitting media chunks from a 
node to another node is cut down and cross-ISP traffic is re­
duced, which lead to improvement of the system performance. 

Then we study the impact of peer dynamics. We vary the 

churn rate by using different Weibull( ex, (3) distribution to 
generate the lifetimes of nodes. The more smaller the ex is, the 
more higher the churn rate is and the value of ex is restricted 
to [50,350]. As shown in Fig. 10, no matter how fierce the 
churn rate is, Agiler performs better than PPLive-like. Even 
at the churn rate of Weibull(50, 2), Agiler still achieves the 
average playback continuity of about 0.955, which indicates 
it is highly resistant to churn. Resilience enable the Agiler 
system keep smoothly working in the situation of flashing 
crowd that happens frequently in live streaming systems. 

In Fig. 11, we explore the relationship between the playback 
continuity and the server bandwidth. In static environment, a 
server bandwidth of 700 Kbps could enable the system achieve 
high playback continuity up to 1 for both Agiler and PPLive­
like. In the dynamic environment of Weibull(200,2), the 
playback continuities of both systems increase with the growth 
of the server bandwidth, but the rate of increment is slowing 
down. On the whole, Agiler outperforms PPLive-like under the 
same server bandwidth constraint in dynamic environment. In 
the situation of high peer dynamic, the increment of the server 
bandwidth is not a effective way to guarantee good streaming 
quality. So we should take the sever bandwidth allocation into 
consideration when deploying a P2P live streaming system. 



Finally, we study the scalability of the two systems. As 
shown in Fig. 12, the node number is set from 100 to 1400, 
forward buffer size of PPLive-like is set to 30 seconds and 
peer lifetime distribution is generated by Weibull(200,2). 
The performance of both Agiler and PPLive-like is very 
good in static environment and the increase of node number 
barely affects the system performance. This implies that P2P 
streaming systems are self-scaling and they can provide good 
viewing experience with limited server bandwidth. In dynamic 
environment, Agiler outperforms PPLive-like with a large gap 
in both the playback continuity and the playback lag. When 
the node number is small (eg. 100), the increase of node 
number is helpful to both systems. However, when the node 
number is up to 1000, the system performance is deteriorated 
slightly because large number of nodes require more server 
bandwidth to recover from peer dynamics. The locality-aware 
overlay construction and the proportional playback lag strategy 
contribute to the scalability of Agiler. 

V. CONCLUSION 

In this paper we present the design and performance 
evaluation of a novel P2P live streaming system Agiler, 
with objective of reducing the playback lag under a tight 
severe bandwidth constraint. Peers are grouped into clusters 
according to the ASN and playback lags of the clusters are 
set according to the network distance between the clusters 
and the media server. Besides, biased neighbor selection and 
asynchronous playback among clusters are employed in Agiler, 
which could improve the network efficiency and lead to a 
better viewing experience. Simulation results show that Agiler 
reduce the average playback lag by as much as more than 20% 
compared with traditional systems. 

Future work might be extended in several directions. First, 
more efforts should be spent on how to determine the playback 
lag of a cluster so as to achieve good viewing experience 
without jitters. Second, peers with priority should be taken 
into consideration separately. We could reduce the playback 
lag of peers with priority by assigning it to a cluster near the 
media server regardless of the geographical location. Third, 
how to efficiently allocate the server bandwidth under multi­
channel scenarios is a quite challenging problem. More server 
bandwidth should be allocated to lag-sensitive channels to 
shorten the playback lag and less bandwidth is allocated to 
lag-insensitive channels just to ensure the smooth playback. 
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