
Agiler: A P2P Live Streaming System with Low Playback Lag

Dongbo Huang, Jin Zhao and Xin Wang

School of Computer Science, Fudan University, China
Shanghai Key Lab of Intelligent Information Processing, Shanghai, China

Email: {082024082.jzhao.xinw}@fudan.edu.cn

Abstract-Short playback lag is preferred in many urgent and
interactive scenarios such as live sports and distance education.
However, measurement studies have shown that many popular
P2P live streaming systems still suffer from long playback lag,
say, more than 100 seconds, which makes the live streaming
less realtime. Due to the unstructured nature of P2P networks,
it is really a challenge to reduce the playback lag in P2P live
streaming system under limited server bandwidth. In this paper,
we propose a novel P2P live streaming system - Agiler that aims
at reducing the playback lag in lag-sensitive applications under
limited server bandwidth. In Agiler, we first group the peers into
clusters according to the Autonomous System Number (ASN) and
then spread the broadcast in ripples that gradually increase in
playback lag as we move away from the media server. It adopts
synchronous playback within a cluster to accelerate the chunk
diffusion and asynchronous playback among different clusters to
facilitate the chunk swarming. Combined with the partitioned
buffer strategy and the proportional playback lag strategy, the
newly generated fresh chunks can be delivered to all peers in time.
The proposed system is evaluated through extensive packet-level
simulations, which show the bandwidth utilization ratio of the
peers is improved and the average playback lag is significantly
reduced.

I. INTRODUCTION

In recent years, both the academia and industry have shown
strong interest in P2P streaming systems. P2P streaming
systems have become one of the most popular technologies
for distributing streaming videos to end users, which has been
proved by the successful deployments of conunercial P2P
streaming systems such as PPLive [1] and PPStream [2]. Only
with a dedicated streaming server of limited bandwidth like
several Mbps, are P2P streaming systems able to provide video
service to thousands of users at the same time. For example,
the PPLive system has had more than 100,000 simultaneously
online users for a live broadcast of a popular TV program [3].

Nowadays, mesh-pull architecture is widely adopted by
many real-deployed P2P streaming systems such as the sys­
tems mentioned above according to [3, 4]. In the mesh-pull
architecture, a live video is divided into media chunks at
an original media server and then these media chunks are
injected into the system (actually the chunks are requested
by the average peers). The mesh-pull architecture lacks of
a structured overlay and the peers communicate with each
other using gossip-like protocols. Each peer exchanges chunk
availability information periodically (i.e., once per /:).t) with
its neighbors and determines which chunk is to be requested
from which neighbor accordingly. The mesh-pull architecture
has several advantages as follows: (i) overlay construction and
maintenance are very simple, (ii) each peer are more likely
to have diverse paths which in turn reduces the probability

of chunk shortage, the resulting overlay is very resilient to
churn. (iii) the outgoing bandwidth of most participating peers
is effectively utilized, it is self-scaling.

We shall first explain several important concepts before we
go a step further. Source-to-end delay is the time needed to
transfer the media chunk generated by the media server to a
certain peer, which is mentioned in many previous literature.
Playback lag of a peer refers to the interval from a chunk
is generated at the media server to the moment it is played
at the peer. Start-up latency is the time interval from when
one channel is selected until actual playback starts on the
screen. The start-up latency and the playback lag are two very
important metrics for the user experience and this paper lays
stress on the playback lag in P2P live streaming systems.

Learned from the measurement study [3], the playback lag
in PPLive [l], one of the most popular P2P streaming systems
in the world, is more than 100 seconds. The large playback
lag makes no difference when users are watching a channel
without lag requirement, such as pre-recorded TV shows,
movies. Indeed, most real-world P2P streaming systems work
in this fashion, having users experiencing minutes of playback
lag. However, there are a series of live channels that require
short playback lag. Fox example, live sports and distance
education that are broadcast live. In these scenarios, long
playback lag definitely has a bad influence on user experience.
Increasing the server bandwidth definitely could shorten the
playback lag, but the server bandwidth is limited and costly.
Therefore, it is urgent for us to reduce the playback lag under
limited server bandwidth.

In this paper, we seek to design a more realtime P2P
live streaming system with low playback lag for lag-sensitive
applications. It is a challenge due to following two important
reasons: (i) the limited availability of future media chunks in
live streaming applications, and (ii) the media chunks must
arrive the peer before their playback deadlines. Overlay topol­
ogy construction, chunk scheduling algorithms and playback
lag setting strategy are the three important factors influencing
the in-time arrivals of fresh media chunks. Therefore we start
from these three aspects when designing this new system.

We propose a novel asynchronous playback P2P live stream­
ing system - Agiler, in which peers within an overlay (peers
who are watching the same video or channel) are grouped into
clusters based on the ASN. The peers in the same cluster is
synchronized in playback and the playback lag of a cluster is
in proportion to the network distance between the cluster and
the media server (actually the playback lag is calculated by the
first few online peers of a cluster). Combined with our special

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.13

partitioned buffer strategy, Agiler can provide good streaming

quality with low playback lag. As our design, analysis and

simulation studies have illustrated, Agiler is able to take full

advantage of a limited pool of server bandwidth to achieve

shorter playback lag without degradation of the performance

compared with synchronized strategies.

To sum up, the primary contributions of this paper are as fol­

lows. We propose Agiler, a more real-time P2P live streaming

system that reduce the average playback lag by more than 20%

under limited server bandwidth. And the ratio is up to 40% for

the superior peers near the media server. AS-based clustering

strategy is verified to be an effective way to construct an

optimal overlay topology that can reduce the playback lag.

The proportional playback lag strategy and partitioned buffer

strategy are brought forward and evaluated by simulations

in Agiler. In addition, biased neighbor selection algorithm

is combined with our proportional playback lag strategy in

Agiler, which can decrease the transmission delay and bring

down the costly cross-ISP (Internet Service Provider) traffic.

The remainder of this paper is organized as follows. In

sec. II, we discuss the originality of our work in the context of

related work. The detailed design of our system is presented

in Sec. III. In Sec. IV, we present our results from a series

of simulations to demonstrate the efficiency of our design. We

conclude the paper and describe our future plans in Sec. V.

II. RELATED WORK

As a matter of fact, there are many measurement studies

of real-world P2P live streaming systems showing that large

playback lag exists in popular P2P live streaming systems.

Ali et al. [5] analyze the performance and characteristics of

the most popular P2P live streaming systems - PPLive and

SOPCast, which is the first one of that kind of studies. This

study presents a framework to analyze P2P applications from

one single point and then analyze the probable operation

mode, resource usage, locality and stability of data in P2P

live streaming systems. It is worth noticing that there is no

locality-awareness when a peer selects neighbors, which cause

unnecessary transmission cost and inefficiency of the system.

X. Hei et al. [3] build a buffer map crawler and deploy passive

sniffing nodes to study the performance and characteristics of

PPLive, one of the most popular P2P streaming systems. This

study find that users in the measured P2P streaming system

still suffer from long start-up latency and large playback lag,

ranging from several seconds to a couple of minutes.

Many existing works on P2P live streaming systems focus

on overlay construction [6], scheduling of media chunks [7],

incentives [8]. Other works exploit the coding techniques

such as network coding [9], multiple description coding [10]

and scalable video coding [11] to simplify the scheduling

and enhance the resilience of the system. They try every

mean to improve the streaming quality and scalability of

the system but ignore the long playback lag. Consequently,

there are few works addressing the playback lag in P2P live

streaming systems, which is of great importance for lag­

sensitive applications.

There are some theoretical studies exploring the delay issues

in P2P live streaming systems. D. Ren et al. [12] design an

overlay which achieves low source-to-end delay. It aCCOlmno­

dates the asymmetric and diverse uplink bandwidth and is

robust to peer dynamics. They first formulate the minimum

delay mesh problem and show that it is NP-hard. Then they

propose a centralized heuristic algorithm based on complete

knowledge to minimize source-to-end delay. However, some

parameters needed in the centralized heuristic algorithm is

hardly to obtain, so it is unpractical to use this heuristic

algorithm to reduce the delay in the mesh-based P2P live

streaming systems. Besides, low source-to-end delay does not

mean short playback lag. Other strategies are required to

effectively reduce the playback lag.

Y. Liu theoretically studies the impact of the inherent delay

constraint and derive the minimum delay bounds for real

time P2P streaming systems based on a snow-ball streaming

algorithm in [13], which is inspirational for proposing good

solutions to reduce delays in P2P live streaming systems. Per­

formance gap between the fundamental limits and the actual

performance of mesh-pull protocol has been mathematically

analyzed using a unified framework based on trellis graph

techniques [14], in which source-to-end delay and start-up

latency is studied.

iGridMedia, proposed by Zhang et al. [15], investigates

the relationships between playback lag guarantee and the

consumption of server bandwidth. Both R2 and iGridMedia

adopt the synchronized playback algorithm in which all peers

play the same media chunk simultaneously. In more recent

works, D. Wu et al. [16] propose a radically different cross­

channel P2P streaming framework, called View-Upload De­

coupling (VUD). VUD strictly decouples peer downloading

from uploading, which could bring stability to multichannel

systems, enable cross-channel resource sharing and achieve

lower switching delay and playback lag. However, VUD is in

its juvenility so there is much work to be done to turn VUD

into a real system that could be wildly deployed.

A full implementation of live P2P streaming system with

improved playback called SonicStream is presented in [17].

With the use of network coding, SonicStream can improve

the chunk availability and decrease the frequency of buffer

map exchange, leading to the improved playback lag. Our

previous work [18], builds a 3-level, hierarchical overlay

where the peers are grouped according to their degrees of

activity. Consequently, an optimal overlay construction is built

and superior peers who contribute more are guaranteed with

low playback lag. In this paper, we seek to propose a P2P

live streaming system with low playback lag from a different

perspective. The clustering strategy based on ASN in over­

lay construction, biased chunk scheduling and proportional

playback lag strategy are designed with elaboration to reduce

playback lag.

III. SYSTEM DESIGN

A. Problem Description

In Fig. 1, we illustrate the segment dissemination in mesh­
pull based P2P live streaming systems. A media segment
consists of several consecutive media chunks. The segment
dissemination can be interpreted as a two-phase process.
Diffusion phase: first different media chunks of the segment
are rapidly delivered to a different subset of peers, as shown
by the straight arrows in Fig. l. Swarming phase: participating
peers exchange their media chunks until each peer has a proper
number of media chunks for the segment, as shown by the
curly arrows in Fig. 1. Every rectangle marked with dotted
lines in Fig. 1 represents a diffusion subtree. At the end of the
diffusion phase of a segment, all peers in the overlay have at
least one media chunk of the segment. During the swarming
phase of a segment, participating peers pull the missing media
chunks of the segment from other diffusion subtrees.

Level 1

Level 2

Level 3

Fig. 1. Chunk dissemination in a mesh-pull overlay. Some connections are
not shown for clarity of the figure.

Now let's take a look at the chunk diffusion delay in a
diffusion subtree that is rooted in a peer at level l. Without
loss of generality, we assume the chunk size is one, and
choose the streaming rate as the bandwidth unit. Accordingly,
the chunk transmission time on a unit bandwidth link is 1
time slot, which equals to the chunk playback time. For the
convenience of analysis, let's assume that the propagation
delay between two any peers is dominated by the chunk
transmission delay, thus it can be ignored. Based on the above
assumption, we can get the following theorem according to
[13]. If peers in a diffusion subtree form a M-Ievel hierarchy
with TI�=l Nk peers on level i with uploading capacity of
Cd Ci > Ci+l � 1), there exits a continuous streaming
schedule such that chunks can be streamed to all peers with a
delay of T) = M + L�l ilo92 (N2iC,-1))1 , where Co = 2. In a
P2P live streaming system the following condition should be
satisfied (T) + ¢) :::; w, where ¢ denotes the swarming interval
and w represents the playback lag.

In order to reduce the playback lag in P2P live streaming
systems, intuitively, we should minimize the delay for delivery
of a segment. Based on the analysis above, we make efforts
from the following two aspects. On one hand, we construct

a more "flatten" overlay, which could reduce the number of
hops for a chunk to reach all peers in a diffusion subtree.
Increasing the degree of peers and selecting the "nearest" peers
as neighbors contribute to constructing a "flatten" overlay. It
would take less time for a chunk to be transmitted to peers in
the same AS than peers from other ASes. On the other hand,
the proportional playback lag setting among different clusters
and caching media chunks that have been played can reduce
the swarming interval. We set the playback lags of different
clusters according to the network distance between the cluster
and the media server. In doing so, the chunks have been played
by peer in the top levels are reserved and relayed to the peers in
other diffusion subtrees, which facilitate the chunk swarming.

B. System Overview

The system architecture of Agiler is showed in Fig. 2. It uses
the mesh-pull architecture which have been adopted by many
real-world cOlmnercial P2P streaming systems. The newly
joined Agiler peer (we call it a newcomer) contacts the locality
server to query the ASN and other geographic information
about itself if the newcomer runs for the first time or detects
that the network ID has changed. Similar to many other P2P
streaming applications, the newcomer retrieves channel list or
just update it from the channel server. Then it registers itself
to a tracker and downloads the meta data for the channel that
has been selected to watch. The tracker replies with a list of
initial peers who are watching the same video. Afterwards,
the newcomer contacts some of the initial peers according
to certain rules to get the chunk availability information and
request media chunks from them. The media server for this
channel could be regarded as a special peer and is likely appear
in the initial peer list.

TraCke

G
AS path serv

O
er •

� 4. Find the shortest AS patll ��' �*" �
" " e� " �i?iJ

Channel seIVer �� ,::,.&"

O �,� ,�6"
'" • 2.Retric\'cchannclinformati

LOcal�Y serve�
.

<",'"'' --�-jl----
C4 �\O

(ill ' /

Fig. 2. System architecture

Just like many typical P2P streaming systems, there are
several servers in Agiler working together to guarantee the
smooth running of the system. The locality server is usually
not deployed in P2P systems, which is responsible for locality
information queries. The locality server does not need to be
deployed by ourselves because Prefix WhoIs [19] can do this
job for us. Prefix WhoIs uses the Internet's global routing table
as gleaned from a number of routing peers around the world to

disclose various up-to-date routing information, such as ASN,

latitude, longitude and country name. Furthermore, it provides

server software, client software and software development

libraries for public use, so we could retrieve peer locality

information from Prefix Whols database. The channel server is

in charge of distributing the latest channel lists to newcomer,

which include the channel information such as channel title,

streaming rate, IP and port number.

The AS path server is a specific component of Agiler,

one of which can serve many trackers. It is in charge of

calculating the k (usually 2) shortest path from the source AS

(the AS that the media server located in) to the destination AS

(the AS that the newly joined peer located in). We can use

the AS relationships provided by C AIDA [20] to calculate

these AS paths. Each file from inferred AS relationships

dataset of C AIDA contains a full AS graph derived from

BGP table snapshots taken at 8-hour intervals over a 5-day

period. The AS relationships available are customer-provider

(and provider-customer in the opposite direction), peer-to-peer,

and sibling-to-sibling.

Dijkstra algorithm could be used to find the shortest path

and the second shortest path from source AS to destination

AS. We also can employ the algorithms [21] proposed by

David Eppstein to find the k shortest paths. The algorithms he

proposed output an implicit representation of these paths in a

digraph with n vertices and m edges in time O(m+nlogn+k).
Moreover, the algorithms find the k shortest paths from a

given source s to each vertex in the graph in total time

O(m + nlogn + kn). It is worthy to notice that there already

exist several implementations of these algorithms. We can

find the k closest upstream neighbor ASes if we have got

the k shortest paths. The k ASes should meet the following

requirements. (i) the playback lags of the k ASes are shorter

than the playback lag of the AS the newcomer located in,

and (ii) the gap in the playback lag between them should be

minimized.

As we know, the tracker is a very important component

of a P2P system. It is responsible for maintaining a list of

participating peers for each channel. In a P2P live streaming

system, one tracker serves many channels, generally hundreds

of them. The tracker is given another job in Agiler: find the

peers from the closest upstream clusters as neighbor candidates

for the newcomer. It queries the AS path server to get the

closest upstream clusters. Peers are grouped into different sets

according to their ASN and peers within the same AS are in

one peer set. All the relative information is maintained in the

tracker, as shown in TABLE I. "Peer Set" in TABLE I is a

linked list consisting of peer information, including IP, port

number, country name, province name, latitude and longitude.

When requested by a newcomer, the tracker replies with a

initial peer list including Kl peers from the same AS and K2

peers from the closet upstream neighbor ASes. N (on the order

of lO's, ego 50) denotes the size of peer list, Kl = ex x N and

K2 = (1 - ex) x N. If there are not enough qualified peers,

the missing peers are selected randomly.

The media server is the source peer in a P2P live stream-

TABLE I
STRUCTURE USED IN TRACK SERVER

AS NO. Cluster ID I Peer Number I Playback Lag I Peer Set I

ing system, in which a live media is encoded and divided

into chunks identified with chunk ID (continuously assigned

sequence numbers). These chunks are injected into the sys­

tem by means of being requested by other peers within the

overlay. Since a media sever serves many channels, the media

server can not supply one channel with unlimited bandwidth or

connections. We have to impose restrictions on the bandwidth

or connections that each channel consumes to ensure that every

channel could obtain corresponding resource. Besides, cross­

ISP traffic is limited and valuable. Fox example, in China

if one peer is from ChinaCom and the other peer is from

ChinaNet, the connection speed between them is very slow.

Thus we could use a double-access media server, which have

accesses to both ChinaCom and ChinaNet. Peers from both

ISPs can connect to the media server to fetch for newly

generated media chunks and this definitely could reduce the

diffusion delay.

C. Agiler Peer Structure

The main job of an Agiler peer is to retrieve (relay) media

chunks from (to) other peers and assemble them into an

original streaming. Each peer cooperates with each other to

keep the whole system smoothly running. Distributed coop­

eration contributes to the resilience and scalability of P2P

applications. As depicted in Fig. 3, there are three key modules

that compose an Agiler peer:

• the overlay manager

• the scheduling buffer

• the scheduler

Scheduler Media Player

Network Interface

Fig. 3. Agiler Peer Structure

The overlay manager is responsible for the overlay construc­

tion. It establishes and maintains the relationships with other

peers and count the traffic between itself and its neighbors. A

newcomer will receive a initial peer list in the startup process.

After receiving the list, the newcomer selects some peers of

the list as neighbors using biased neighbor selection algorithm,

which is described in section III-E.

The scheduling buffer is used to store media chunks re­
trieved from other peers and supply resembled chunks to the
media player. Every peer in the system has a buffer organized
by chunks. The availability information of chunks that is
exchanged between a peer and its neighbors is called buffer
map. A buffer map consists of an offset indicating the chunk
ID at the buffer head and a sequence of {O, I} indicating the
availability of chunks in the peer. For example, a value of 1 at
ith position indicates that the chunk with an ID offset + i-I
is stored in the buffer. We name the buffer size of a peer as
the difference between the largest chunk ID advertised in the
system and the smallest chunk ID advertised by the peer. All
the Agiler peers have fixed buffer size and work in the fashion
of sliding window.

Unlike other P2P live streaming systems, we use the par­
titioned buffer strategy in Agiler, in which the chunks that
have just been played are reserved for sharing instead of being
discarded. We name jp(t) as the ID of the chunk which is
being drained by the media player of peer p at time t. As
showed in Fig. 4, the scheduling buffer is partitioned into two
sections by the chunk jp(t). The backward buffer stores the
chunks with ID which is smaller than jp(t) and the forward
buffer stores the chunks with ID larger than jp(t). Any chunk
in both sections of the buffer could be requested by other peers
in the system.

Tim, f PI","',k poml

III [[[[[[[[[[[[[[[[��Iffi�[�[���ffi�[[[[[[I [[[I [[[[II Buffer of server

N PI,yb"k po'"

I [[[[[[[[[[[[[[[II [[[[[[[[[[��I�illl ��ijill� [[[[[[[I [[[[[
Buff��:

s

��:�rs in

1111�iil[llll��liimlli�1 IIIIIIIIIIIIIIIIIIIII BUff:;
u

:::'�O"

Fig. 4. Buffer Structure

The media chunks in the backward buffer could be used
to serve other peers whose j(t) is smaller than jp(t). For
example, in Fig.2 the media chunks in the backward buffers of
peers in cluster 1 could be requested by peers in cluster 2 and
3. The chunks have not been played and latest received chunks
are stored in the forward buffer. In Agiler, the buffer sizes of
peers within the overlay are fixed but the forward buffer size
and the backward buffer size are diverse in different clusters.
The peers within a cluster have the same size of both default
forward buffer and backward buffer. The forward buffer size
of a peer denotes the playback lag of it, which means a peer
with smaller forward buffer has shorter playback lag than those
who have large forward buffers. How to set the forward buffer
size is described in section III-F.

The scheduler is in charge of scheduling the media chunks:
requesting (sending) media chunks from (to) its neighbors. The
scheduler maintains the latest buffer maps of its neighbors and
gets the latest neighborhood information and statistical results
from the overlay manager. Based on the above information,
the scheduler determines to request which chunk from which
neighbor so as to ensure the smooth playback of the peer.
The scheduling strategy used in Agiler is a hybrid chunk
scheduling strategy. If the first p% (default 30%) of the
forward buffer is filled with chunks, rarest-first algorithm
would be employed, in which the newest available chunks
are to be requested. Otherwise, greedy algorithm is to be
employed, in which the chunks close to the playback point
are to be requested. Furthermore, the transmission time of a
chunk is calculated before the chunk is requested in order to
avoid unnecessary traffic. If the expected downloading finish
time is later than the playback deadline of the chunk, the chunk
would not be requested.

D. Locality-aware Clustering

Nowadays, the P2P traffic accounts for more than 60
percentage of total network traffic in some regions. W hat is
more, due to the unstructured nature of P2P overlay networks,
they could generate excessive network traffic, especially the
unwanted cross-ISP traffic that increases ISPs' operational
cost. Hence locality-awareness should be one of the essential
characteristics for P2P systems.

In recent years, many locality-aware algorithms have been
proposed to keep traffic locality, reduce cross-ISP traffic and
improve the performance of P2P systems. Network coordinate
systems (NCS) like Vilvadi [22] have been used to enhance
locality-awareness in P2P systems, but it is not applicable be­
cause of its computation overhead and inaccurateness. Besides,
NCS requires a substantial amount of time before it can deliver
accurate information, which definitely increase the startup
latency of a peer. Bindal et al. [23] proposed a new approach
called biased neighbor selection to enhance BitTorrent traffic
locality, in which a peer chooses its neighbors mostly from
those peers within the same ISP. In [24], network views
gathered at low cost from content distribution networks are
used to drive biased neighbor selection without any path
monitoring or probing.

Within the Internet, AS is a collection of connected Internet
Protocol (JP) routing prefixes under the control of one or
more network operators that present a common, clearly defined
routing policy to the Internet. A unique ASN is allocated to
each AS for use in BGP (Border Gateway Protocol) routing.
AS numbers are important because they uniquely identifies
each network on the Internet. Internet currently consists of
more than 30,000 advertised ASes [25]. It is much easier
to communicate with each other for two peers in the same
AS than two peers from different ASes because there is no
need to change routing protocol to BGP routing and compete
for the limited outbound bandwidth of ASes, especially for
those ASes not operated by the same ISP. Liu et al. [26]
find that locality-awareness can help existing P2P solutions to

significantly decrease load on the Internet, and achieve shorter

downloading time. Furthermore, they found minimizing the

total number of AS hops result in significant improvement on

the performance of P2P applications. In light of these facts,

we take AS as the unit in our clustering strategy.

The clustering operation in Agiler processes as follows.

The newcomer sends a message containing ASN, country

name, longitude and latitude to the tracker. The tracker adds

a corresponding item about this peer to one of the peer sets

according to the ASN. The peers within the same AS form a

cluster. In Fig. 5 we illustrate the locality-aware clustering

using a simple network model with only 8 ASes. In this

example, the media server is located in ASl and other peers

are scattered in all the 8 ASes. Most neighbors of a peer are

from the same AS and the remaining neighbors are from the

closet upstream ASes. The more further the cluster is from

the media server, the more larger the playback lag of the

cluster is. For instance, the playback lag of peers in AS 1 is 20
seconds and the playback lag of peers in AS 2 is 25 seconds.

This clustering strategy increases the matching degree of the

physical network and the P2P overlay, leading to faster chunk

diffusion.

Fig. 5. Clustering in Agiler

E. Neighbor Selection Algorithm

Biased neighbor selection is employed in Agiler to choose

proper neighbors. We use both the geolocation and the round

trip time (RTT) to select the closed neighbors. Htrae [27] is

a good example of this kind, which combines two disparate

approaches to latency prediction, network coordinate systems

(NCS) and geolocation. However, Htrae is very complicated

and not easy to implement, we use a simple but practical

algorithm in Agiler to measure the network distance between

two peers. Let Di,j = a x Gi,j + b x Ri,j be the network

distance from peer i to peer j, where G i,j represents the

geographic distance between two peers, which is calculated

using the latitude, the longitude. Ri,j represents the RTT from

peer i to peer j. Gi,j is measured in kilometers and Ri,j is

measured in milliseconds. Let Lati and Loni be the latitude

and longitude of peer i measured in radian, Gi,j could be

calculated using Equation 1. There are two constants a and b

where a, bE [0,1].

G;,j = 2 arcsin JSina2 + COS Lat; x COS Latj x sinb2 x 6378.1

Lat; - Latj a = --'--=-2----"-
b

=

Lon; - Lonj
2

(1)

(2)

An Agiler peer (we call it a host) uses Algorithm 1 to select

neighbors. SNi denotes the set of neighbors from the same AS

with the host and SNo denotes the set of neighbors from other

ASes. SPi denotes the set of partners from the same AS with

the host and SPo denotes the set of partners from other ASes.

N flow and N high denote the low bound and upper bound

of the number of neighbors within the same AS a peer can

connect. NOlow and NOhigh denote the low bound and upper

bound of the number of neighbors from other ASes a peer can

connect. The peers who are not selected as neighbors in the

overlay are called partners and they are neighbor candidates.

The host keeps getting regular updates about more partners

through gossip-like protocol.

Algorithm 1 Neighbor Selection Algorithm

Peer P selects neighbors

while sizeo!(SNi) > Nhigh do

Find the neighbor Pi with the least contribution

SNi +-- SNi - Pi
end while

repeat

Find the peer Pi E S Pi with the minimum network

distance Di,j
SNi +-- SNi U {Pi}
SPi +-- SPi - Pi

until sizeo!(SNi) � N flow
while sizeo!(SNo) > NOhigh do

Find the neighbor Pi with the least contribution

SNo +-- SNo - Po
end while

repeat

Find the peer Po E S Po with the mlllUllum network

distance Do,j
SNo +-- SNo U {Po}
SPo +-- SPo - Po

until sizeo!(SNo) � NOlow

In normal condition, the host calculates the network dis­

tances with its partners and sorts them in ascending order.

Based on the network distance and the traffic statistical result,

the host eliminate the most poorly performed neighbor and

select the peers with low network distance from partners as

neighbors periodically. In the startup process, only geolocation

information is used when selecting neighbors because there

is no time to probe the RTTs in order to reduce the startup

latency. Selecting peers from the same AS as neighbors can

decrease the transmission delay and keep traffic locality while

selecting peers from other ASes with little gap in playback

lag as neighbors can accelerate the swarm of newly generated

chunks and keep the whole overlay connected tightly.

F. Proportional Playback Lag

The most significant characteristic in Agiler is that the

default playback lag of a cluster is in proportion to the network

distance between the cluster and the media server. Our model

is motivated in part by the work of Hei et.al. [3]. In their work,

the results they got demonstrate a tiering effect on the playback

lag by examining buffer map traces collected from peers with

different geographical locations and different network access.

Another finding of them is that the playback lag of one peer

is stable within a session and the lag is very large (usually

more than 100 seconds).

We name the initial offset as the chunk ID that a newcomer

chooses as a start point for its buffer. Initial buffering time is

the interval from when the first chunk is requested until actual

playback starts on the screen. The initial offset placement in

P2P live streaming systems and the real deployed placement

method in PPLive have been studied in [28]. The large buffer

approach and the small buffer approach are the two implemen­

tations of P2P streaming systems. The large buffer approach

outperforms the small buffer approach in many aspects except

the large playback lag. The large buffer approach is used in

Agiler skillfully with the assistance of the partitioned buffer

strategy.

In a synchronized playback P2P live streaming system with

a large number of peers, undesirable overlay increase the

playback lag. In Agiler, peers in the same overlay are grouped

into clusters according to the ASN. We adopt synchronized

playback intra-cluster to accelerate the chunk diffusion and

asynchronous playback among different clusters to facilitate

the chunk swarming. The peers within the same AS or ASes

with peering relationships with the newcomer's original AS

are favored when selecting neighbors. As a result, the peers in

ASes near the media server could get the media chunks they

need much earlier. Thus they do not have to wait and can start

to play first. How to set the default playback lag of a cluster

is described in following.

The playback lag of peer i depends on the initial scheduling

offset and the initial buffering time, so we can set the playback

lag of a peer by tuning these two parameters. Assuming e and

T is the initial offset and the initial buffering time respectively.

Let Lp be the playback lag of peer P and s(t) be ID of the

newest chunk generated by the media server at time t and we

have Lp = s(t) - jp(t). We use the improved initial offset

placement based on playback lag (lPP) scheme to determine

the playback lag of a cluster in Agiler. The playback lag of a

cluster is calculated using Equation 3 in IPP scheme, where

jp(to) and Lp are the playback point and playback lag of

peer P respectively. Peer P is the first neighbor from upstream

clusters and it reports its playback lag to peer i. ex is a constant

coefficient and ex < 1. We hope that that the playback lag is

larger than that of peer P, so we have jp(to) + ex x Lp <

jp(to) + r x T. The simplified form of it is 0 < ex < 7
;

T
.

P

() = fp(to) + a x Lp (3)

If we put Equation 3 as a mathematical form Xn+l = aXn +

c we can obviously find that it is a contraction mapping. By

doing so, the peer within clusters near the media server have

short playback lag and the peers located in clusters far from

the media server have long playback lag, just as illustrated in

Fig. 5. The stable point of Equation 3 is Ls =
r�

T
, so the

maximum playback lag of all clusters is Ls =
r�

T
.

As described in Algorithm 2, the playback lag of a peer

is decided as follows. As soon as a peer selects a channel

to watch, it sends a request to the tracker for that channel.

The reply from the tracker is a message that contains a list of

initial peers and the referencing playback lag. If the peer is

one of the first k online peers of the cluster, the peer calculate

the playback lag of the cluster using Equation 3 and feed the

result back to to the tracker. The maximum one of the results

is selected as the referencing playback lag of the cluster if the

mean square deviation of them is less than 5 seconds. If the

streaming quality of a peer is very poor, the playback lag of

it would be increased by 10% each time until the streaming

quality is acceptable or the playback lag is maximized.

Algorithm 2 Playback Lag Algorithm

Pi sends a message containing AS number, longitude and

latitude to the tracker Ti
if Pi is the first k online peers from cluster Ck then

Calculate the playback lag of cluster Ck using Equation 3

Record Lagi into Ti database

else

Ti reads the playback lag Lagi of Ck from database and

sends it to Pi
end if

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We implement an event-driven packet-level simulator coded

in C++ based on the source code provided by [29] to conduct

a series of simulations in this section. In this simulator, all

streaming and control packets and node buffers (a node refers

to a peer) are carefully simulated. For the underlying topology,

we use the AS-level topology and find AS relationships

collected and analyzed by CAIDA [20]. There are thousands

of ASes in one file and we derive a Level-l model of AS­

level topology in China for the simulation. This model is a

topology with 800 nodes distributing in 8 ASes as shown in

Fig. 6. The network distance between two nodes is set to be in

proportional to the distance metric of the resulting topology.

Di,j equals to 50 if peer i and peer j are within the same AS

and Di,j is randomly selected from [100,600] if they are from

separate ASes. The details can be found in Fig. 6.

In our simulation, as commonly assumed in previous P2P

system studies, we simulate an environment where the peer

access links are the only bandwidth bottleneck. Therefore, in

our simulation, the default streaming rate is set to 300 Kbps.

Each node selects 25 other nodes as its neighbors. Each chunk

has the same size of 6250 bytes. Each node estimates the

bandwidth allocated from a neighbor with the traffic received

from it in the past M seconds, for example, M = 10. The
neighbor contributes the least would be replaced by a random
new one with a probability of Pe (eg. 0.25). Moreover, we
set the default forward buffer size to 30 seconds and the
default backward buffer size to 20 seconds. The configuring
parameters in detail is shown in TABLE II. In addition,
we assume all peers have enough bandwidth to download
the chunks for the channel they are watching. To simulate
the bandwidth heterogeneity among peers, we configure the
capacities of peers according to TABLE III.

s

�
1"

.(300
�

200 rl �
('/400 C

?"oo
300��

200 r
The Source AS 300 � \ � 00

o Normal AS U
-- Inter-AS Connection

Fig. 6. Underlying Topology Used in Simulation

For comparison, we also implement a popular P2P stream­
ing system similar to PPLive [1], one of the most popular
large-scale mesh-pull P2P streaming system. Because PPLive
use the proprietary protocols, so we implement this system
according to the measurement studies dissecting PPLive [3, 4].

It serves as a baseline to evaluate the performance of Agiler
system. In the following, the baseline system is referred
as PPLive-like. In PPLive-like the large buffer approach is
employed and playback lags of peers are set to be as close
as possible to each other, almost to be synchronized. A peer
in PPLive-like does not reserve the played chunks and thus
it only has large forward buffer, the size of which denote the
playback lag.

We extensively evaluate the effectiveness of the algorithms
adopted in Agiler and PPLive-like through simulation and
then make comparisons between them. To be fair, except the
partitioned buffer strategy and the proportional playback lag
strategy, other strategies adopted in Agiler and PPLive-like
are the same. Random neighbor selection and synchronized
playback are adopted by PPLive-like in simulation. Period­
ical elimination of the worst neighbor is performed in both
systems. To be more precise, for each point in the figures
below, we average the results by repeating 9 runs with different
random seeds and data is collected when the system is stable.

B. Simulation Results

Then we show the performance of our proposed algorithms
and make a comparison with the PPLive-like. First of all, let's

TABLE II
CONFIGURATION PARAMETERS

Notations Value I Explanation

R 300 Kbps streaming rate of a channel

NBR 25 the number of neighbors a peer has

Interval 800 ms the interval for sending buffer
map periodically

Block size 6250 bytes the size of a media block

Pe

Q

0.3

0.8

the probability that the neighbor
contribute the least be eliminated

the ratio of neighbors in the same
cluster to all neighbors

TABLE III
BANDWIDTH DISTRIBUTION

Type Outbandwidth

Osl / Ethernet 1024 Kbps

Osl / Ethernet 512 Kbps

Osl / Ethernet 256 Kbps

introduce some simulation methodology and metrics. Static
environment means that no peer quits after joining. We use
Weibull(a, (3) distribution with a CDF f(x) = 1 - e(x/a)(3
to randomly generate the lifetimes of the peers in dynamic
environment. Given the simulation period of one run is 300
seconds, we use Weibull(200,2) distribution to generate the
lifetimes of peers in the dynamic environment. And we assume
the joining process of peers is a Poisson Process with rate of 20
peer per second and the maximum online user number is 800 in
both environments. Moreover, to evaluate the performance, we
define a metric, playback continuity. We define the playback
continuity as the number of chunks that arrive at the node
before playback deadline over the total number of chunks
encoded in the streaming.

We first investigate the relationship between the forward
buffer size and the playback lag. Fig. 7 depicts the change
of the playback lag corresponding to different forward buffer
sizes. We can see that the playback lag of Agiler is much less
than that of PPLive-like and the difference between them get
large as the forward buffer size increase. Due to the adoption
of the proportional playback lag strategy and the partitioned
buffer strategy, the playback lag of Agiler is in a quadratic
relationship with the forward buffer size. PPLive-like adopts
the large buffer approach, in which the forward buffer sizes of
peers are set to be as close as possible to improve the chunk
availability. The average playback lag of PPLive-like shows
a linear relationship with the forward buffer size. The short
average playback lag of peers in Agiler verify the effectiveness
of our algorithms.

Since the average playback lag of Agiler is reduced greatly
compared to PPLive-like, we may raise a question that whether
the streaming quality of Agiler is affected. As shown in
Fig. 8, with the growth of forward buffer size, the peers have
more time to fetch the chunks to be played, so the playback
continuity of both Agiler and PPLive-like get better and better
in both static and dynamic environment. At the same time
the playback lag grows with the forward buffer size, which
is not what we want. Thus the forward buffer size should
be set to a proper value where most peers can enjoy good

35

30
'0
c

825
!

�20
15 '" �15
'"
a::

10

0.98

tQ·96
,., :SO.94
C § 0.92

'" � o.g
j;,
� 0.88
Q.
V
�O,8
� «0.84

-- Agiler - dynamic
- PPLive-like - dynamic
- Agiler - sialic
-- PPLive-like - slatic

Group 10

0,81'"""0 ------:'':-5 ------:2':-0 ------:"�----:3':-0 ------:3':-5------'''
Forward buffer size (seconds)

45°50:-0 ----c'OO::-------::15;;C O ----::'OO::------;;";;CO-- --::!300
Time (seconds)

Fig. 7. Average playback continuity with
respect to different forward buffer sizes, server
bandwidth: 700 Kbps.

Fig. 8. Average playback lag with respect to
different forward buffer sizes, server bandwidth:
700 Kbps.

Fig. 9. Average packet distance index of media
packets, server bandwidth: 800 Kbps.

'�
�

===::==:�
�O.98

� Agiler - dynamic
--a- PPLive-like - dynamic

t
Z'
.� 0.9
�
8
� 0.85
j;,
rn C.
& 0.8
�

�

-- Agiler - dynamic
--- PPLive-like - dynamic
- Agiler - sialic
-- PPLive-like - sialic

0.99

r--------.:.==:==l
to.98
'" '50.97
C � 0.96

'" � 0.95
j;,
�O.94
V
�O.93
� «0.92

0.9 1

1--Agiler - dynamic.delay=22.6 '1
---- PPLive-like - dynamic,delay=30.
--+- Agiler - static,delay=22.7
-- PPLive-like - slalic.delay=30.0

O.950�--::'OO::---::'50::---;:;200:---::::250;:---=300;:-------::!.350

a

O'�OO!;;------:40;;:OO--5"' 00;------;:;500;;------;;70;;C 0 ---;80;;:00----;;;;900;--�'OOO
Server bandwidlh (kbps)

° 100L ---,',------:�-�500,----------:8�OO-�-,---------:.L,-----'
Node number

Fig. 10. Average playback continuity with
respect to different Cle, server bandwidth: 800
Kbps.

Fig. 11. Average playback continuity with Fig. 12. Average playback continuity with
respect to different node numbers, server band­
width: 800 Kbps.

respect to different server bandwidths.

streaming quality. It is obvious that both Agiler and PPLive­
like perform better in static environment than in dynamic
environment. In dynamic environment, Agiler perform better
than PPLive-like all the time, which indicates that Agiler
can adapt to dynamic environment better. Due to the optimal
overlay construction and biased neighbor selection, the impact
caused by the departures of peers is reduced. So we can
conclude that the reduction of the playback lag in Agiler does
not affect the streaming quality.

In Fig. 9, we study the advantages of locality-awareness
in Agiler compared to PPLive-like. We name packet distance
index (PDI) as the average network distance a media packet
travels until it reaches its destination node. PDI is a significant
index indicating how effective a P2P streaming system is. As
shown in Fig. 9, the PDI of Agiler is much smaller than
that of PPLive-like (about second three of it). The reason is
that Agiler nodes are ISP-friendly and request most media
chunks from nodes within the same AS while PPLive-like
nodes request media chunks from random nodes in all ASes.
Consequently, the time for transmitting media chunks from a
node to another node is cut down and cross-ISP traffic is re­
duced, which lead to improvement of the system performance.

Then we study the impact of peer dynamics. We vary the

churn rate by using different Weibull(ex, (3) distribution to
generate the lifetimes of nodes. The more smaller the ex is, the
more higher the churn rate is and the value of ex is restricted
to [50,350]. As shown in Fig. 10, no matter how fierce the
churn rate is, Agiler performs better than PPLive-like. Even
at the churn rate of Weibull(50, 2), Agiler still achieves the
average playback continuity of about 0.955, which indicates
it is highly resistant to churn. Resilience enable the Agiler
system keep smoothly working in the situation of flashing
crowd that happens frequently in live streaming systems.

In Fig. 11, we explore the relationship between the playback
continuity and the server bandwidth. In static environment, a
server bandwidth of 700 Kbps could enable the system achieve
high playback continuity up to 1 for both Agiler and PPLive­
like. In the dynamic environment of Weibull(200,2), the
playback continuities of both systems increase with the growth
of the server bandwidth, but the rate of increment is slowing
down. On the whole, Agiler outperforms PPLive-like under the
same server bandwidth constraint in dynamic environment. In
the situation of high peer dynamic, the increment of the server
bandwidth is not a effective way to guarantee good streaming
quality. So we should take the sever bandwidth allocation into
consideration when deploying a P2P live streaming system.

Finally, we study the scalability of the two systems. As
shown in Fig. 12, the node number is set from 100 to 1400,
forward buffer size of PPLive-like is set to 30 seconds and
peer lifetime distribution is generated by Weibull(200,2).
The performance of both Agiler and PPLive-like is very
good in static environment and the increase of node number
barely affects the system performance. This implies that P2P
streaming systems are self-scaling and they can provide good
viewing experience with limited server bandwidth. In dynamic
environment, Agiler outperforms PPLive-like with a large gap
in both the playback continuity and the playback lag. When
the node number is small (eg. 100), the increase of node
number is helpful to both systems. However, when the node
number is up to 1000, the system performance is deteriorated
slightly because large number of nodes require more server
bandwidth to recover from peer dynamics. The locality-aware
overlay construction and the proportional playback lag strategy
contribute to the scalability of Agiler.

V. CONCLUSION

In this paper we present the design and performance
evaluation of a novel P2P live streaming system Agiler,
with objective of reducing the playback lag under a tight
severe bandwidth constraint. Peers are grouped into clusters
according to the ASN and playback lags of the clusters are
set according to the network distance between the clusters
and the media server. Besides, biased neighbor selection and
asynchronous playback among clusters are employed in Agiler,
which could improve the network efficiency and lead to a
better viewing experience. Simulation results show that Agiler
reduce the average playback lag by as much as more than 20%
compared with traditional systems.

Future work might be extended in several directions. First,
more efforts should be spent on how to determine the playback
lag of a cluster so as to achieve good viewing experience
without jitters. Second, peers with priority should be taken
into consideration separately. We could reduce the playback
lag of peers with priority by assigning it to a cluster near the
media server regardless of the geographical location. Third,
how to efficiently allocate the server bandwidth under multi­
channel scenarios is a quite challenging problem. More server
bandwidth should be allocated to lag-sensitive channels to
shorten the playback lag and less bandwidth is allocated to
lag-insensitive channels just to ensure the smooth playback.

VI. ACKNOW LEDGEMENT S

This work was partially supported by NSFC under
grant60803119, by Science and Technology Commission of
Shanghai Municipality under grant 08dz15001OE, and by
Shanghai Educational Development Foundation under grant
2007CG07. Jin Zhao is the corresponding author.

REFERENCES

[1] "PPLive," http://www.pplive.coml.
[2] "PPStream," http://www.ppstream.com/.
[3] X. Hei, Y. Liu, and K. W. Ross, "Inferring Network-Wide Quality in

P2P Live Streaming Systems," Selected Areas in Communications, IEEE
fournal on, vol. 25, no. 9, pp. 1640-1654, 2007.

[4] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt, "Mapping the ppIive
network: Studying the impacts of media streaming on p2p overlays,"
UIUC, Tech. Rep., August 2006.

[5] S. Ali, A. Mathur, and H. Zhang, "Measurement of commercial peer­
to-peer live video streaming," in In Proc. of ICST Workshop on Recent
Advances in Peer-to-Peer Streaming, Weaterloo, Canadda, 2006.

[6] X. Zhang, 1. Liu, B. Li, and T. P. Yum, "CooIStreamingIDONet: A Data­
driven Overlay Network for Efficient Live Media Streaming," in Proc.
of lEEE lNFOCOM 2005, 2005.

[7] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, "A Peer-to-Peer Network
for Live Media Streaming: Using a Push-Pull Approach," in Proc. Of
ACM Multimedia 2005, Nov. 2005.

[8] F. Pianese, D. Perino, J. Keller, and E. Biersack, "PULSE: An Adap­
tive, Incentive-Based, Unstructured P2P Live Streaming System," lEEE
Trans. Multimedia, vol. 9, no. 8, pp. 1645-1660, Dec. 2007.

[9] M. Wang and B. Li, "R2: Random Push with Random Network Coding
in Live Peer-to-Peer Streaming," lEEE fournal on Selected Areas in
Communications, vol. 25, no. 9, pp. 1655-1666, Dec. 2007.

[l0] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, "Splitstream: High-bandwidth content distribution in
cooperative environments," in Proc. of SOSP'03, 2003.

[l1] Z. Liu, Y Shen, S. S. Panwar, K. W. Ross, and Y Wang, "Using layered
video to provide incentives in p2p live streaming," in Proceedings of
P2P-TV. New York, NY, USA: ACM, 2007, pp. 311-316.

[l2] D. Ren, Y-T. H. Li, and S.-H. G. Chan, "On Reducing Mesh Delay for
Peer-to-Peer Live Streaming," in Proc. of IEEE INFOCOM 2008, 2008.

[13] Y Liu, "On the Minimum Delay Peer-to-Peer Video Streaming: how
Realtime can it be?" in Proc. of ACM Multimedia, 2007.

[14] C. Feng, B. Li, and B. Li, "Understanding the performance gap between
pull-based mesh streaming protocols and fundamental limits," in Proc.
lNFOCOM 2009. The 28th Conference on Computer Communications.

IEEE, 19-25 April 2009, pp. 891-899.
[l5] M. Zhang, L. Sun, , and S. Yang, "iGridMedia: Providing Delay­

Guaranteed Peer-to-Peer Live Streaming Service on Internet," in Proc.

of IEEE Globecom 2008, 2008.
[l6] D. Wu, C. Liangz, Y Liuz, and K. Rossy, "View-Upload Decoupling:

A Redesign of Multi-Channel P2P Video Systems," in Proc. of IEEE
INFO COM 2009, 2009.

[l7] X. Zhang, X. Chen, N. Ren, J. Zhao, and X. Wang, "Sonicstream: An
implementation of a live p2p media streaming system with improved
playback lag," in Proc of IEEE ICCE 2009., 2009.

[l8] D. Huang, J. Zhao, X. Wang., "Trading bandwidth for playback lag: Can
active peers help?" in Proc. of ACM Multimedia, Short paper, 2010.

[l9] "pwhois," http://pwhois.org/.
[20] CAIDA Project. The CAIDA AS Relationships Dataset.

http://www.caida.orgldataiactive/as-relationships/.
[21] D. Eppstein and S. J. C. C, "Finding the k shortest paths," SlAM fournal

on Computing, vol. 28, pp. 652-673, 1998.
[22] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, "Vivaldi: A decentralized

network coordinate system," in In SlGCOMM, 2004, pp. 15-26.
[23] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and

A. Zhang, "Improving traffic locality in bittorrent via biased neighbor
selection," in Proceedings of lCDCS, 2006.

[24] D. R. Choffnes and F. E. Bustamante, "Taming the torrent: a practical
approach to reducing cross-isp traffic in peer-to-peer systems," in SIG­
COMM Comput. Commun. Rev., vol. 38, no. 4. New York, NY, USA:
ACM, 2008, pp. 363-374.

[25] G. Huston. The 32-bit as number report, december 2009.
http://www.potaroo.netitools/asn32/.

[26] B. Liu, Y Cui, Y. Lu, and Y. Xue, "Locality-awareness in bittorrent-like
p2p applications," lEEE Transactions on Multimedia, vol. 11, no. 3, pp.
361-371, April 2009.

[27] S. Agarwal and J. R. Lorch, "Matchmaking for online games and other
latency-sensitive p2p systems," in SlGCOMM '09: Proceedings of the
ACM SIGCOMM 2009 coriference on Data communication. New York,
NY, USA: ACM, 2009, pp. 315-326.

[28] C. Li and C. Chen, "Initial offset placement in p2p live streaming
systems," CaRR, vol. abs/081O.2063, 2008.

[29] M. Zhang, "Peer-to-Peer Streaming Simulator,"
http://media.cs.tsinghua.edu.cn/ zhangm/download/, 2007.

