
A Recommender System Based on the

Collaborative Behavior of Bird Flocks

Esin Saka

Knowledge Discovery and Web Mining Lab,

University of Louisville

Louisville, KY, USA

Email: esin.saka@louisville.edu

Abstract-This paper proposes a swarm intelligence based
recommender system (FlockRecom) based on the collaborative
behavior of bird flocks for generating Top-N recommendations.
The flock-based recommender algorithm (FlockRecom) itera
tively adjusts the position and speed of dynamic flocks of agents
on a visualization panel. By using the neighboring agents on the
visualization panel, top-n recommendations are generated. The
performance ofFlockRecom is evaluated using the Jester Dataset-
2 [1] and is compared with a traditional collaborative filtering
based recommender system. Experiments on real data illustrate
the workings of the recommender system and its advantages over
its CF baseline.

Index Terms-Swarm intelligence; recommender system; col
laborative filtering; flocks of agents; bird flocks.

I. INTRODUCTION

In recent years, we have witnessed an explosive growth in

the amount of information. Each day, more books and journals

are published, more newspaper articles are written, more web

pages are posted online, more office documents are prepared,

more photos are taken, and more movies are created.

This over-abundance of information contributes to the rea

sons why we can get hundreds or even thousands of results for

a simple search, and why we can find it hard to arrive at the

resources that we need by wading through endless labyrinths

of Web pages and Websites. This problem is commonly

referred to as information overload.

Recommender systems aim to assist users in handling the

information overload problem. Two of the many approaches

to build recommender systems include collaborative filtering

(CF) and swarm intelligence (SI), both built on the collabora

tion of users. Based on the assumption that users with similar

past behaviors (rating, browsing, or purchase history) have

similar interests, a collaborative filtering system recommends

items that are liked by other users with similar interests [2],

[3], [11]. More information on CF and other approaches are

presented in Section II. In this paper we present a new recom

mender system approach using a swarm intelligence algorithm,

inspired from bird flocks and called flocks-of-agents based rec

ommender system (FlockRecom). In this approach, each user

is mapped to one agent, i.e. each agent of the flock represents a

This work is supported by National Science Foundation CAREER Award
IlS-0133948 to Olfa Nasraoui.

Olfa Nasraoui

Knowledge Discovery and Web Mining Lab,

University of Louisville

Louisville, KY, USA

Email: olfa.nasraoui@louisville.edu

user. Initially, agents are placed on a planar surface (hereinafter

referred to as the visualization panel). Then, in each iteration,

similar agents attract each other, while dissimilar agents repel

each other. Thus, the agents' speed gets updated according to

their neighboring agents. In time, similar agents start moving

together and closer, forming clusters [4]-[6]. Moreover, the

distance between the agents depends on the similarity between

the users that are mapped to those agents. At each iteration,

recommendations are generated/updated using the neighboring

agents. Agents keep moving until they are forced to stop.

Thus, the dynamic character of the FlockRecom provides

dynamic recommendations, making FlockRecom stronger at

exploring different recommendation options and providing

more variety for recommendations. Variety or diversity is

important in the environments that users keep visiting repeat

edly. For example, on Facebook I, neither giving the same

suggestions over and over, nor random suggestions may satisfy

the users. Additionally, initial experimental results show that,

FlockRecom is a promising approach for recommendation in

dynamic environments, and in the future, in social networking

platforms.

In this research, we start by reviewing recommender sys

tems in Section II, then bird flocks in Section III. We then

present FlockRecom in Section IV. In Section V, we present

experiments on a real life dataset. Finally, we make our

conclusions and discuss future work in Section VI.

II. RECOMMENDER SYSTEMS OVERVIEW

The Human brain is a fast and intelligent decision making

organism, but when significant information overload is en

countered, some additional external guidance may be needed.

Systems that strive to achieve this aim may be known under

different names such as decision support systems, recom

mender systems, customer relationship management systems,

executive support systems, executive information systems, or

personalized agents. Figure 1 shows the basic modules of a

typical recommender system.

A recommender system can analyze the data to compute

recommendations in different ways, including:

1) Content-based or Item-based filtering

I http://www.facebook.com/

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICSTDOI 10.4108/icst.collaboratecom.2010.11

Knowledge & Reasoning,
Searching, Planning,
Learning, Data Mining, etc.

t
Pre-processing

t
Data Collection

server side,
client side,
demographic,
ranking, etc.

--"""'i.� Decision Makingl
Recommendation

Fig. I. Modules and flow of typical recommendation systems.

2) Collaborative filtering

3) Knowledge Engineering or Rule-basedfiltering

4) Demographic filtering

5) Hybrids

Content-based filtering systems recommend items to a given
user, which are deemed to be similar to the items that the
same user liked in the past or similar to the user profile in
attributes. Item similarity is typically based on domain specific
item attributes (such as author and subject for book items, artist
and genre for music items), which are thus part of the items
or user profile. Classical examples include Syskill and Webert
[7], and Fab [8]. This approach has the advantage of easily
including brand new items in the recommendation process,
since there is no need for any previous implicit or explicit
group user ratings or purchase data to make recommendations.
Content-based filtering systems suffer from several limitations.
First, they tend to be limited to certain types of content
such as text and movies. Even in this case, the extracted
features are limited in that they only capture certain aspects
of the content. Second, they tend to provide over-specialized
recommendations based only on user profiles or items that
are similar to items previously rated by the user. Hence, users
cannot explore new items that are different from those included
in their profiles.

Based on the assumption that users with similar past be
haviors (rating, browsing, or purchase history) have similar
interests, a collaborative filtering system recommends items
that are liked by other users with similar interests [2], [3]. This
approach relies on a historic record of all user interests such
as can be inferred from their ratings of the items on a website
(products or web pages). Rating can be explicit (explicit rat
ings, previous purchases, customer satisfaction questionnaires)
or implicit (browsing activity on a website or clickstreams).
Typical examples include GroupLens [9] [10] and a survey can
be found in [2]. The recent Netflix price increased the attention

on collaborative filtering2 [11]. Collaborative filtering can be
either user-based or item-based. In user-based collaborative
filtering, historic data such as purchases, visits, or ratings of
items such as products or web pages, is used to form user
neighborhoods of similar users. Later, for a new user, items
are recommended if they are liked by this user's neighbors. In
item-based collaborative filtering, historic data is used to form
associations between items that tend to be liked by the same
user. Later, for a new user with known ratings for a few items,
other items that are associated with the known rated items are
recommended.

In knowledge engineering or rule-based filtering approach,
used frequently to customize products on e-commerce sites,
the user answers several questions, until receiving a cus
tomized result such as a list of products or a custom-built
configuration of a product (e.g. Dell's web page3). This ap
proach is mostly based on heavy planning of a judicious set of
questions and possible answer combinations by an expert, and
establishing this dialog depends on manually coded scenarios
that assume heavy knowledge about how each item fills the
needs of a particular user.

In demographic recommender systems approach, items are
recommended to users based on their demographic attributes,
such as gender, age, location, salary, etc. The recommenda
tions can be based on handcrafted stereotypes derived from
marketing research or on machine learning techniques [12]

that learn to predict users' preferences from their demographic
attributes. For instance, users can be classified into one of
several classes based on their personal attributes, and this class
information can form the basis for recommendations.

III. BIRD-FLOCKS IN COMPUTING

The inspiration behind the flocks-of-agents-based recom
mender system stems directly from the collaboration among
bird flocks in nature. One of the definitions given for aflock is
"a number of animals of one kind, esp. sheep, goats, or birds,

that keep or feed together or are herded together" 4 .
"The motion of a flock of birds is one of nature's delights"

according to Craig Reynolds who has first simulated this phe
nomenon in computer animation, where the bird-like, birdoid
object was called boid [13]. One of the biggest differences
between a particle and a boid in simulation is that boids have
orientation, which makes them suitable for data visualization

as well as clustering and recommender systems.
Studies about flocks of agents in computer science have

mainly started with simulating moving bird flocks, based
on two balanced and opposing behaviors of natural flocks,
namely, 1) Desire to stay close to the flock, and 2) Desire to
avoid collisions. These are simulated in the following three
behaviors [13].

Natural Bird Flock Behaviors:

1) Collision Avoidance/Separation: Steering away from
the other boids to avoid collision.

2 http://www.netftixprize.com
3 http://www.dell.com/
4http://dictionary.reference.comlbrowselftock

2) AlignmentNelocity Matching: Aiming to match the

moving direction (i.e. heading) and speed to that of

nearby flockmates.

3) CohesionlFlock Centering: Attempting to adjust steer

ing toward the average position of local flockmates and

to stay close to the neighbors.

While cohesion and velocity matching represent the attrac

tion forces, which keep the boids together, collision avoidance

formed the rejection/repelling force. Other studies also tried

to present behavioral rules and model collective behavior of

animals [14], [15]. Later studies also focused on visualizing

data using flocks of agents. Each individual boid represented

one data item and a fourth behavior was added to represent

moving with similar data items [16]:

4) Information Flocking: Attempting to move with similar

boids.

The fourth behavior is pretty similar to the second behavior,

velocity matching. However, in the fourth behavior, the aim

is not moving together with all neighbors, but only with the

ones similar enough to form a group. This behavior provided a

suitable ground for using flocks of agents for data visualization

and offered a motivation for data clustering [4]-[6]. In this

research, it is the information flocking which powers the

recommender system.

It should be noted that, just as a flock can be formed of

birds, it can also be formed by other boids such as fish, sheep,

etc. Therefore, for the sake of generality, in this study, instead

of the word boid, we use the word "agent".

IV. FLOCKS-Of-AGENTS BASED RECOMMENDER SYSTEM

Flocks of agents-based recommender system is suitable for

any kind of data set where one can define a similarity measure

between users. In the flocks of agents based recommender

system approach, each agent represents one user. Initially,

agents are placed on a visualization panel, which is a 2 or

3-dimensional continuous space, where x, y (and if applicable

z) coordinate values range between 0 and 1. Agents may be

placed randomly or some background information can be used

to place them. Then, they start moving around. As they meet

other agents in a defined neighborhood, they try to remain at

an ideal distance to each other, which is determined according

to the similarity of the users that agents are representing. The

more the users are similar, the smaller the ideal distance will

be. Ideal distances are computed for each agent pair once at the

beginning of the algorithm based on the intrinsic properties or

ratings of the users. If neighboring agents are further apart than

the ideal distance, there will be an attraction force between

them and the agents will try to move closer to each other.

In contrast, if the distance is less than the ideal distance,

then there will be a rejection force, and agents will move

apart from each other. Given this basic idea, Algorithm 1

gives the procedure for Flocks of Agents Recommender System

(FlockRecom) .

In steps 1 and 2, the initialization is performed. The velocity

vector V, is a unit vector, (i.e. Ilvll = 1), representing the

direction. In step 3, the ideal distances between agents are

computed via Equation (1), where sim(i, j) is the similarity

between the users that agents i and j are representing, and

Simth is the similarity threshold.

{ l-sim(i,j)
X dth,

dideal (i, j) = o �-simlh Simth -I=- 1
Simth = 1

(1)

Later, for each agent i, the neighboring agents that are close

enough to i on the visualization panel, are extracted in Line 6,

where d(i,j) is the 2D Euclidean distance between agents i and

j, and dth is the distance threshold. Then, for each neighbor:

• If the distance between the agents i and j is equal to the

ideal distance between them (Line 7), there is no attempt

to change i's velocity due to j (Line 8).
• If the distance between the agents i and j is greater than

the ideal distance between them (Line 9), an attraction

force will move i closer to j, with a more similar velocity

to j (Line 10).

• If the distance between the agents i and j is smaller than

the ideal distance between them (Line 11), a repelling

force will move i further from j, with a less similar

velocity to j (Line 12).

In line 14, the velocity effect on i due to neighbor j is

computed where vcap(i,j) is the unit vector pointing from

i to j. Next is the computation of the updated velocity of

agent i, vnext(i), between lines 16 and 25. First, if i has

neighbors, then their resulting velocities on i are summed up

and normalized. If the total, normalized velocity W, does not

change the agent's current direction more than 90 degrees,

then the updated velocity is assigned as w. Otherwise the

velocity is kept unchanged for the next iteration. Similarly,

if agent i does not have any neighbors -note that an agent is

not considered to be a neighbor of itself- then the velocity

will be kept the same for the next iteration. In line 26, the

amplitude is computed depending on the number of neighbors

and distance threshold, where ampdeJ is the default minimum

amplitude. The minimum amplitude is empirically set to O.l.
At the end of each iteration, the updated agent coordinates

are computed, and all the agents are moved to their updated

positions simultaneously (lines 28 to 31). Then the next step

is to generate recommendations. Let's call active users to the

users that recommendations are generated for. For each active

user, a set of users are determined via the agent neighborhood

on the visualization screen. In other words, for the active

user u's corresponding agent iu, neighbor agents set S(j) is

determined such that d(i, j) :s; dth and i -I=- j. Then, average

item ratings are computed for all users represented by the

agents in S(j). Finally, n items with the highest average

ratings are recommended to user u. These n items are called

top-n items.

V. EXPERIMENTS
The experiments were conducted on a dataset extracted

from the Jester Dataset-2, which is available online on the

website of the University of California, Berkeley [1]. In

Algorithm 1 FlockRecom Algorithm

Input: Dataset.
Output: Top-N recommendations.

1: Initially place the agents on the visualization panel
2: Initialize velocities of all agents
3: Compute the ideal distances, dideal, between agents.
4: while 1 do
5:
6:
7:
8:
9:

10:
II:

12:
13:
14:
15:
16:
17:

for each agent i do
for all j such that d(j, i) � dth and i -=I- j do

if d(i,j) = dideal(i,j) then
(3(i,j) <--- 0

else if d(i, j) > dideal (i, j) then {attraction}

(3(i, j) <---
4

x (d(i,j) -dideal (i;1)) 2
d'h -didcal (t,))

else {repulsion}

(3(
' ') 4 (1 d(i,j))) 2
t, J <--- - x - dideal (i,j)

end if
Vresulting(i,j) <--- v(j) + (3(i,j) x vcap(i,j)

end for
if :3 j such that d(j, i) � dth and i -=I- j then

w(i) = normalize (L Vresulting(i,j))
jld(j,i)-::;d,h&i#j

18:
19:
20:
21:
22:
23:
24:
25:

if The angle between v(i) and w(i) is less than or equal to 90 degrees then

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

vnext (i) <--- w(i)
else

vnext (i) <--- v(i)
end if

else
vnext(i) <--- v(i)

end if

L Vresulting(i,j)
jld(j,i)-::;d'h&i#j

amPnext(i) <--- ampdej +
100

end for
for each agent i do

compute new position Pnext(i) <--- Pcurrent(i) + ampnext(i) x vnext(i)
end for
Move all agents to the updated positions and update current velocities.
for Each user u that will be provided recommendation do

for The agent iu, that represents u do
for Users represented by neighboring agents' of iu do

Compute the average ratings per item
Recommend Top-N items to u

end for
end for

39: end for
40: end while

addition to FlockRecom, a traditional collaborative filtering
based recommender system was also implemented to test the
performance of our system, and performances were evaluated
and compared using precision, recall, and Fl metrics.

A. Dataset

In our experiments, we used the Jester Dataset-2, which is
a collection of user ratings for 150 different jokes [1]. The
dataset has 63,978 users, and the ratings range on a real value
scale from -10 to +10 (-10 and +10 are included). As shown

Dataset
ID

Jester

TABLE I
DATASET.

Number Number of
of Users Items
50 150 (Jokes)

Avg.
Sim.
0.29

in Table I, in the experiments, the first 50 users were used

with all 150 jokes, thus 19l1 ratings were used.

B. Pre-Processing

The user ratings for jokes were in the scale of -lO to + 1 O.

In the pre-processing phase these ratings were normalized in

the scale 0 to 1, where 0 indicates that the item is rated -lO

or is not rated by the corresponding user.

C. Evaluation Metrics

Evaluating a recommender system can be nearly as hard

as designing and implementing the system, in part because

no simple, objective, and general agreed upon mathematical

formula is always available to measure success [2], [17]-[20].

One problem suffered by some systems is over-specialization.

When the recommendations are limited to the user's behavior,

user's profile, or user's ratings, the user can be restricted to

seeing only similar items, and there will be no randomness.

In artificial intelligence, this problem is known as, the explo

ration/exploitation dilemma.

Evaluating information retrieval systems can be done if one

has available, a set of user queries and a labeled set of search

results (relevant and non-relevant). In this case, precision

(proportion of retrieved items that are really relevant) and

recallicoverage (proportion of all items, known to be relevant,

that are retrieved) are typically used as goodness metrics [17],

[18]. One method for evaluating a recommender system is

asking for a ranking or a rating of the results from the users.

However, this can be subjective. Moreover, if the study is for

research purposes, it can be hard to find a sufficient number

of real users with diverse interests for the experiment. For this

reason, historical data has also been used in research studies.

In this case, the output of a recommender system is compared

to the real moves of the user in the historical data, and metrics

such as precision and coverage are computed [17], [18]. One

popular way to assess the success of a system is to compare

it, for example with recommending the default, most popular,

or even a randomly selected item.

As a summary, recommendations should be as close as

possible to the real moves of the user. Closeness should take

into account both (i) precision (a recommendation list's items

are all correct or included in the original input data, i.e. they

include only the true data items) and (ii) coverage/recall (a

recommendation list's items are complete compared to the user

moves, i.e. they include all the data items). The equations for

precision and recall are given in Equation 2 and Equation 3,

respectively.

size of suggested and relevant items
(2) precision = -----,-'--'-:----,-:----,------,,-----

size of all relevant items

size of suggested and relevant items
recall = .

f 11 d
.

size 0 a suggeste Items
(3)

A precision score of 1 indicates that every recommendation

retrieved was relevant, whereas, a recall score of 1 represents

that all relevant recommendations were retrieved. Since both of

these contradicting measures are important in a recommender

system, they can be combined in the Fl measure, given in

Equation (4). Higher values of the F 1 measure indicate a more

balanced combination of high precision and recall.

precision x recall
FI = . .

II
x 2

preczswn + reca

D. Experimental Results

(4)

In the experiments, using FlockRecom, we generated top

n recommendations for active users at each iteration of our

dynamic FlockRecom algorithm, n ranging from 1 to 30.

To compare the results, a traditional user-based nearest

neighbor algorithm [2] was used. In the collaborative filtering

approach, the neighbors of an active user u are defined as the

users that are similar to u above a similarity threshold Simth
as given in Equation 5. After the neighbors are computed,

the average item ratings per active user are evaluated using

Equation 6, where u is the active user and i is an item.

CF _neighbor(u) = {tlsimilarity(u, t) ;::: Simth' t i= u}
(5)

L rating(t, i)

. . tECF _neighbor(u)
AverageJatmg(u, z) =

b f
.

hb
(6)

num er 0 nelg ors

In the experiments, the cosine similarity was used to com

pute the similarity between users and the similarity threshold,

Simth' was set to 0.07, whereas the distance threshold dth
was set to 0.4, empirically.

The evaluation metrics were averaged over 10 different

active users and lO different runs per active user.

Figures 2 to 4 show the results of evaluations for the flocks

of-agents based recommender system (FlockRecom - FR) in

comparison to the results of collaborative filtering (CF). The

figures display the quality versus iteration or time.

Comparing FR to CF in Figure 2, we observe that the

precision values for FlockRecom are slightly better than those

for CF, especially, for small N. Additionally, FlockRecom

provides more variety in the recommendations. Similarly, as

seen in Figure 3, FlockRecom produced slightly higher recall

values than CF. As expected, both for FlockRecom and CF,

recall values increased as N, the number of recommended

items, was increased. As a result, the F 1 metric was higher

for FlockRecom, especially for N = 5, as Figure 4 shows.

The fluctuations in Figures 2 to 4 are due to the exploration

in FlockRecom, thus showing that, unlike CF, FlockRecom

does not recommended the same items over and over. Figure

5 presents the number of times each joke is recommended

0.8
,-----,-----,----,--------,------,----,--------,-----,-----r---&-==C === F=N==S=i'l

--+-CFN=10

0.7

0.6

0.5

0.4

0.1

100 200 300 400 500
Iteration

---CFN=30
---&-FR N=S

--+-FR N=10
�FRN=30

600 700 800 900 1000

Fig. 2. Flock-based recommender system (FR) compared to standard collaborative filtering-based recommender system (CF) based on the average precision
values for different numbers of top-n recommendations, over time. Averaged over 10 different active users, 10 different runs per active user. The x-axis
represents the iteration number.

0.8,-------,-------,-------,-------,-------,-------,-------,--------,-------,-------,

0.5

0.3

0.2

0.1

100 200 300 400 500
Iteration

---&-CF N=5
--+-CF N=10
�CFN=30
---&-FR N=S

--+-FR N=10
�FRN=30

600 700 800 900 1000

Fig. 3. Flock-based recommender system (FR) compared to standard collaborative filtering-based recommender system (CF) based on the average recall
values for different numbers of top-n recommendations, over time. Averaged over 10 different active users, 10 different runs per active user. The x-axis
represents the iteration number.

for a specific user over 10 different runs. While CF kept

recommending the same items, FlockRecom added exploration

and variety without losing quality.

To sum up, FlockRecom produced slightly better results

than CF, after a sufficient number of iterations. For small

values of N (which is preferred to avoid overloading users

0.8

0.7

0.6

0.5

u:: 0.4

0.3

r
0.2

r

0.1 �

100

.""""

�

200 300 400 500
Iteration

,�.

---&- CF N=5
--+-CFN=10
---CFN=30
---&- FR N=5
--+-FR N=10
�FRN=30

'""" ..

...t.

...
- �

600 700 800 900 1000

Fig. 4. Flock-based recommender system (FR) compared to standard collaborative filtering-based recommender system (CF) based on the average F I values
for different numbers of top-n recommendations, over time. Averaged over 10 different active users, 10 different runs per active user. The x-axis represents
the iteration number.

10

o
o 10 20 30 40 50

Joke 10

I _
CF

I _
FR

60 70 80 90 100

Fig. 5. The variety in the recommended items of Flock-based recommender system (FR) compared to standard collaborative filtering-based recommender
system (CF) for different numbers of top-5 recommendations, at iteration 100. Averaged over 10 different runs per I active user. The x-axis represents the
joke id.

with too many recommendations), FlockRecom computed bet

ter recommendations, suggesting a more effective and realistic

recommendation strategy. Morever, FlockRecom is more suc

cessful in exploration and in overcoming over-specialization.

0.8,-------,-------,-------,-------,-------,-------,-------_,-------,��--_,--_,--_,

0.7

0.6

0.1

100 200 300 400 SOO
Iteration

___&_ CF N=S
--+-- CF N=10
---CFN=30
___&_ FR N=S
--+-- FR N=10
�FRN=30

600 700 800 900 1000

Fig. 6. Flock-based recommender system (FR) compared to standard collaborative filtering-based recommender system (CF) based on the average precision
values for different numbers of top-n recommendations, over time. Averaged over 1 active user, 10 different runs. The x-axis represents the iteration number.

0.8
,-------,------�--------,----------,--------,--------,-------,---------,------;:::___&_== ===C::: F =N==== S=il

--+-CFN=10
�CFN=30

0.7

0.3

100 200 300 400 SOO
Iteration

600 700 800

___&_ FR N=S
--+-FR N=10
---FRN=30

900 1000

Fig. 7. Flock-based recommender system (FR) compared to standard collaborative filtering-based recommender system (CF) based on the average recall
values for different numbers of top-n recommendations, over time. Averaged over I active user, 10 different runs. The x-axis represents the iteration number.

Figures 6 to 8 show the results for a typical active user.

The figures display the quality versus time in comparison

with the traditional collaborative filtering (CF). In Figure

6, plots labeled FR (FlockRecom) show that precision gets

significantly improved in the first 400 iterations and later keeps

increasing slowly. As expected, when a smaller number of

items are recommended, precision was higher. Comparing FR

to CF in Figure 6, we observe that precision values are better

0.
8,-----,-----,----,--------,------,----,--------,-----,-----r---&-==C === f=N==S=i'l

--+-CFN=10
---CfN=30

0.7 ---&- fR N=S
--+- fR N=10
�FRN=30

0.6

Iteration

Fig. 8. Flock-based recommender system (FR) compared to standard collaborative filtering-based recommender system (CF) based on the average F I values
for different numbers of top-n recommendations, over time. Averaged over 1 active user, 10 different runs. The x-axis represents the iteration number.

for FR for small N, and similar for FlockRecom and CF for

bigger N. Moreover, FlockRecom provides more variety in

the recommendations. Similarly, in FlockRecom, recall was

improved with the number of iterations, as seen in Figure 7.

For small N, FlockRecom produced better results. For big

N, FlockRecom needed more iterations to compute similar

recall values to CF. For both FlockRecom and CF, recall

values increased as N, the number of recommended items,

was increased, as shown in Figure 7.

To sum up, Figure 6, Figure 7, and Figure 8 show that,

as the number of iterations increases, the neighborhood qual

ity increases, thus the quality of the recommendations in

creases. We notice that FlockRecom continues to improve

its recommendations, eventually reaching higher quality levels

compared to standard CF. After enough number of iterations,

FlockRecom produced better results than CF. Moreover, Flock

Recom was more successful at exploration and overcoming

over-specialization. These improvements are hence due solely

to the dynamic nature of the flocking behavior of the agents

that form dynamic neighborhoods that do not cause stagnation

in the recommendations.

Table II shows the quality levels over several iterations for

the two methods for 3 values of N. Note how FlockRecom

clearly outperforms CF by "continuing" to learn and thus

improving recommendations with time.

VI. CONCLUSION

In this research, a new recommender system approach called

the f1ocks-of-agents based recommender system (FlockRe

com) was presented. This new approach is based on swarm

intelligence, specifically, the dynamic collaboration between

bird flocks in nature. The results were compared to the

traditional user-based nearest neighbor collaborative filtering

and FlockRecom was more successful at providing variety in

the recommendations without losing recommendation quality.

One problem suffered by some recommender systems is

over-specialization. When the recommendations are limited

to the user's behavior or user's profile, the user can be

restricted to seeing only similar items, and there will be no

randomness. In artificial intelligence, this problem is known

as the exploration/exploitation dilemma. Although collabora

tive filtering can counteract over-specialization by suggesting

different items, the dynamic structure of the FlockRecom

algorithm makes it more successful at solving the explo

ration/exploitation dilemma, which is also practically observed

in the experimental results. This and the dynamic nature

of the algorithm suggests that the proposed nature inspired

recommendation system looks very promising for dynamic

environments, especially where a concept drift exists. Thus,

more experiments on different datasets, especially ones that

represent dynamic environments, are planned in the future.

REFERENCES

[I] [Online]. Available: http://eigentaste.berkeley.edu/dataset/
[2] J. B. Schafer, D. Frankowski, 1. Herlocker, and S. Sen, "Collaborative

filtering recommender systems," in The Adaptive Web, LNCS 4321,2007,
pp. 291-324.

[3] J. Schafer, 1. Konstan, and 1. Reidel, "Recommender systems in e
commerce," in Proceedings of ACM Conference on E-commerce, 1999,
pp. 158-166.

TABLE II
TUE QUALITY LEVELS AVERAGED OVER 10 RUNS OF 1 ACTIVE USER AT SEVERAL ITERATIONS FOR TUE FLOCKRECOM AND CF AT 3 VALUES OF

N.

FlockRecom CF

N-5 N-IO N-30 N-5 N-IO N-30 Iter.

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

0.28 0.05 0.42 0.16 0.46 0.54 0.20

0.62 0.12 0.57 0.22 0.50 0.58 0.20

0.84 0.16 0.68 0.26 0.52 0.60 0.20

[4] E. Saka and O. Nasraoui, "Improvements in flock-based collaborative
clustering algorithms," in Computational intelligence Collaboration, Fu
sion and Emergence, intelligent Systems Reference Library, C. Mumford
and L. Jain, Eds. Springer, 2009, pp. 639-672.

[5] E. Saka and O. Nasraoui, "Simultaneous clustering and visualization of
web usage data using swarm-based intelligence," in Proceedings of the
20th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI'08), 2008.

[6] F. Picarougne, H. Azzag, G. Venturini, and C. Guinot, "A new approach
of data clustering using a flock of agents," Evolutionary Computation,
vol. 15, no. 3, pp. 345-367, 2007.

[7] M. Pazzani and D. Billsus, " Learning and revising user profiles: The
identification ofinteresting web sites," Mach. Learn., vol. 27, no. 3, pp.
3 I 3-331, 1997.

[8] M. Balabanovic, "An adaptive web page recommendation service,"
in AGENTS '97: Proceedings of the first international co1iference on
Autonomous agents. New York, NY, USA: ACM, 1997, pp. 378-385.

[9] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, "Grouplens: Applying collaborative filtering to use net
news," Communications of the ACM, vol. 40, no. 3, pp. 77-87, 1997.

[10] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and
J. Riedl, "Using filtering agents to improve prediction quality in the
grouplens research collaborative filtering system," in In Proceedings of
the 1998 ACM Conference on Computer Supported Cooperative Work,
Seattle, Washington, 1998, pp. 345-354.

[II] Y. Koren, " Collaborative filtering with temporal dynamics," in
Proceedings of the 15th ACM SlGKDD International Conference on
Knowledge DiscovelY and Data Mining, 2009.

0.04 0.4 0.15 0.5 0.58 200

0.04 0.4 0.15 0.5 0.58 400

0.04 0.4 0.15 0.5 0.58 850

[12] M. J. Pazzani, "A framework for collaborative, content-based and
demographic filtering," ArtifiCial Intelligence ReView, vol. 13(5-6), pp.
393-408, 1999.

[13] C. W. Reynolds, "Flocks, herds, and schools: A distributed behavioral
model," Computer Graphics, vol. 21, no. 4, pp. 25-34, 1987.

[14] F. Heppner and U. Grenander, "A stochastic nonlinear model for
coordinated bird flocks," in The Ubiquity of Chaos, S. Krasner, Ed.
Washington: AAAS, 1990, pp. 233-238.

[15] I. D. Couzin, J. E. N. S. Krause, R. James, G. D. Ruxton, and N. R.
Franks, " Collective memory and spatial sorting in animal groups,"
Journal of Theoretical Biology, vol. 218, no. 1, pp. 1-11, September
2002.

[16] G. Proctor and C. Winter, "Information flocking: Data visualisation in
virtual worlds using emergent behaviours," Lecture Notes in Computer
Science, vol. 1434, pp. 168-176, 1998.

[17] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
ACM Press / Addison-Wesley, 1999.

[18] C. J. Rijsbergen, l1iformation Retrieval, 22nd ed. Butterworth-
Heinemann, 1979.

[19] R. Belew, "Adaptive information retrieval: using a connectionist
representation to retrieve and learn about documents," in Proceedings
of the 12th annual international ACM SIGIR conference on Research
and development in i1iformation retrieval, Cambridge, Massachusetts,
United States, 1989, pp. II - 20.

[20] R. K. Belew, Finding out about: a cognitive perspective on search
engine technology and the WWw. New York, NY, USA: Cambridge
University Press, 2000.

