
Modeling and Implementing Collaborative Editing

Systems with Transactional Techniques

Qinyi Wu Calton Pu

School of Computer Science

Georgia Institute of Technology

Atlanta, Georgia 30332, USA

Email: {qxw, calton} @cc.gatech.edu

Abstract-Many collaborative editing systems have been devel­
oped for coauthoring documents. These systems generally have
different infrastructures and support a subset of interactions
found in collaborative environments. In this paper, we propose a
transactional framework with two advantages. First, the frame­
work is generic as demonstrated by its capability of modeling
four types of existing products: ReS, MediaWiki, Google Docs,
and Google Wave. Second, the framework can be layered on
the top of a modern database management system to reuse its
transaction processing capabilities for data consistency control
in both centralized and replicated editing systems. We detail
the programming interfaces and the synchronization protocol of
our transactional framework and demonstrate its usage through
concrete examples. We also describe a prototype implementation
of this framework over Oracle Berkeley DB High Availability, a
replicated transactional database management system.

I. INTRODUCTION

Collaborative editing systems support geographically dis­

tributed users to work on a shared document. These systems

in general have specialized implementations and only cover

a subset of interactions found in collaborative environments.

While it is tempting to develop new algorithms and infras­

tructures to cover the missing points in the full spectrum of

collaborations, any such work will lead to ad hoc implemen­

tations and substantial investment of resources.

We have developed a transactional framework to model and

implement the whole spectrum of collaborations. This new

framework has two advantages. First, it provides primitives

to program common editing actions (e.g., insert and delete) as

well as to specify permissible interactions between users (e.g.,

cancel the effect of another user). These primitives allow us

to conceptually specify different types of collaborations and

reason about their behaviors in terms of granularity of sharing,

time to release of individual edits to public, notification

of editing conflicts, and conflict reconciliation strategy. The

generality of our framework is tested by its capability of spec­

ifying four types of collaborative editing systems RCS [32],

MediaWiki [6], Google Docs [4], and Google Wave [5]. We

further test its generality by using this framework to specify

the behavior of a new type of collaboration that is derived

by combining features of Google Wave and the approach of

acceptance test in handling conflict reconciliation in replicated

database management systems (DBMS) [18].

In the second advantage, the framework can be entirely

layered on the top of a modern database management sys­

tem to reuse its transaction processing capabilities for data

consistency control in both centralized and replicated editing

systems. In centralized collaborative systems, a document is

stored at a central server. Users take turns to modify the

document [16]. In more recent collaborative editing systems,

a document is replicated at geographically distributed sites.

Each site is used by one user to modify its local copy.

Users can simultaneously modify the document and read the

changes of others. Due to network latency, users may modify

different versions of the shared document. An important role

of replicated editing systems is to bring all divergent docu­

ment copies into a convergent and consistent state [15], [30].

Though successful, these early techniques require specialized

implementations and only handle a subset of collaborations.

Our framework supports the entire spectrum of collaborations

by reusing the built-in database techniques in concurrency

control, crash recovery, and automatic replica synchronization.

Within our framework, we use partial persistent sequences

(PPSs) [35], a partially persistent data structure, to represent

documents and manage them within a database management

system. With the help of PPSs, we take the first initiative to

define editing conflicts and establish a correctness criterion

for collaborative editing systems based on the theory of

serializability and the approach of acceptance test for data

reconciliation. We also explain the usage of PPSs to support

document processing and their implementation issues. We

demonstrate the practicality of our framework by building it

over Oracle Berkeley DB High Availability [7], a replicated

transactional data management system.

In the rest of this paper, we start with an overview

of existing collaborative systems and discuss their potential

improvements in Section II. We describe the programming

interfaces of the proposed framework and its synchronization

protocol for data consistency guarantees in Section III. In

Section IV, we illustrate the flexibility of our framework by

modeling a variety of collaborative models. Then we explain

the application of PPSs to data consistency guarantees in

Section V. After that, we describe a prototype implementation

over Oracle Berkeley DB High Availability in Section VI. The

related work is discussed in Section VII.

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USA
Copyright © 2011 ICST
DOI 10.4108/icst.collaboratecom.2010.10

II. OVERVIEW OF COLLABORATIVE EDITING SYSTEMS

We observe a wide spectrum of collaborative editing sys­

tems. At one end of the spectrum are version control systems

that support only restricted collaboration [l3]. At the other

end of the spectrum are those "liberal" collaborative editing

systems that support highly interactive collaboration [15].

In this section, we first describe four collaborative editing

systems to give a brief coverage for the type of collaboration

available in practice in Section II-A. For each system, we char­

acterize it in terms of granularity of sharing, time to release of

individual edits to public, notification of editing conflicts, and

conflict reconciliation strategy. After that, we suggest potential

improvements to these systems in Section II-B.

A. Existing Collaborative Editing Systems

Existing collaborative editing systems unanimously adopt

the client-server architecture. The server node holds a

persistent copy of a shared document. Each client node stores

a copy of the shared document. A user at a client node

updates the shared document through the local copy. All

updates are synchronized to other users through the server

node. Below, we describe four collaborative editing systems

in the order of their restrictiveness on collaboration.

Res. It is a version control system. In RCS, a user

modifies a document through an explicit check-out step. The

document can be checked out by multiple users. Editing

conflicts occur if a user attempts to check in a new version

whose modifications are based on a stale version. The

granularity of sharing is the whole document. A user releases

her edits through an explicit check-in step. RCS uses a

locking mechanism to detect editing conflicts and notifies

impacted users through diagnostic messages. Even though

traditionally being used to handle source code in software

development, RCS has been recently used to support wiki

applications, e.g., Twiki [8].

MediaWiki. It supports fine-grained collaboration among a

group of users who simultaneously edit a shared document.

Users edit different parts of a document without interference.

Editing conflicts occur if more than one user simultaneously

edits the same paragraph. A user releases her edits by

manually clicking a save button. MediaWiki automatically

merges users' changes by diff3 [1], provided that changes

happened in different parts of the document. Otherwise,

impacted users are notified with diagnostic messages.

MediaWiki is the underlying engine for the largest online

encyclopedia, Wikiepdia [9].

Google Docs. It supports fine-grained collaboration among

a group of users who may simultaneously edit a shared

document and at the same time read updates made by

other users. Editing conflict occurs if more than one user

simultaneously updates the same sentence. A user's updates

are automatically synchronized to other users at a fixed

time interval (about tens of seconds). Google Docs uses the

differential-synchronization algorithm [3] to automatically

merge changes from different users. The basic idea is similar

to diff3, but in a streaming fashion. If an automatic merge

fails, Google Docs notifies impacted users through diagnostic

messages.

Google Wave. It represents the most "liberal" editing

system in the sense that Google Wave allows users to edit

a shared document anywhere and anytime. The system

reconciles editing conflicts automatically under all situations

even when users simultaneously edit overlapping areas. In

other words, if more than one user simultaneously deletes

the same data item, the data item is guaranteed to be deleted

exactly once. If more than one user simultaneously inserts

new data items at the same position, all the data items

are preserved. Google Wave guarantees data consistency

based on operational transformation (OT) [15], a non­

blocking distributed concurrency control algorithm. Google

Wave enforces both convergence and causality preservation

properties. The causality preservation follows Lamport's

logical clock [21], which require all operations be executed

in their happened-before relationships.

In the rest of this paper, we refer the collaboration

type supported by RCS as the check-inlcheckout model.

Since MediaWiki and Google Docs support similar level of

collaboration except for the time to release a user's edits,

they are referred to as the block-exclusive model. Finally, we

refer to the collaboration type supported by Google Wave as

the update-anywhere-anytime model.

B. Commentary of Existing Collaborative Editing Systems

We comment on existing systems from five aspects. We

make it clear if an aspect is only pertinent to certain types

of collaborative editing systems. The aspect list is by no

means complete. Other aspects such as access control are

not addressed in this paper since they are orthogonal to the

problem of data consistency.

Atomicity of grouped operations. There are many cases that

a user wants to release a sequence of changes in an atomic

step, e.g., a cut operation followed by a paste operation.

Current collaborative editing systems have already included

or planned to include this feature in some form of block

edits that allow users to release her edits in a batch. For

example, the next release of Google Wave will enhance the

current keystroke-by-keystroke synchronization mode with a

block-edit mode. However, the block-edit mode is not atomic

in the real sense in that it simply buffers a user's edits and

sends them to other users in a batch. It is still possible that

the buffered edits are only partially executed at remote sites

due to system crash or network intermittence.

Undo An undo operation allows a user to go back to a

previously edited document state. In a single-user setting, the

implementation of undo can be done by logging adequate

information for the pre-image and post-image of a document

transformed by each editing operation. In a multi-user setting,

two problems arise. First, the choice of which operation

to undo becomes ambiguous. When a user issues an undo,

it is unclear whether the user intends to undo the last

operation or undo the last operation received from other

users. The problem becomes more difficult if the user wants

to undo a sequence of changes which may be interleaved

with operations from different users. Second, no standard

techniques exist to evaluate and inform users of the impact of

undo. In some situations, an undo may produce dangling text

that was inserted into a paragraph which would disappear later

on. In some other situations, undo can lead to loss of data.

We cannot emphasize more in a collaborative environment

the importance of making undo predictable and recoverable.

For example, in Wikipedia, if a user replaces the current

version of an article with one of its previous versions, some

edits between these two versions may get lost.

Infrastructure development The four collaborative editing

systems described previously differ a lot in the level of

restrictiveness on collaboration. Therefore, it is not surprising

that each of them uses different implementation techniques.

For example, RCS uses a locking mechanism, while Google

Wave uses operational transformation [15] for data consistency

guarantees. However, it is important to avoid re-investing new

resources each time a new type of collaboration comes out.

Automatic merging in a controlled manner. Collaborative

editing systems that fall at the update-anywhere-anytime end

of the collaboration spectrum normally do automatic merging

of updates at best efforts. Even though this can minimize

manual reconciliation from users, automatic merging may

produce unintended results which may not get noticed

immediately. It is therefore important for the system to be

able to limit the amount of inconsistency introduced during a

merging procedure.

III. A TRANSACTIONAL FRAMEwORK FOR

COLLABORATIVE EDITING SYSTEMS

We describe a transactional framework for modeling and

implementing collaborative editing systems. Our framework

is based on standard transaction services in database manage­

ment systems such as two-phase locking concurrency control,

predicate locking, and write-ahead logging. This framework

is applicable to documents consisting of a sequence of data

objects. These objects can be instantiated to suit the require­

ment of a particular application domain. For example, a data

object can be a word in a text document or be a XML element

in a serialized XML document. Henceforth, we choose text

documents to explain our ideas due to its commonality. But

the presented ideas and techniques are applicable to all kinds

of documents that bear sequential structures. We first describe

the programming interfaces of our framework in Section III-A

and then describe the synchronization protocol for the replicas

of a shared document in Section III-B.

A. Programming Interfaces

There are two sets of programming interfaces for imple­

menting a certain type of collaboration. The interfaces in the

first set are used for interacting with a shared document, as

described below:

• Insert(pos, x) : it inserts a new item 'x' at position pos.
• Delete(pos): it deletes the item at position pos.
• Read(posx, POSy): it reads a range of text between the

two items indexed at pOSx and POSy respectively.

I nsert and Delete are standard editing operations. Sometimes

we call them write operation without differentiation. The Read
operation is new since a user may not explicitly tell the

underlying collaborative editing system the dependent data

items of new changes. However, the knowledge of the data

items in a read operation can be obtained either automatically

or manually. In an automatic approach, a collaborative edit­

ing system either infers the dependent data items based on

application-specific knowledge or uses the standard technique

implicit locking [25] to locate the area where the user's most

recent editing activities took place. For example, in the check­

in/check-out model, the read set is the whole document. In

the block-exclusive model, the read set is the paragraph that

contains the modified text. In the manual approach, a user

selects a block of text and marks them as being read through

a Graphical User Interface (GUI) menu entry.

The programming interfaces in the second set are used to

instruct our framework to take transaction-related actions, as

described below:

• Release: it releases a user's changes to other users since

the last release point. All the changes are bracketed within

a transaction whose execution is guaranteed with the

ACID properties.

• Save: it saves the current state of the document and

returns with a save-point identifier for later references.

The Save operation triggers the execution of a Release
as well.

• SavePivot: it saves the current state of the document and

returns with a pivot-point identifier for later references.

The SavePivot operation triggers the execution of a

Release as well.

• Cancel: it cancels the last write operation (i.e., insert or

delete) that has not been released to other users.

• Revert: it changes the current state of the document to

a state identified by either a save-point or a pivot-point

identifier.

A Release operation is useful in controlling the frequency of

synchronization with other users. For example, Google Docs

may issue a Release command each time a timeout event

happens for starting the next round of synchronization with

the server.

Both a Save and a SavePivot operation force the frame­

work to save a persistent state of the shared document. These

persistent states serve as reference points for a user to undo her

changes. They are also useful to reduce the amount of work

that a user has to redo during a collaborative editing system

failure or a system crash. The difference is that SavePivot
sends the framework an additional message that all edits

occurring before this point will not be undone by this user.

Usually, Save is used to commit intermediate edits while

SavePivot is used to commit milestone edits.

Our framework explicitly differentiates two types of Undo
operations. A Cancel undoes the last operation by the local

user. Since it has not been released to other users, the last

operation can be simply removed from the messaging sending

queue of the client. However, a Revert operation requires

synchronizations with other users since it may undo the

changes on which other users' edits depend. The save-points

and pivot-points created by a user are globally visible, which

means a user can bring the state of a shared document back to

a point saved by other users as well. However, any save-point

before the last pivot-point of a user becomes unavailable.

B. Synchronization Protocol Between Client and Server

Our framework uses an optimistic synchronization protocol

based on the two-tier replication scheme in [18]. The server

hosts the master copy of a shared document. Each client

node hosts a copy of the shared document. The master copy

reflects the most recent committed updates from all the users.

The client copy may be the latest or an old version of the

master copy. All transactions committed at the client nodes

are tentative. They are sent to the server and executed under

single-copy serializability in the order in which they are

committed at the client node. A tentative transaction becomes

a base transaction if it is committed at the server node and its

effects are integrated into the master copy. The write set of

all base transactions are sent to the client nodes and update

their replicas in the order they are committed. Since the server

node determines a global serializable order for all tentative

transactions, document replicas converge to the same state and

each of them has a consistent view of the document state.

Regarding the choice of concurrency control algorithm for

enforcing the single-copy serializability at the server node,

we choose the approach of acceptance criterion test in [18]

instead of multiversion concurrency control algorithms. Un­

der the master-slave replication scheme, it is possible for a

tentative transaction to see a very stale version of the shared

document. For example, a user may exit an editing session, edit

offline, and re-join days later. During the user's absence, the

shared document has gone through many rounds of revisions

and many tentative transactions have already committed. To

determine serializability for the tentative transactions the user

committed offline, a multi-version scheme needs to check both

active and committed transactions. The examination cannot

simply be done by usual lock conflict check because these

committed transactions no longer hold their locks.

The idea of acceptance criterion test is to check whether

the result produced by a tentative transaction based on the

version at the server node is within an acceptable threshold.

We take the first initiative to define such a criterion for

collaborative editing systems. In our acceptance criterion, a

tentative transaction is considered to be acceptable if the

difference between the set of data items that it reads at the

client node and the set of data items that it reads at the server

node is within a configurable threshold B. We assume that

a write operation is always proceeded by a read operation.

There are no blind writes. Therefore, we can use the read

set of data items to quantify the divergence between these

two versions. A quantitative definition of Accept(J is given in

Section V-C after introducing the PPS data structure.

We use Accept(J to mean the acceptance criterion is passed

if the difference is within B. AcceptO means that a tentative

transaction must read exactly the same set of data items at

the server node. AcceptOO means a tentative transaction can

tolerate arbitrary divergence between the data items read at the

client node and those at the server node. Of course, there are

cases that a write operation totally lost its context and cannot

be applied at all. For example, a delete operation attempts to

remove an already deleted item. We will come to this issue in

Section V and show that all write operations can be precisely

defined with the help of PPSs.

IV. MODELING OF COLLABORATIVE EDITING SYSTEMS

In this section, we demonstrate the usage of our framework

in modeling three editing models described in Section II-A.

To demonstrate the flexibility of our framework, the modeling

of an artificial editing model is also described.

Check-inlCheck-out Model. In this model, a user modifies a

shared document through a sequence of editing operations and

releases new changes through a check-in step. We synthesize

this model as in Figure la. The acceptance criterion of

the server node is configured to be Accepto. Therefore, if

someone modifies the shared document and creates a new

version, this transaction will be aborted. In the synthesized

code, there is only one Release operation, which is the last

operation within an editing session. In a standard check­

in/check-out model, a user may save multiple versions before

issuing the Release command. These intermediate versions

are not visible to other users. They are different from those

versions created through Save and SavePivot operations.

We assume that these intermediate versions are created in a

private space of the user and are handled completely by a

standard text editor.

Block-exclusive Model In this model, a user's edits are

sent to the server either at a fixed time interval or through

a manual click of a "send" button. Both events cause the

execution of a Release command. Users do not interfere

unless they work on the same part of a document. We

synthesize this model as in Figure lb. A Read operation is

followed by a sequence of write operations that updated the

text within the range of the Read operation. A bounding

block consists of the read text. Its content is application

specific. For example, in MediaWiki it is the paragraph where

these write operations took place. In Google Docs, it is the

sentence. The acceptance criterion is set to be Accepto.

Read(the whole document)

Insert
Delete

Delete

Release

(a)

Read(bounding block)
Insert
delete

Release
Read(bounding block)
Delete

Release

(b)

Read(two neighboring characters)
Insert
Release

Read(to-be-deleted character)
Delete
Release

(c)

Read(blockl)
Read(block2)

Insert
Delete
Release

Read(block3)
Insert
Release

(d)

Fig. 1: Examples of synthesized code. a)Check-in/check-out; b)Block-exclusive; c)Update-anywhere-anytime; d)Read-from

Update-anywhere-anytime Model. In this model, users

update the shared document without any restriction. All

editing conflicts are automatically reconciled. We synthesize

this model as in Figure lc. Every write operation is followed

by a Release to synchronize the document replica at the

frequency of every keystroke. Each transaction is essentially

reduced to a read operation followed by a write operation.

For an Insert, its read set contains only the two characters

neighboring the insertion point. For a Delete, its read set is

exactly the character to be deleted. The acceptance criterion

is configured to be Acceptoo• Since e is set to be 00, the

framework essentially enforces read-committed isolation [33]

because each tentative transaction only reads the data written

by committed transactions based on our synchronization

protocol described in Section III-B. Under read-committed

isolation, transactions are susceptible to lost updates and

phantom problems. More specifically, it is possible that two

users simultaneously delete the same data item or insert new

items at the same location. In Section V-C, we explain in

detail how our framework is able to produce the same result

as that of operational transformation when e = 00. Since

all document replicas are updated in a global serializable

order and all tentative transactions are applied in the order

they committed at the client nodes, both the convergence

property and the causality preservation property are preserved.

Read-from Model. We introduce a new editing model

to demonstrate the flexibility of our transactional framework.

In this model, a user can select blocks of text by the mouse

in different parts of a shared document and notify the system

that the follow-up changes depend on them. The user releases

new changes at a fixed time interval or the click of a "send"

button. This model is synthesized as in Figure ld. When

the server merges the user's new edits, the user is willing

to accept the result if the text the user read is only slightly

different from the original. In this case, the e is set to be a

small positive integer. This model has two distinct features.

First, a user can monitor the changes in other parts of the

document without blocking other users from editing. Second,

the model is able to quantify the discrepancy between what a

user has viewed and what is actually produced. This feature

is useful because it creates a smoother editing environment

since the user will not be asked for manual reconciliation

I t I 7 I 7 I t 1:=
i
!�a�e

o 0.3 0.6 1.0 +- position stamp

Set t tate of 0.6 to false

Fig. 2: A PPS example and its updates

if other users only did minor changes to the text such as

grammar or spelling corrections. Meanwhile, the user has the

assurance of being notified for big changes.

V. IMPLEMENTATION BASED ON THE PPS DATA

STRUCTURE

Partial persistent sequence (PPS) is a data structure that

always preserves the previous version of a sequence when it is

modified, but only the latest version can be modified [35]. We

start by a background introduction for PPSs and then explain

how to use it for document processing. After that we explain

the usage of PPSs to realize the synchronization protocol of

replicated collaborative editing systems and the handling of

reverts. Finally, we discuss the implementation issues of PPSs.

A. Partial Persistent Sequences

A PPS represents a sequence as a list of ordered items

indexed by rational numbers. Figure 2 gives an example for the

character sequence "ab" represented as a PPS. cp is a special

character used to mark the beginning and the end of a PPS.

Within our framework, PPSs are used as the implementation

data structure for document processing. In order to support

both update and undo operations, we slightly change its earlier

definition [35] and reintroduce its detail necessary for our

explanation. A PPS is defined by a pair P P S = (S, M):

• S: a set of rational numbers, called position stamps. S =

{Si E Q, 1 :s: i:S: n,n E N}.
• M: a function M : Q -+ � x {true, false}. � consists

of a set of data items. M maps each position stamp s to

a pair (item, state). � contains a null item cp different

from any other items allowed in user applications. Let

�App = � _ cp. An item is visible if the state of its

position stamp is true.

Position stamps are ordered by less than < operator. Si-1
is the largest position stamp that is less than Si. Si+l is the

smallest position stamp that is greater than Si. The update

history of a PPS is defined by {(Sk, Mk), ° :s: k :s: n}, where

each (Sk, Mk) is called a version. When a PPS is first created,

its initial version is an empty PPS So = {a, I}, Mo = {o f--+

(1), false), 1 f--+ (1), false)}. PPSs support three operations:

Read, Add and SetState:

• Read(si,Sj): Si,Sj E Sk, Si < Sj. It returns a set of

position stamps with the range of Si and Sj (inclusive).

• Add(Si, SH1, x) : Si, Si+l E Sk, x E �App. It adds the

item x between the item indexed by Si and the item

indexed by Si+l' Let Snew be an identifier satisfying

the constraint of Si < Snew < SH1. After the update,

we have the newer version Sk+1 = Sk U{ snew} and

Mk+1 = MkU{Snew f--+ (x, true)}.
• SetState(Si, state): Si E Sk, state E {false, true}. It

sets Mk(si).state = state. After the update, we have the

newer version Sk+l = Sk and Mk+l = (Mk - {Si f--+

Mk(Si)}) U {Si f--+ (Mk(si).item, state)}.
Figure 2 illustrates how a PPS is modified. The Add inserts

a new item '
x

' between the data items indexed by position

stamps ° and 0.3 respectively and adds a new position stamp

0.15. The SetState sets the state of 0.6 to false.

B. Mapping Between A Document and A PPS

From a user's perspective, a document consists of a se­

quence of characters. If a new character is inserted, a portion

of the sequence will be shifted right to create the space for

the new character. Correspondingly, if a character is deleted, a

portion of the sequence will be shifted left to reclaim the space.

On the other hand, the underlying editing system keeps the

characters of the document in a selected data structure, such

as an array and a linked list [2]. In our case, we choose the

PPS data structure. We call the sequence data structure from

the user's perspective logical view and the implementation data

structure from the editing system's perspective physical view.

The physical view determines the logical view. The mapping

from the physical view to the logical view is defined by:

LV((S, M)[Si' sjD = II M(sx).item 1\ M(sx).state
SxE[Si,Sj]

IT denotes concatenation, lSi, Sj] = {sxlsi :s: Sx :s: Sj 1\ Sx E
S} the set of position stamps falling between Si and S j, and

(S, M)[Si' Sj] a consecutive portion of PPS starting with Si
and ending at Sj. Conceptually, LV is the concatenation of

visible items indexed by position stamps within [Si' S j].
On the other hand, an update at the logical view can also

uniquely locate its position in the physical view. The first data

item in the logical view corresponds to the first visible data

item in the PPS. Similarly, the i-th data item in the logical view

corresponds to the i-th visible data item in the PPS. Therefore,

we can always map the editing operations of Insert, Delete,
Read to its corresponding forms on the physical view. The

editing operations on the logical view are mapped to the

physical view as follows:

• Insert(pos, x) is mapped to Add(Si' SH1, x) , where Si
satisfies the condition ILV((S, M)[O, siDI = pOS, where

II denotes the length of a sequence.

• Delete(pos) is mapped to SetState(Si, false), where Si
satisfies the condition ILV((S, M)[O, siDI = pOS.

• Read(posx,POSy) is mapped to Read(si' Sj), where Si
satisfies the condition ILV((S, M)[O, siDI = pOSx and Sj
satisfies the condition ILV((S, M)[O, sjDI = POSy.

A Read only includes the position stamps at the two

end points for the text within the range of pOSx and posY'
This is important because it avoids communication overhead

for moving data items between machines given that Read
operations are frequent and may involve a large amount of

data items.

C. Enforcement of the Synchronization Protocol

The PPS data structure has two important properties which

make it an attractive candidate for enforcing data consis­

tency in collaborative editing systems. First, position stamps

are unique and consistent to the sequential structure of a

document. Therefore, they can be used as primary keys to

store a document in a DBMS. All editing operations can be

represented as standard database operations and executed by

the DBMS in a conventional way. Second, a PPS never deletes

any data items. This property makes it possible to reconstruct

any version of the PPS to detect editing conflicts in a replicated

setting. In this section, we explain how to efficiently validate

the acceptance criterion mentioned in Section III-B based on

PPSs.

Given a tentative transaction t defined on the version

(Su, Mu) of a document replica, let the version of the master

copy at the server be (Sv, Mv). The acceptance criterion test

checks whether the editing distance between the data items

read on (Su, Mu) and the data items read on (Sv, Mv) exceeds

the threshold e, as defined below:

Definition 1. Acceptance criterion Accepto. Given a transac­

tion t defined on (Su, Mu), we say that t passes the acceptance

criterion of AcceptO on (Sv, Mv) if

Lread(si,Sj)Et Dif f(LV([Si, Sj]u), LV([Si' Sj]v)) :s: e,
where Diff is a difference algorithm.

Since each Read(Si, S j) only contains the position stamps

at the two end points for the range of text a transaction

read, it does not provide adequate information for correct

validation. For example, in Figure 3 the logical view of P P Sl
is "ab" and the logical view of PPS2 is "abc". They have

different views between [0.3,0.6]. With only Read(0.3,0.6),
it is unsure whether they have the same set of visible data

items. However, it turns out we can design a correct validation

algorithm by introducing some version information.

PPS, PPS2 PPS3

111: I � I n 111: I � I � I 11-rT-1 11----'-' : I �......--I �..,....-r,1 11
o 0.3 0.6 1.0 0 0.3 0.5 0.6 1.0 0 0.3 0.5 0.6 1.0

Fig. 3: Examples of PPSs with different logical views

AcceptTest(t, VeI;ent, B)
1 diverge t- 0

2 FOR each Read(s;, sJ) E t DO

3 At- read all position stamps between S; and Sj
4 FOR each Sx E A DO

5

6

7

8

IF Vsen,er(sx) > Vcliem THEN

diverge t- diverge+ 1

IF diverge> B THEN

abort
9 FOR each write operation 0 E t DO

10 execute 0

Fig. 4: The algorithm for validating Accept(J for transaction t

In the client-server synchronization protocol, the server

maintains a version counter Vserver. We use Vserver (sx) to

represent the version that Sx was last written by a committed

transaction. Each client maintains a local version counter

Vclient. When a tentative transaction is sent to the server node,

it includes the value of Vclient as well. The server validates

all tentative transactions by the algorithm AcceptTest in

Figure 4. The AcceptTest checks whether any position stamps

within lSi, Sj] are updated by transactions committed after

Vclient. Each time it detects a new update, it increases the

variable diverge (line 5-6). If diverge exceeds e, the whole

transaction is aborted (line 7-8). Otherwise, the transaction

will be executed as normal (line 9-10).
AcceptT est is executed as a standard transaction by the

DBMS. In the prototype of our framework, position stamps

are implemented by the access method B+-tree within the

DBMS. Therefore, the range scan procedure (line 3-8) can

be done atomically, which guarantees that the correctness of

the acceptance criterion test is not compromised.

AcceptTest provides a sufficient, but not necessary condi­

tion for validating Accept(J. It is possible that AcceptTest
aborts a transaction, which turns out to be acceptable by

Accept(J. As shown in Figure 3, P PSI and P P S3 have

the same view, but AcceptTest will abort a transaction if it

reads Read(0.3,0.6) under Accepto. However, AcceptTest
provides a practical solution because it adds negligible network

communication overhead for Read operations.

When e -I- 0, the editing system admits non-serializable

interleaving of transactions. For example, a transaction tries

to delete data items that have been deleted or do an insert at a

position containing unseen items inserted by previously com­

mitted transactions. Our framework handles these situations as

follows. For a Delete, it will be executed as normal because

a Delete operation is mapped to SetState(sx, false). In the

PPS, it is mapped to write the state of Sx to false multiple

times. From a user's perspective, the data item is deleted

exactly once. When it is an Insert, the server first checks

whether there are any items between Si and Si+l' If no new

position stamps are present, it does the ADD(Si,SHl,X) by

inserting a new position stamp Snew as usual. Otherwise, the

server will query the DBMS to get the next position stamp Sk

greater than Si and does ADD(Si, Sk, x) instead.

D. Revert Handling

A Revert operation reverts the state of a shared document

to a previous save-point or pivot-point. When the server

receives a Revert operation, it checks its log entries and

locates all the transactions committed after that point. If the

revert point is located before the most recent pivot-point in

the server's log, the server will abort this transaction and

respond back to the client along with the identifier for the

most recent pivot-point. The client can optionally resubmit

the revert request with this new reference point. Let 0102 ... 0n

be the sequence of operations that need to be reverted. The

compensating transaction is constructed as On On-I ... 01 based

on the following rules:

• if 0i is a Read, its compensating operation is 0i = ¢,

which is simply ignored.

• if 0i is a SetState(sx, state), its compensating operation

is 0i = SetState(sx, state);

The compensating transaction undoes, from the user's per­

spective, any operations that are performed by the transac­

tions committed after the reverted point. A big advantage of

handling Revert based on PPSs is that the construction of a

compensating transaction is completely operational.

E. Implementation Issues for PPSs

The previous discussion for PPS assumes that data items

are never removed and a machine has unbounded precision

bits for representing position stamps. While this is valid from

a theoretical point of view, which enables us to explain the

framework in a concise way, it is rare in practice that col­

laborative editing systems allow its data to grow unbounded.

Therefore, a garbage collection algorithm is used to period­

ically rebalance the PPS data structure and reassign visible

data items with new position stamps.

The server starts the garbage collection process when any

of the three events happens: 1) the data storage for the PPS

exceeds a threshold; 2) the PPS runs out of precision bits; 3)
all users exit an editing session. The server starts a distributed

consensus algorithm such as two-phase commit to coordinate

the garbage collection process. The server maintains the pre­

image and post-image of a PPS at the end of the process

and maintains the mapping between the old position stamps

and the new position stamps for visible data items. Therefore,

if a client node submits a transaction based on an old PPS,

the server can use the mapping to determine the right data

items to update. Each rebalanced PPS is uniquely identified

by a rebalance-identifier. All document replicas maintain the

rebalance-identifier for its local PPS and will include it in all

the transactions sent to the server.

Even though the garbage collection process uses a dis­

tributed synchronization algorithm, we do not expect it to raise

much concern. A user is able to continue her regular edits since

all transactions are tentatively committed on its local copy. The

garbage collection only delays the time of synchronizing new

changes to the replicas of other users.

Client Transaction Manager

Forward update
requests >

<========:J

Server
'-Transactlon-M-oniio-r-----------

Server Transaction Manager

Collaborative
Editing
System

Replay replication
stream

Oracle Berkeley
DB High
Availability
Infrastructure

Fig. 5: System architecture

VI. COLLABORATIVE EDITING SYSTEM PROTOTYPE

We have implemented our transactional framework over

Oracle Berkeley DB High Availability. In this section, we first

provide a background description for this replicated DBMS in

Section VI-A and give an overview of our system architecture

in Section VI-B. We then explain different modules of our

framework in Section VI-Co

A. Oracle Berkeley DB High Availability Infrastructure

Oracle Berkeley DB High Availability enables replication

of a database across a collection of nodes. These nodes form

a replication group. Within the group, one node is elected to

be the master, while the rest of the nodes are referred to as

replica. The master node accepts both read and write trans­

actions, while the replica nodes accept read-only transactions.

A replica node communicates with the master node through

a logical replication stream that contains a description of the

logical changes of the master node. The stream is replayed

at the replica using an internal replay mechanism. In our

implementation, a client node maintains the state of the shared

document in a replica node, while the server node maintains

the state of the shared document in a master node.

B. System Architecture

In our implementation, a shared document is replicated

across a collection of client nodes and one server node. Each

client node is used by one user to modify the shared document.

The server node is responsible for integrating changes from all

client nodes and replay these changes to all replicas. Figure 5

shows the system architecture between a client node and a

server node. When a user issues new edits, the user sees their

effect immediately. Meanwhile, these edits are wrapped in the

form of transactions and forwarded to the server node. The

server node processes each transaction in two steps: 1) run it

against an acceptance test; and 2) execute the transaction in the

master node if it passes the acceptance test, otherwise abort

the transaction. Meanwhile, the changes at the master node

streams to all replica nodes. Each client node periodically

refreshes its document copy based on the latest state of its

replica.

Oracle Berkeley DB High Availability provides several

benefits for developing collaborative editing systems. First,

atomicity is a given-in property in transactions. Second,

our synchronization protocol can be completely implemented

based on the available concurrency control algorithm. Third,

the replicated DBMS simplifies recovery. If a client node

restarts after a crash, its replica is automatically brought to

the latest state of the master node. Finally, the DBMS handles

durability automatically for a collaborative editing system. The

update of a user is guaranteed to be persistent as soon as it

commits at the master node.

C. Implementation Modules

We have implemented a transactional monitor at both the

client side and the server side to synchronize distributed

editing activities. The interaction of these modules is

illustrated in Figure 5. Below we describe each of them.

Client Activity Manager (CAM). It receives a sequence of

operations from the text editor. When it sees an operation

of Insert, Delete or Read, CAM appends it to a buffer.

Otherwise, it takes the following actions:

• For a Release, CAM wraps all the operations in the

buffer and brackets them within the two control oper­

ations Begin-transaction and End-transaction and sends

it to the underlying transaction manager. Then CAM

empties the buffer. The Begin-transaction and End­

transaction are used to indicate the beginning and the

end of a classic transaction.

• For a Save or a SavePivot, CAM takes an action similar

to the handling of Release, except that it additionally

includes a Save or SavePivot as the last operation

within the transaction.

• For a Cancel, CAM removes the last entry from its

buffer.

• For a Revert, CAM brackets this operation param­

eterized with its Save or SavePivot within Begin­

transaction and End-transaction and sends the transaction

to its underlying module.

Client Transaction Manager (CTM). It is responsible for

forwarding transactions received from CAM to the server

and monitoring their progress. CTM maintains all pending

transactions in a queue and waits for responses from the

server. CTM assumes that the server responds to pending

transactions in the order they are sent. On receiving a response

from the server, it removes the transaction from the head of

the queue. If the response is a commit, it takes no action

since the transaction has committed at the master node and is

going to be replayed at its local replica. If the response is an

abort, it generates a diagnostic message to the user. The abort

a transaction may cause the abort of subsequent pending

transactions that read the results of the aborted transaction.

If a cascading abort happens, all the aborted transactions are

removed from the queue and their states will be included in

the diagnostic message.

Server Transaction Manager (STM). It is responsible

for processing all client transactions under single-copy

serializability. Upon receiving a transaction, STM forwards

the Begin-transaction and End-transaction as well as the

document editing operations to its underlying DBMS where

the transaction is processed in a conventional way. Due to

simultaneous editing, a client transaction may see a different

version of the shared document and produces different results.

To quantitatively measure the divergent distance, STM runs

all client transactions against the acceptance criterion test

introduced in Section V-CO If passed, the transaction is

committed, otherwise get aborted. STM then returns its state

to its corresponding client node.

Log Manager (LM). It maintains log entries for the

execution history of transactions. Each log entry contains the

read and write set of a transaction. To support Cancel, the

log entries of a transaction are backward chained to identify

operations within a transaction. LM also maintains a special

save-point or pivot-point log entry as a marker in its log for

handling Revert operations.

VII. RELATED W ORK

Many extended transaction models have been developed to

establish a theoretical foundation for specifying correctness

in cooperative applications [10], [11], [20], [23], [27]. Even

though these advanced models are capable of modeling open­

ended and dynamic editing activities, their applicability to

collaborative editing systems is handicapped by the mismatch

between the set-based relational data model and the sequential

structure of a document. Moreover, standard definitions have

not been established for editing operations regarding transac­

tion boundaries and editing conflicts. A lot of successful efforts

have been attempted for managing XML documents within

relational DBMSs [28], [14], [31] and apply these advanced

transaction model to support editing activities [19]. But not

much work has been done for documents with sequential data

items. The few efforts we are aware of are the work in [12],

[22], [29]. The major reason is that a sequential document

are indexed by ephemeral keys which are prone to change

due to document modification. The PPS data structure address

this issue by assigning immutable and ordered identifiers to

the data items of a document. Our framework adopts two

techniques from the earlier work. First, the handling of revert

follows the compensation technique in Sagas [17]. Second, the

introduction of a pivot-point to define an irreversible reference

point for handling backward recovery of transaction processing

was first proposed by Mehrotra et.al. [24].

Our framework is based on the persistent data structure

PPS. There are two other persistent data structures [26] [34]

that might be alternative choices to PPS. These two structures

create ordered path-based indexes for unstructured text doc­

uments. Both approaches provide optimization techniques for

reducing the growing length of indexes. The major concern

for path-based indexes is the space overhead because they

may grow very long at the places where the text was updated

frequently. Another concern is the matching cost, which is

proportional to the length of the paths. To prevent indexes from

growing unbounded, both approaches have to rebalance their

data structures at some points. Certainly, solid experimental

studies are needed to determine the best data structure for our

framework.

VIII. CONCLUSION

We propose a transactional framework for modeling

and implementing collaborative editing systems. Our

framework demonstrates its advantages in two ways. First,

it provides a conceptual framework to specify the entire

spectrum of collaborations. We demonstrate its generality and

flexibility through its capabilities of specifying four types of

collaborative editing systems and a new collaboration model.

In the second advantage, our framework can be layered

on the top of a database management system to reuse its

transactional techniques for data consistency guarantees in

both centralized and replicated collaborative editing systems.

This is demonstrated through a prototype implementation

over Berkeley DB High Availability, a replicated database

management system. As the next step, we will study the issue

of system scalability and the impact of this technology transfer.

ACKNOWLEDGMENTS This research has been partially

funded by National Science Foundation by IUCRC,

CyberTrust, CISE/CR!, and NetSE programs, National

Institutes of Health grant U54 RR 024380-01, PHS Grant

(UL1 RR025008, KL2 RR025009 or TLl RR02501O) from

the Clinical and Translational Science Award program,

National Center for Research Resources, and gifts, grants, or

contracts from Wi pro Technologies, Fujitsu Labs, Amazon

Web Services in Education program, and Georgia Tech

Foundation through the John P. Imlay, Jr. Chair endowment.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science

Foundation or other funding agencies and companies

mentioned above.

REFEREN CES

[1] Comparing and merging files. http://www.gnu.org/software/diffutils/
manuallhtml_mono/diff.html, 2010.

[2] Data structures for text sequences. http://www.cs.unm.edu/�crowley/
papers/sds/sds.html, 2010. Charles Crowley.

[3] Differential synchronization overview. http://neil.fraser.name/writing/
sync/, 2010.

[4] Google docs basics. http://docs.google.comlsupport/bin/static.py?hl=
en&page=guide.cs&guide=20322, 2010.

[5] Googlewave white paper. http://www.waveprotocol.orglwhitepapers/
operational-transform, 2010.

[6] Mediawiki 1.15.1. http://www.mediawiki.orglwiki/MediaWiki, 2010.
[7] Oracle berkeley db java edition high availability. http://www.oracle.com/

technology Iprod uctslberkeley -db/pd flberkeleydb-je-ha -w hi tepaper. pdf,
2010.

[8] Twiki system requirements. http://twikLorg/cgi-bin/viewITWiki/
TWikiSystemRequirements, 20 I O.

[9] Wikipedia: a free, web-based, collaborative, multilingual encyclopedia.
http://en.wikipedia.org/wikilWikipedia, 2010.

[10] Fran�ois Bancilhon, Won Kim, and Henry F. Korth. A model of cad
transactions. In VLDB '1985: Proceedings of the 11th international
conference on Very Large Data Bases, pages 25-33. VLDB Endowment,
1985.

[II] Panayiotis K. Chrysanthis and Krithi Ramamritham. Acta: a framework
for specifying and reasoning about transaction structure and behavior.
SIGMOD Rec., 19(2):194-203, 1990.

[12] Chris Clifton and Hector Garcie-Molina. The design of a document
database. In DOCPROCS '88: Proceedings of the ACM conference on
Document processing systems, pages 125-134, New York, NY, USA,
1988. ACM.

[13] Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACM Comput. Surv., 30(2):232-282, 1998.

[14] Fang Du, Sihem Amer-Yahia, and Juliana Freire. Shrex: managing xml
documents in relational databases. In VLDB '04: Proceedings of the
Thirtieth international conference on Very large data bases, pages 1297-
1300. VLDB Endowment, 2004.

[15] c. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems.
SIGMOD Rec., 18(2):399-407, 1989.

[16] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: some
issues and experiences. Commun. ACM, 34(1):39-58, 1991.

[17] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD '87:

Proceedings of the 1987 ACM SIGMOD international conference on
Management of data, pages 249-259, New York, NY, USA, 1987. ACM.

[18] Jim Gray, Pat Helland, Patrick O'Neil, and Dennis Shasha. The dangers
of replication and a solution. In SIGMOD '96: Proceedings of the 1996
ACM SIGMOD international conference on Management of data, pages
173-182, New York, NY, USA, 1996. ACM.

[19] Francis Gropengie,6er, Katja Hose, and Kai-Uwe Sattler. An extended
transaction model for cooperative authoring of xml data. Computer

Science - Research and Development, 24(1):85-100, 2009.
[20] George T. Heineman. A transaction manager component for cooperative

transaction models. In CASCON '93: Proceedings of the 1993 confer­

ence of the Centre for Advanced Studies on Collaborative research,
pages 910-918. IBM Press, 1993.

[21] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565, 1978.

[22] Stefania Leone, Thomas B. Hodel-Widmer, Michael H. Bohlen, and
Klaus R. Dittrich. Tendax, a collaborative database-based real-time
editor system. In EDBT, pages 1135-1138, 2006.

[23] Luigi V. Mancini, Indrajit Ray, Sushil Jajodia, and Elisa Bertino.
Flexible transaction dependencies in database systems. Distrib. Parallel
Databases, 8(4):399-446, 2000.

[24] S. Mehrotra, R. Rastogi, A. Silberschatz, and H.F. Korth. A transaction
model for multidatabase systems. pages 56 -63, jun 1992.

[25] R. E. Newman-Wolfe, M. L. Webb, and M. Montes. Implicit locking
in the ensemble concurrent object-oriented graphics editor. In CSCW

'92: Proceedings of the 1992 ACM conference on Computer-supported
cooperative work, pages 265-272, New York, NY, USA, 1992. ACM.

[26] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.
A commutative replicated data type for cooperative editing. Distributed

Computing Systems, International Conference on, 0:395-403, 2009.

[27] Calton Pu, Gail E. Kaiser, and Norman C. Hutchinson. Split-transactions
for open-ended activities. In VLDB '88: Proceedings of the 14th
International Conference on Very Large Data Bases, pages 26-37, San
Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[28] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He,
David J. DeWitt, and Jeffrey F. Naughton. Relational databases for
querying xml documents: Limitations and opportunities. In VLDB

'99: Proceedings of the 25th International Conference on Very Large
Data Bases, pages 302-314, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[29] Michael Stonebraker, Heidi Stettner, Nadene Lynn, Joseph Kalash, and
Antonin Guttman. Document processing in a relational database system.
ACM Trans. In! Syst., 1(2): 143-158, 1983.

[30] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David
Chen. Achieving convergence, causality preservation, and intention
preservation in real-time cooperative editing systems. ACM Trans.

Comput.-Hum. Interact., 5(1):63-108, 1998.
[31] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasun­

daram, Eugene Shekita, and Chun Zhang. Storing and querying ordered
xml using a relational database system. In SIGMOD '02: Proceedings
of the 2002 ACM SIGMOD international conference on Management of
data, pages 204-215, New York, NY, USA, 2002. ACM.

[32] Walter F. Tichy. Rcs-a system for version control. Softw. Pract. Exper.,

15(7):637-654, 1985.
[33] Gerhard Weikum and Gottfried Vossen. Transactional information

systems: theory, algorithms, and the practice of concurrency control
and recovery. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001.

[34] Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot: A scalable op­
timistic replication algorithm for collaborative editing on p2p networks.
In ICDCS '09: Proceedings of the 2009 29th IEEE International Con­
ference on Distributed Computing Systems, pages 404-412, Washington,
DC, USA, 2009. IEEE Computer Society.

[35] Qinyi Wu, Calton Pu, and Joao Eduardo Ferreira. A partial persistent
data structure to support consistent shared access in collaborative editing
applications. In ICDE, 2010.

