
Performance Evaluation of Time Synchronization and Clock
Drift Compensation in Wireless Personal Area Networks

Jonas Wåhslén Ibrahim Orhan Dennis Sturm Thomas Lindh
School of Technology and Health

KTH

Email:{jonas.wahslen; ibrahim.orhan; dennis.sturm; thomas.lindh}@sth.kth.se

ABSTRACT

Efficient algorithms for time synchronization, including compen-

sation for clock drift, are essential in order to obtain reliable fu-

sion of data samples from multiple wireless sensor nodes. This

paper evaluates the performance of algorithms based on three

different approaches; one that synchronizes the local clocks on the

sensor nodes, and a second that uses a single clock on the receiv-

ing node (e.g. a mobile phone), and a third that uses broadcast

messages. The performances of the synchronization algorithms

are evaluated in wireless personal area networks, especially Blue-

tooth piconets and ZigBee/IEEE 802.15.4 networks. A new ap-

proach for compensation of clock drift and a realtime implementa-

tion of single node synchronization from the mobile phone are

presented and tested. Finally, applications of data fusion and time

synchronization are shown in two different use cases; a kayaking

sports case, and monitoring of heart and respiration of premature-

ly born infants.

Keywords

Time synchronization, clock drift, data fusion, Bluetooth, IEEE

802.15.4.

1. INTRODUCTION
Correctly performed data fusion is crucial for applications in

sports, medicine, health and many other fields. Samples of data

from multiple sensors are received by a coordinating node such as

a mobile phone. Data fusion requires that samples from multiple

sensors have a time reference that is synchronized and comparable

for all connected nodes. However, even small differences in clock

frequency among the nodes may lead to unacceptable errors after

some time. Compensation for clock drift is therefore a necessary

component in time synchronization. Today, the main radio tech-

nologies for communication between wireless sensors and coordi-

nating nodes are Bluetooth and IEEE 802.15.4. In this paper we

evaluate and compare the performance of different time synchro-

nization algorithms in Bluetooth piconets as well as ZigBee/IEEE

802.15.4 networks. In addition, we have developed and tested a

new technique to compensate for clock drift to preserve accuracy

in data fusion.

The paper is organized in the following way. Section 2 covers

different methods for time synchronization and clock drift com-

pensation. Performance evaluation results from Bluetooth

piconets and IEEE 802.15.4 networks are shown in Section 3.

Section 4 discusses applications in a kayaking sports use case and

a neonatal care use case.

2. ALGORITHMS
This section briefly describes the algorithms for synchronization

(Section 2.1) and clock drift compensation (Section 2.2) that are

evaluated in Section 3.

2.1 Synchronization Algorithms
Two different approaches for time synchronization in wireless

sensor networks are described in this section; firstly to coordinate

the local clocks in each of the sensor nodes, and secondly to use

the clock of a single central node, e.g. a mobile phone, to syn-

chronize data. A comprehensive survey of time synchronization in

wireless sensor networks can be found in [1].

2.1.1 Synchronizing the Clocks in Sensor Nodes
Algorithms for synchronization of local clocks in wireless sensor

networks often apply a combination of methods for distributed

systems [2] and the Network Time Protocol [3] for the Internet.

The algorithm used in the performance evaluation in Section 3 is

described in detail in [4]. The main idea is to synchronize the

sensor nodes’ (slaves’) clocks to a mobile phone (master) clock in

a Bluetooth piconet. Fig. 1 illustrates the algorithm: The master

stores a timestamp, t1, and sends a synchronization request mes-

sage, mrequest, to a slave that hosts a sensor. After receiving mrequest,

the sensor node inserts its local time, t2, into the return message,

mreply, before transmitting it back to the master. The master gener-

ates timestamp t3 when mreply is received. The master can, based

on these timestamps, determine the offset between its own clock

and the slave’s clock, and accordingly synchronize the two clocks.

When the master during consecutive data acquisition receives a

sample from the slave, including its local timestamp, it adds the

estimated offset to obtain the common synchronized time. The

master performs all offset calculations and implements the syn-

chronization, slaves are passive and simply respond to requests.

Fig. 1. The figure shows a synchronization message sent between a

mobile phone and a sensor node, and the timestamps set by the master

and slave.

Timestamps t1 and t3 are set by the master and timestamp t2 is set

the by slave. Let tround=t3-t1be the estimated round-trip time and

Dmin the minimum delay time for mrequest from the master to the

slave. The earliest time mrequest can reach the slave is t2+Dmin, and

the latest time mrequest can reach the slave is t2+tround-Dmin. The

mreply mrequest

Mobile phone (master)

Sensor node (slave)

t1 t3

t2

BODYNETS 2012, September 24-26, Oslo, Norway
Copyright © 2012 ICST
DOI 10.4108/icst.bodynets.2012.250342

maximum error in estimating the time for mrequest to reach the

slave is ±(tround/2-Dmin). The original idea in Cristian’s algorithm

[5] for probabilistic clock synchronization in distributed systems

is that a server responds with its time, tserver, as a reply to a request

from a client. The client sets its clock to tserver+tround/2. Choosing

tround/2 as the delay between the readings of t1 and t2 minimizes the

maximum error.

Instead of letting the slave act as a client and request the master’s

time, compute the offset and set its clock, the master performs all

calculation and implements the synchronization. The estimated

offset, o, between the clocks is the difference between t1 and t2

plus the delay between the readings of the clocks (half of the

round-trip time), as shown in Fig. 2. The master adds this offset to

the local timestamp inserted by the sensor node along with the

data samples.

Fig. 2. The figure shows how the offset of the slave’s clock relative to

the master’s clock and the round-trip time is estimated. The error

limit for the offset is ±(tround/2-Dmin).

An alternative method to coordinate the local clocks in sensor

nodes is to use broadcast messages. This approach is further de-

veloped and evaluated in Section 3.2.

2.1.2 Single Clock Synchronization
Instead of coordinating the clocks in the sensor nodes, an alterna-

tive approach is to rely on the single clock in the receiving node,

such as a mobile phone ([1], [6] and [7]). Fig. 3 shows an applica-

tion in a mobile phone that reads samples from wireless nodes.

Fig. 3. An application in a mobile phone reads samples from three

sensor nodes. Data from the sensors pass two buffers; the outgoing

data buffer on the sensor, and the incoming data buffer on the mobile

phone.

The accuracy of data synchronization based on timestamps by the

mobile phone (Fig. 3) depends on a variable time period, ∆t,

between the actual sampling time on the sensor node and the time

the sample is read from the buffer on the mobile phone. Let tmobile

be the time set by the application program on the mobile phone,

and tsensor be the time when the sample was acquired by the sensor

node. If the clocks on the sensor node and the mobile phone are

synchronized in time, then ∆t for sample k will be ∆t(k)= tmo-

bile(k)−tsensor(k). The main idea is to identify samples with the

smallest ∆t, and use the result to recalculate the timestamps for all

samples. The method estimates the minimum ∆t that consists of

the fixed part of the delay i.e. processing time, sending time,

propagation time etc. An algorithm that identifies samples with

minimum ∆t has been implemented [7]. It uses the observation

that the last sample in the incoming queue has spent the shortest

time in a buffer. The algorithm used in the performance evalua-

tion in Section 3 can be summarized in the following steps for

each connected sensor.

i) Let the samples be timestamped when read by the appli-

cation program from the incoming buffer on the mobile

phone.

ii) Identify a set of samples that is likely to have a mini-

mum ∆t.

iii) Calculate the average offset from this set of samples to

correct the timestamps of the remaining samples.
The original algorithm in [7], which applied linear regression, has

been improved to satisfy real-time requirements.

2.1.3 Clock Synchronization using Broadcast
An algorithm inspired by the Flooding Time Synchronization

Protocol [8] for broadcast synchronization was implemented as

following.

i) The coordinating node sends a broadcast message to all

sensor nodes.

ii) A sensor node stores its local time when receiving the

broadcast message.
iii) The synchronized time can be obtained, by just subtract-

ing the sensor actual time with the time stored in the vari-

able. All slave sensors will have the same time.

2.2 Clock Drift Compensation
The relation between two nodes local time, tsensor1 and tsensor2 can

be modelled as a linear equation defined as

 (1)

where o is the clock offset and d is clock drift. This clock drift is

hardware-related and mainly caused by inaccuracy in the clock-

crystal frequency. Small variations can occur due to for example

power levels, temperature or voltage changes. A straightforward

way to estimate the drift parameter d in Equation 1 is to retrieve

timestamps from two sensors at two different time points (sepa-

rated by a sufficient time interval) or using linear regression as in

[7] and [8]. If multiple values are retrieved linear regression can

be used. Resynchronization or an algorithm to compensate the

drift may then be applied. Drift compensation can be implemented

either by multiplying the local node by the estimated drift parame-

ter, or by continuously adjusting the node’s local time when nec-

essary.

Fig. 4. The figure shows two sensors sampling at 200Hz at the same

time (t1, t2). Due to clock drift the sampling rate is shifted (t3, t4 and t5,

t6). The drift compensation function decreases the inter-sample time

with 1ms for S2 at t6 when it detects a drift of at least 1ms. At t7 the

sensors sample at the same time again.

Clock drift compensation can be achieved by defining a virtual

clock that runs with the estimated drift parameter d taken into

account. We assume a resolution of 1ms for the local and the

virtual clocks in the following. The sensor node clock with slow-

est clock (the lowest frequency) is used as a reference for the

Data buffer

buf

buf

buf

Bluetooth interface

Mobile phone

Wireless sensor nodes

Socket connection

Socket connection

Socket connection

t3-t2
t1-t2

o=(t1-t2+t3-t2)/2=t1-t2+(t3-t1)/2

tround=t3-t1

other sensor nodes drift compensation. When the node detects that

the virtual clock differs from the local clock more than 1ms, the

virtual clock time is subtracted by 1ms.

Fig. 4 shows an example of how the drift compensation algorithm

works. At t1 and t2 both sensor nodes, S1 and S2, are reading sam-

ples at exactly the same (synchronized) time with the sampling

frequency fs=200Hz (Ts=5ms). At t3 the sample time for S1 and S2

are separated and partly overlapped at t4. The time difference

between the two local clocks at t5 and t6 has reached 1ms. The

algorithm will now decrease the inter-sampling time Ts for S2 by

1ms. The result is that the two sensors pick samples simultaneous-

ly at t7. The algorithm will continuously monitor and control the

clock drift.

3. PERFORMANCE EVALUATION RE-

SULTS
This section presents results of performance evaluation of the

algorithms outlined in the previous section. The testbed is de-

scribed in Section 3.1 and results from tests in Bluetooth piconets

and ZigBee/IEEE802.15.4 networks are shown in Section 3.2 and

Section 3.3. Finally the algorithm for clock compensation is eval-

uated in Section 3.4.

3.1 Experimental Setup
The results presented in this section are obtained from a common

testbed with a coordinator (master) and one up to six sensor nodes

(slaves) from Shimmer Research [9]. These nodes are pro-

grammed in nesC (TinyOS 2.1.0 operating system) and are able to

switch between a Bluetooth radio transceiver and a ZigBee/IEEE

802.15.4 radio transceiver.

3.2 Time Synchronization in Bluetooth

Piconets
In this section we evaluate the performance of the two algorithms

for synchronizing sensor nodes to a mobile phone (master) in

Bluetooth piconets described in Section 2.1.

3.2.1 Synchronizing the Clocks in Sensor Nodes
The algorithm is evaluated by varying two parameters. Firstly, the

number of connected sensor nodes, and secondly, the number of

repeated loops of mrequest and mreply (in Fig. 1), where each loop

results in a set of timestamp t1, t2 and t3. Two different cases are

analysed regarding the way the sensor nodes are connected. Fig. 5

shows the synchronization error when nodes are simultaneously

connected to the master during the synchronization procedure.

Fig. 5. Synchronization error in milliseconds when all nodes in a

Bluetooth piconet are connected at the same time. The error decreases

as the number of loops increases. The error increases when several

nodes are connected.

In Fig. 6, each sensor node is synchronized to the mobile phone

one at a time. The figures show the 99th percentile of the synchro-

nization error in milliseconds for 1 up to 50 loops, where each test

run is repeated a large number of times. From Fig. 5 and Fig. 6 it

is obvious that the synchronization error decreases as the number

of loops increases. No substantial improvement is gained by

repeating the procedure more than 50 times, which takes approx-

imately 1 second. It can often be interrupted after fewer loops. It

is also evident that the error increases as the number of connected

nodes increases. Furthermore, a substantially higher synchroniza-

tion error can be observed when all nodes are connected at the

same time (Fig. 5).

Fig. 6. Synchronization error in milliseconds when one node at a time

is connected in a Bluetooth piconet. The synchronization error is

approximately one half compared to Fig. 5, when the nodes all nodes

are connected during the synchronization process.

This is a direct effect of the way Bluetooth controls multiple

connections, where the master determines when a slave is permit-

ted to transmit data by sending a null or pull packet to the slave.

When a single sensor node is connected, the master only needs to

check if that node has data to send. However, when multiple

nodes are connected, the master will schedule the order that the

nodes are permitted to transmit. A sensor node may have to wait

before sending its sampled data. One reason is that the master

visits every connected sensor (sends POLL or NULL packets)

regardless of whether they have data to send or not. Another

reason is that the scheduling is necessarily done in a round-robin

fashion [4]. The additional error when all sensors are simultane-

ously connected during the synchronization procedure (Fig.5) is

approximately twice the error when the sensors are synchronized

one at a time (Fig. 6). For example, when 6 nodes are connected

the time interval between every poll request from the master to a

slave will be approximately 7ms.

3.2.2 Single Clock Synchronization from the Mobile

Phone
The method described in Section 2.1.2 relies solely on the clock in

the mobile phone for data synchronization and therefore does not

require coordination of the sensor nodes’ clocks. The synchroni-

zation error after 50 loops ranges from 1.1ms to 3.2ms (99th per-

centiles) depending on the numbers of nodes connected. This can

be compared to 7ms error if all six nodes are connected simulta-

neously (Fig. 5) and 3.5ms error when the six nodes are connected

one at a time (Fig. 6). The tests clearly show that the single clock

synchronization approach (Section 2.1.2) results in significantly

higher accuracy compared to synchronizing the clocks in multiple

sensor nodes that are connected simultaneously. This is due to the

fact that the response message mreply (Fig. 1) with t2 is blocked in

the slaves’ outgoing buffer until a later timeslot assigned by the

master. The single clock synchronization method is of special

interest when the sensor nodes’ clocks are not accessible and if

2 4 6 8 10 20 30 50
0

5

10

15

Number of loops

S
yn

cr
o

n
iz

a
to

in
 e

rr
o

r
(m

s)

2 nodes

3 nodes

4 nodes

5 nodes

6 nodes

2 4 6 8 10 20 30 50

5

10

15

Number of loops

S
yn

cr
o

n
iz

a
tio

n
 e

rr
o

r
(m

s)

2 nodes

3 nodes

4 nodes

5 nodes

6 nodes

resynchronization is needed, e.g. due to clock drift. In the original

algorithm [7], linear regression based on the complete set of sam-

ples is used. This study shows that subsets of the samples can feed

the algorithm, which decreases the processing time considerably.

3.3 Time Synchronization in ZigBee/IEEE

802.15.4 Networks
In this section we present the result of time synchronization in

IEEE 802.15.4 networks based on the method in Section 2.1.1 and

an alternative method using broadcast messages.

3.3.1 Synchronizing the Sensor Nodes’ Clocks
Fig. 7 shows the synchronization errors using the same test setup

as in Section 3.2 with the exception that the radio standard is

IEEE 802.15.4, configured for contention-based access

(CSMA/CA), instead of Bluetooth.

Fig. 7. The synchronization error in milliseconds for 1 to 6 participat-

ing sensor nodes and increasing number of loops in the synchroniza-

tion procedure.

Clock synchronization according to the method in Section 2.1.1

gives considerably lower errors in IEEE 802.15.4 radio communi-

cation than in Bluetooth piconets after a few synchronization

loops. Contrast to Bluetooth, contention-based access without a

central scheduler means that a node is not forced to wait for a

master poll request before transmitting the mreply (Fig. 1). Apply-

ing CSMA/CA node merely checks if the media are idle prior to

transmitting. The tiny synchronization messages will not result in

major waiting times due to other nodes occupying the wireless

channel. After 50 synchronization loops the error is approximately

below 1ms even though all six nodes are active.

3.3.2 Broadcast Message Synchronization
The IEEE 802.15.4 radio standard supports broadcast messages

multiple sensor nodes at the same time, which may be a feasible

method for time synchronization. Our repeated tests have validat-

ed that measuring the time synchronization error using broadcast

messages gives the same accuracy as using a hardware reset. Even

though the coordinating node may have to wait for the wireless

channel to become idle, the sensor nodes will receive the broad-

cast message whenever it is sent. Our tests show that every sensor

node will have the same synchronized time with a resolution of at

least 1 millisecond. The coordinating node’s clock can also be

included by sending a broadcast message from one of the sensor

nodes. Since a broadcast solution provides accurate time synchro-

nization and is straightforward to implement there is no need for

the methods described in Section 2.1 in ZigBee/IEEE 802.15.4

networks.

3.4 Results of Clock Drift Compensation
The clock drift has been measured and the algorithm for drift

compensation has been evaluated in a testbed with IEEE 802.15.4

compliant Tmote Sky motes [13] that have the same microcontrol-

ler, MSP430, as in the Shimmer nodes. A sensor node, connected

to a PC, is acts as coordinator for five sensor nodes. The coordina-

tor sends a broadcast message to reset the sensor nodes’ local

clocks. The sensor nodes are requested to send their local time

periodically (every 30 seconds), used by the coordinator as input

for monitoring and control of the clock drift. The clock drift com-

pensation method in Section 2.2 is implemented. Fig. 8 shows the

implementation of drift compensating function when sampling. A

periodic timer is implemented for how often the sensor node

should sample. Variable x is used for inter sample time and y is

used for compensating drift. When the timer expires, a request is

sent to read the AD-channel sample value, using the HplAdc12

interface [14] available in MSP430, and it will be stored. If a

clock drift is calculated, the variable y will be set to 1 otherwise 0.

Setting the value y to 1 compensates the drift by letting the peri-

odic timer run for 1ms less.

Fig. 8. A flow diagram for the drift compensating sampling algorithm.

Fig. 9 shows the maximum time difference between the two most

drifting sensors (the sensor node with fastest and slowest clock)

without drift compensation. The maximum time difference be-

tween 5 connected sensor nodes was approximately 5ppm. After 1

hour the time difference is 19ms.

Fig. 9. The maximum time difference in ms between the two most

drifting sensors (slowest and fastest clock) without drift compensating

function.

Fig. 10 shows the effect of the drift compensating function. A

maximum difference of 1ms is measured between two most drift-

ing sensors measured at the testbed. The time from the two sensor

node were transmitted every 30s during 1hour. The implementa-

tion of the algorithm results in a maximum clock drift of 1ms

which will preserve data fusion for sampling rates up to 1kHz.

2 4 8 10 20 30 50
0

5

10

15

Number of loops

S
y

n
c
ro

n
iz

a
ti

o
n

 e
rr

o
r

(m
s)

2 nodes

3 nodes

4 nodes

5 nodes

6 nodes

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600
0

2

4

6

8

10

12

14

16

18

20

Time (s)

M
ax

im
um

 t
im

e
di

ff
er

en
ce

 (
m

s)

Fig. 10. The maximum time difference in ms between the two most

drifting sensors (slowest and fastest clock) with drift compensating

function.

3.5 Summary of Results
The performance evaluations in the previous sections show that

the synchronization error is limited to around 1ms in

ZigBee/IEEE 802.15.4 networks when a time synchronization

protocol (Section 3.3.1) or broadcast messages (Section 3.3.3) are

used. For Bluetooth, which so far is the prevailing communication

technique between a mobile phone and wireless sensors, the errors

increase as the number of connected nodes in a piconet increases.

Our tests show that synchronization solely based on the clock in

the mobile phone exhibits better performance than synchronizing

the individual clocks in the sensor nodes (which sometimes is

impossible). The algorithm to compensate for clock drift, due to

variations in clock frequencies among the sensor nodes especially

in low cost consumer equipment, has proven to be efficient

(Section 3.4). Our study has resulted in performance limits (Fig.

5-7), in terms of synchronization errors, for prototype implemen-

tations of the algorithms in Section 2.

4. APPLICATIONS
Two real world use cases from two different fields, where time

synchronization is important, are presented in this section.

4.1 Feedback in Kayaking Based on Synchro-

nization
Flat water kayaking is an Olympic discipline in which a long and

slim boat is propelled through the water by paddle equipped ath-

letes. The motion in which the paddle transfers an athlete’s force

onto the water requires a complex, highly dynamic motor activity

of the arms, shoulders, trunk and legs. Training supervision is

ideally done by a coach, who primarily uses theoretical and per-

sonal practical knowledge and observation to derive subjective

analysis and recommendations. Existing objective quantitative

methods include time, distance measurement, heart rate measure-

ment, GPS velocity tracking and video capturing. In a lab (e.g. on

an ergometer) additional quantitative data can be accumulated by

lactate and oxygen uptake measurement and motion analysis. All

these methods are stand-alone technologies and can rarely be

synchronized for a sophisticated data collection and analysis.

Furthermore, there is only a small range of devices that can toler-

ate the conditions of on-water paddling; a desire for sophisticated

on-water biomechanics measurement has been postulated by

various researchers and coaches [10]. Based on the Mulle plat-

form [11] a wireless sensor platform for on-water performance

measurement on a kayak has been developed (Fig. 11).

Fig. 11. A Kayak system in action (left). Two paddle nodes (center,

top) and the footstretcher (right, bottom) with an electronics box link

via Bluetooth to a Java enabled mobile phone (right, top).

The system is designed to measure paddle and footstretcher force

as well as motion parameters for real-time feedback (opportunity

for motor learning through knowledge of performance) as well as

post-processing. This platform as a successor of [12] consists of

two Bluetooth enabled, battery powered paddle force measure-

ment units with built-in accelerometer and gyro data acquisition

as well as a Bluetooth node that includes nine axis motion sensors,

a 10Hz GPS and six force transducers for point-of-pressure meas-

urement for the individual foot on the foot stretcher.

The Bluetooth radio transmitted data is received on a regular

mobile phone running custom J2ME software for data storage,

visualization and analysis. Data from each of the three nodes is

sampled at 100Hz and transmitted in packages of 32 byte (hull

node), respectively 23 bytes (paddle nodes) to the phone. Since a

crucial component of athletic performance is the coordination, the

timing, of different movements, it is absolutely essential that

knowledge of the temporal resolution and the time instance, at

which a data sample on one sensor node with respect to the other

two sensor nodes’ clocks is obtained, is accounted for. Before the

data is stored or analyzed all three sensor nodes’ samples have to

be aligned with respect to a common valid timeline.

One goal is to detect the timing between the force on paddle and

by the legs on the footstretcher. This parameter can be used to

analyse the performance of an elite athlete and to give feedback

on synchronized or unsynchronized activation of upper trunk

(paddle) and leg musculature (footstretcher). Furthermore, the

very crucial parameter of boat velocity is determined by the GPS

supported by an accelerometer (Fig. 12), both situated on and

connected to the hull node.

Fig. 12. The figure shows the forces from the right paddle node

(green), the force from the left paddle node (red) and the velocity

(black) measured on the hull node using the synchronization algo-

rithm.

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600
0

2

4

6

8

10

12

14

16

18

20

Time (s)

M
ax

im
u
m

 t
im

e
d
if

fe
re

n
ce

 (
m

s)

Synchronization is achieved by an algorithm executed on the

mobile phone based on the method described in Section 2.1.1. The

precision of this method has been determined to have a maximum

synchronization error of 0.4±0.2ms, with a confidence grade of

99%. This has been deemed as sufficient for the current sampling

rate as it is below 1/10 of the sampling period.

4.2 Monitoring in Neonatal Care
Cardiorespiratory monitoring in a Neonatal Intensive Care Unit

(NICU), is one of the most vital monitoring system to presents

secure the health of the infants [15]. Normally an ECG and a

pulse-oximeter both connected via cables to the monitoring sys-

tem are used. Fig. 13 shows information from a cardiorespiratory

monitor (from the top); the ECG (green), the respiration (red), and

the oxygen level from the pulse-oximeter (yellow).

Fig. 13. A photo of a cardiorespiratory monitor for an infant in neona-

tal care, which displays ECG, respiration and the oxygen level.

However the cables that connect the ECG and pulse oximeter to

the cardiorespiratory monitor, complicates a natural and frequent

skin-to-skin contact between the baby and the parents. Multiple

studies have showed that kangaroo care, skin-to-skin contact

between the infant and its parents, offers an environment that is as

natural as possible for the infant to mature in. It improves the

wellbeing not only for the infant but for the parents too. A wire-

less monitoring system can combine the goal with the requirement

that an infant in NICU needs 24/7 monitoring of heart rate, respi-

ration, oxygen level.

Since the monitoring is continuous over long time periods and the

data rate is low, IEEE 802.15.4 radio communication seems to be

an appropriate solution. A premature born baby may need extra

oxygen for months after birth and therefore also monitoring of the

oxygen level with a pulse-oximeter. False positive alarms, due to

movements that lead to pulse-oximeter artefacts, are not uncom-

mon and complicate a calm environment for the baby and the

family. It is possible to minimize these alarms if the pulse-

oximeter and the ECG are synchronized with each other [16].

Pulse-oximeter artefacts due to movements can then be identified

and ruled out as true alarms. The tests presented in Section 3.3

show accurate time synchronization between two wireless sensor

nodes can be maintained for hours.

5. CONCLUSIONS
Accurate time synchronization is essential for data fusion based

on samples from multiple sensors. This paper has presented re-

sults of performance evaluation of major methods for time syn-

chronization of sensor nodes in wireless personal area networks,

mainly Bluetooth and ZigBee/IEEE 802.15.4. A new method for

clock drift compensation is presented and evaluated. The perfor-

mance results in this study are valuable guidelines when imple-

menting synchronization algorithms for multi-sensor fusion, e.g.

in sports and healthcare applications.

6. REFERENCES
[1] K. Römer, P. Blum and L. Meier, “Time Synchronization

and Calibration in Wireless Sensor Networks”, in Ivan

Stojmenovic (Ed.): Handbook of Sensor Networks: Algo-

rithms and Architectures, pp. 199-237, September, 2005.

[2] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed

Systems: Concepts and Design”, Chapter 11, 4th edition,

Addison-Wesley, 2006.

[3] D. Mills, J. Martin, J. Burbank and W. Kasch, “Network

Time Protocol Version 4: Protocol and Algorithms Specifi-

cation”, RFC 5905, Internet Engineering Task Force (IETF),

June, 2010.

[4] J. Wåhslén, I. Orhan and T. Lindh, “Local Time Synchroni-

zation in Bluetooth for Data Fusion Using Mobile Phones”,

International Conference on Body Sensor Networks (BSN

2012), Dallas, May, 2012.

[5] F. Cristian, “Probabilistic clock synchronization”, Distribut-

ed computing (1989): pp. 146-158.

[6] M. Jadliwala, Q. Duan, S. Upadhaya, J. Xu, “Towards a

Theory for Securing Time Synchronization in Wireless Sen-

sor Networks”, WiSec ’09.

[7] J. Wåhslén, T. Lindh, M. Eriksson and I. Orhan, “A Novel

Approach to Multi-Sensor Data Synchronization Using Mo-

bile Phones”, IJAACS, in print.

[8]

[9] M. Maróti, B. Kusy, G. Simon and A. Lédeczi, “The Flood-

ing Time Synchronization Protocol”, SensSys 2004,

Balitmore, USA.

[10] Shimmer Research, http://www.shimmer-research.

[11] J.S. Michael, R. Smith and K.B. Rooney, “Determinants of

kayak paddling performance”, Sports Biomechanics, Vol. 8,

No. 2, 2009.

[12] Mulle sensor node,

http://staff.www.ltu.se/~jench/mulle.html

[13] D. Sturm, K. Yousaf and M. Eriksson, “A wireless, Unob-

trusive Kayak Sensor Network Enabling Feedback Solu-

tions”, (BSN 2010), Singapore, June 7 - 9, 2010.

[14] Tmote Sky – IEEE 802.15.4 compliant sensor module from

Sentilla (previously Moteiv).

[15] HplAdc12 interface for direct AD-sampling in the MSP430

MCU: http://tinyurl.com/7l7d54r.

[16] I. Murkovic, M.D. Steinberg and B. Murkovic, “Sensors in

neonatal monitoring: Current practice and future trends”,

Technology and Health Care 11, 2003.

[17] L.K.L. Lum and P.W. Cheung, “Evaluation of Pulse oxime-

try with EKG Synchronization, IEEE Engineering in medi-

cine and biology society 10th International conference, 1988.

http://www.shimmer-research/

