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ABSTRACT 

Human body motion is typically captured by body area sensor 

networks. Accurate sensor placement with respect to anatomical 

landmarks is one of the main concerns in reliability of the motion 

capturing systems. Changes in position of sensors cause increased 

variability in motion data. Our goal is to isolate the characteristic 

features that represent the principle motion pattern. By using        

functional Principal Component Analysis (f-PCA) we compensate 

for the variation in data due to inadvertent movement of sensor 

placement. F-PCA is an effective tool for the study of human 

motion modeling by identifying hidden combinations and 

relationships between variables. The collected data from our 

experiment show differences between similar actions within 

different sessions of marker wearing. After applying f-PCA to the 

data, we show how the uncertainties due to sensor position 

changes can be compensated for. 
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1. INTRODUCTION 
On-body sensors can be used for capturing human movement. The 

motion of a body can be thought of as a collection of time series 

streams describing the joint angles which is called motion data. 

Motion data can be used in applications such as animation, sports 

biomechanics, rehabilitation, and so on. In many applications, the 

human body is approximated by a collection of articulated limbs 

that form a kinematic tree. Determining the anthropometry of the 

individual subject is called model calibration. Accurate sensor 

placement with respect to anatomical landmarks and location 

determination of joint centers with regard to these sensors are two 

important aspects of model calibration in motion capturing. There 

should be especial care to achieve sufficient accuracy to justify 

the results of motion capturing systems despite measurement 

variability.  

Variability in movement patterns plays a fundamental 

role in motion analysis and its influence on the analysis of motion 

data should be taken into account. Variability and measurement 

errors in motion capturing via on-body sensors/markers can come 

from three primary sources: the technicians responsible for 

placing the sensors/markers, the measurement system, and the 

subject under evaluation. Variability is defined by the sum of 

variances from each independent source [1]. Sensor placement 

among technicians is the largest source of variability [2]. 

Particular care should be taken to ensure that sweating, rapid 

movements and the placement of markers during different trials 

and sessions on the subject’s body, do not affect sensor/marker 

position according to the marker placement guidelines. 

The reliability to measurements is directly affected by 

the sensor placement during different trials and sessions. If 

experimental errors conceal important motion deviations, 

meaningful information will be lost.  On the other hand, if the 

limitations of the motion capturing methods are not understood, 

small deviations may be considered meaningful, thereby leading 

to over interpolation [3]. Every time that a subject tries to carry 

out the same movement, a certain amount of variation may be 

registered between the different sessions of marker wearing. 

Variability between sessions was found to be much higher than 

within-session variability due to the high potential for differences 

in the marker placement [1]. 

In clinical biomechanics, variability in motion data can 

be associated with arbitrary changes in position of sensors. 

Despite this, discovering the characteristics features that represent 

the main pattern(s) of motion is our concern. Standard data 

analysis techniques, which determine mean and standard deviation 

of time series data, summarize motion data in single patterns 

providing average behavior and show deviations as possible errors 

by standard deviation bands. Such techniques severely reduce 

features in the data, and may result in important information being 

discarded [4].  In particular, the results do not account for the 

information that may be inherent in all the variability apparent in 

the data. When different sessions of marker wearing are averaged, 

information can be lost and the average curve does not closely 

resemble any of the individual curves. 

Multivariate statistical analysis has proved to be a 

powerful tool to eliminate collinearity and to facilitate analysis, 

presenting only the essential structures hidden in the data [5], but 

again the extent of data loss is a matter of concern. Among 

multivariate statistical techniques, linear transformations are 

computationally easier to perform and within linear 

transformations, the use of functional techniques may provide 

additional insight into differences in motion patterns. Functional 

principal component analysis (f-PCA) is an effective tool for the 

study of human movement in modeling motion curves by 

identifying hidden combinations and relationships between 

variables [6]. The basic philosophy of functional data analysis is 

the belief that the best unit of information is the entire observed 

function (a curve within a family of curves) rather than a string of 

numbers. It is assumed that data are supposed to have an 

underlying functional relationship governing them. It also allows 

extracting loadings and scores. Loadings are the correlation 

coefficients between the variables and the components. Scores are 
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the contributions of the principal components to each individual 

variable [4]. F-PCA is an extension of the traditional PCA, where 

the principal components are represented by functions rather than 

vectors. 

PCA is a multivariate statistical technique. It can be 

used as a means of decorrelation by computing a new, much 

smaller set of uncorrelated variables, Principal Components – 

(PCs). Each new variable is a linear combination of the original 

ones. All the principal components are orthogonal to each other, 

so there is no redundant information. All remaining principal 

components are defined similarly, so that the lowest order 

components normally account for very little variance and can 

usually be ignored [7]. 

To reflect the true nature of motion data variability, we 

investigate the use of f-PCA for filtering and interpreting motion 

data, while accounting for their original variability. We 

compensate for uncertainties in the data, due to sensor position 

changes. Our approach is introduced in Section 2 by describing 

the experimental procedure, the data analysis and giving a brief 

introduction to f-PCA. Results and discussion are presented in 

section 3. Our paper is then concluded in Section 4. 

2. METHOD 
To discover the most significant feature(s) that represent the main 

motion pattern in spite of variability in motion data due to 

arbitrary changes in position of sensors, we evaluate similarities 

between repetitive actions across different sessions of marker 

wearing. To describe the compensation procedure, we first 

describe the process of motion data acquisition and then the data 

processing techniques used in our study. The experiment 

comprises subject preparation, the test procedure, and motion data 

capture. Then our data processing techniques are  discussed which 

consists of time warping, standardization, and f-PCA. 

2.1 Experiment 
A commercial optical motion capture system, named Codamotion, 

has been used in our experiment. The sensors that are tracked by 

the Coda scanner units are small infra-red light emitting diodes. 

This system consists of twelve cameras operating at 200 Hz. Each 

Coda scanner unit contains three special cameras which detect 

infra-red pulses of light emitted by the Coda markers and locate 

the marker positions with very high resolution and linearity. The 

system should be calibrated before each experimental session 

according to the manufacturer guidelines. The calibrated system 

measures the positions of markers within a three dimensional co-

ordinate system which is fixed in relation to the scanner unit [8].  

There are several standard marker-sets for placing 

markers on the human body such as Cleveland Clinic, Saflo, 

Helen Hays, Codamotion, and so forth. For Bilateral Gait, the 

recommended Codamotion marker-set comprises a total of 22 

standard markers was used in our experiment. The experimental 

procedure complies with university guidelines, approved by the 

local institutional review board. A full analysis of an individuals’ 

motor behavior involves the evaluation of an appropriate number 

of individual repetitions. We asked a subject to participate in 10 

marker-wearing sessions. There were inadvertent changes in 

position of markers for each session while following the standard 

marker set.  

The process of measurements in each session involves 

instrumenting the legs and pelvis with active markers according to 

the Codamotion marker-set to perform the motion capture.  Each 

session consists of 10 trials. The subject in each trial walks from 

the start point to an end point while the motion capture system 

captures the subject’s motion. Each trial lasts for 6 seconds and 

the  sampling frequency of the motion capturing system is 200 Hz. 

The subject was asked to walk at normal walking speed. This 

walking speed is maintained as far as possible whilst different 

marker placements are made across different sessions of marker 

wearing. 

2.2 Data Analysis  
Walking sequences are segmented into cycles. Each cycle 

includes two steps. We ask a subject to walk in a certain time 

interval and divide the walking actions into cycles. Each cycle is 

identified as the interval from toe-off to the following toe-off of 

the same foot or consecutive left/right heel contact depending on 

our chosen criteria. By using the vertical velocity changes of heel 

markers, consecutive right heel contacts determine the period of 

one stride. We use consecutive right heel contact in our 

experiment to separate each stride. Segmenting data into gait 

cycles almost always results in gait data cycles of differing 

lengths due to differences in motion speed. 

In action recognition, identifying features during action 

sequences with different speeds or different numbers of samples 

in each cycle is an important issue. In such cases time 

normalization is necessary before or during the recognition 

process. Each cycle should be normalized so it is represented by 

the same number of samples. Linear time normalization and 

nonlinear time normalization using dynamic time warping are the 

most common technique that can be used for this purpose. Linear 

time normalization linearly converts the trajectory’s time axis 

from the experimentally-recorded time units to an axis 

representing the gait cycle [9].  Dynamic time warping shifts the 

time index of each data point in a test trajectory to minimize the 

distance between the test and consensus trajectories.  In general, 

time   warping   can   be performed implicitly, i.e., by the resizing 

along the time axis of patterns that depict the evolution of a 

feature through time [10]. 

2.3 Functional Principal Component Analysis  
To find the dominant modes of variation in the data, and tease 

apart deterministic and stochastic components of movement 

patterns, f-PCA would be a useful tool usually after subtracting 

the mean from each observation. It allows for separation of main 

and residual components within a data set. Viewing consistent 

features as coherent components imply the mechanisms 

generating these common structures follow deterministic rules 

otherwise they would not be consistent/coherent. In contrast, the 

residual components often contain a degree of randomness or 

stochasticity. f-PCA is an extension of the traditional multivariate 

PCA, where the principal components are represented by 

functions rather than vectors. Going from the multivariate PCA to 

the functional version, will result in eigenfunctions instead of 

eigenvectors and summations change into integrations. The upper 

limit number of principal components in the multivariate case is 

the number of variables, while in f-PCA the number of 

eigenfunctions is equal to minimum of K, which is the number of 

basis functions, and N which is the number of variables [11]. 

In first step, we fit a function to the data. To fit a 

function to our data as it is shown in (1), we use a set of functional 

buildings blocks   ,          , called basis functions which 

are combined linearly. That is, a function x(t) defined in this way 

is expressed  as follow, and called  a basis function expansion. 
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Parameters      are the coefficients of the expansion. The matrix 

expression of N functions will be of the form  ( )     ( ), 
where  ( ) is a vector of length N containing the function     ( ), 
and the coefficient matrix   has N rows and K columns. The 

sample variance-covariance function,  (   ) is defined as follows, 
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The functional eigenequation is 

∫ (   ) ( )     ( )  
(3) 

where   is eigenvalue and  ( ) is an eigenfunction of the 

variance-covariance function. Eigenfunction which is called 

principal component weight function,   ( ), can be found by (4). 
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where the principal component score, is defined as  

   =∫   (s)   (s)ds. (5) 

A non-increasing sequence of eigenvalues             

can be constructed stepwise by requiring each new eigenfunction 

computed in step l, to be orthogonal to those computed on 

previous steps, 

∫  ( )   ( )                

 ∫   
 ( )                      

 

(6) 

To separate components of movement patterns, f-PCA can be 

used especially when partitioning signals into deterministic and 

stochastic components, by subtracting either the one or the other 

from the signal. This can be regarded as filtering the noise or the 

common parts, respectively. As the effect of random changes in 

position of sensors is expected to randomness effect on the motion 

the motion data, to remove this effect from main and coherent 

component of movement, we partition the data into two 

elements,   ⃗⃗⃗⃗ 
(      )

and   ⃗⃗⃗  
(        )

 which are shown in (7) . 
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Where we assume the number of basis functions are more than the 

number of variables. The sum of the dominant principal 

components weight functions is given by    ⃗⃗⃗  
(      )

 , so the 

resulting filter characteristic depends on the data. The number of 

modes that define the global pattern influences the filtered pattern. 

We apply this data-driven filter to the motion data to separate out 

the effect of random changes in sensors position and main motion 

pattern by keeping the dominant modes of variation in the data 

whilst considering the proportion of corresponding eigenvalues to 

the total variance. 

3. RESULTS AND DISCUSSION 

Kinematics variables for 10 motion-capture sessions were 

acquired. These variables are the angles of the pelvis, hip, knee, 

ankle, and foot in the X, Y, and Z planes respectively. Kinematics 

variables of each marker-wearing session were averaged over 10 

trials to eliminate the effect of factors that are irrelevant to 

differences in position of sensors in each session. The cause of 

these factors could be different walking speed, different ways of 

walking because of the tiredness of the subject and so forth. 

The kinematics variables are shown in Fig. 1. The 

differences which are shown between the variables of different 

sessions are due to inadvertent changes in position of sensors.  

The placement changes are random in all X, Y, and Z planes and 

they were made in radius of 2 cm from the correct place which 

simulates the effect of configuration errors during different 

sessions while following the standard marker set. We aim to 

eliminate the effect of these changes on the kinematics variables 

to obtain valid motion data. For example, in a clinical context, if a 

measurement made on a patient cannot be relied upon because of 

random errors then that measurement will not be useful [2]. 

After fitting Fourier basis functions into data of each 

session, we would have 15 lots of functions with  10 functions in 

each one, whereby 15 stands for the kinematics variables and 10 

represents the number of sessions for each sequence with different 

sensor placement. Each lot contains one of the 15 kinematics 

variables in a cycle.  By applying f-PCA on these lots, we obtain 

functional principal component functions for each of these 

kinematic variables.  Then by keeping the most dominant mode of 

variation, and eliminating the rest, we try to retain the most 

important variations in data and eliminate the effect of inadvertent 

changes in the position of the sensors. After deleting the non-

dominant mode of variation, we return the functions into initial 

domain by using the inverse f-PCA transform method. 

Although the motion capture data are for the same 

actions, they are not the same because of changes in the position 

of sensors as we see in Fig. 1. After applying the proposed 

technique, we investigate if the effect of position changes in 

different sessions can be eliminated and the motion data made 

more consistent.  By comparing the data that are shown in the 

upper and lower part of Fig. 1, before and after applying the data-

driven f-PCA filtering, respectively, we see how similar the 

captured motion data are from different marker wearing sessions. 

Results show that by using the introduced technique, we can 

significantly reduce the effect of inadvertent changes in the 

position of the sensors on the captured data and extract the 

common mode of variation in the several sessions of marker 

wearing motion data. 

4. CONCLUSION 

Variability of kinematics measurements due to inadvertent 

sensor/marker placement changes was discussed in this paper. It is 

shown that there is measurement variability due to the failure to 

place markers/sensors accurately in motion capturing of the 

human body even following same placement protocol for each 

session. The variability may conceal important motion deviations 

and meaningful information can be lost. A f-PCA filter followed 

by other techniques to compensate for the effects of  sensors  

position   changes   in   motion   data  was applied on the motion 

data of the designed experiment. Results show differences 

between similar repetitive actions with random marker positional 

changes and how these variations can be compensated for by 

applying the signal processing techniques. By keeping the most 

dominant mode of variation in data the common motion pattern 

can be extracted from the data across multiple marker-wearing 

sessions. By using the data driven filter, we can isolate the salient 

movement pattern regardless of the variations that emerge in 

changes in position of sensors across sessions while following 

marker set up protocols. 
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Figure 1: Kinematics variables of 10 marker wearing sessions, showing normalized angles of pelvis, hip, knee, 

ankle, and foot in X, Y, and Z planes before and after filtering


