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ABSTRACT
In this paper, we derive the suboptimal sum-rate distortion
bound for encoding correlated Gaussian sources for which
the uniform scalar quantizers are used to convert the signals
from analog to the discrete form. The correlated discrete
signals are further compressed using the lossless Slepian and
Wolf encoder. The gap between the suboptimal bound and
the inner/outer bounds is also investigated. The result shows
that the gap is at most 0.255 bits/sample/source which is
far less than the universal bound of 2.45 bits/sample given
in [1] for the three tree-structured Gaussian sources.
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1. INTRODUCTION
Medical wireless body area networks using Ultra WideBand
(UWB) technology have recently been proposed for surgical
and intensive care units at hospitals [2]. The network ar-
chitecture includes an in-body and on-body sensor, plus a
network coordinator. The in-body sensor is implanted in-
side a patient’s body in order to capture important medical
information which would help doctors and nurses provide
better cares or services for patients. The on-body sensor, on
the other hand, is attached on the patient’s body not only
to sense medical parameters but also to function as a com-
munication relay for the in-body sensor since the in-body
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sensor’s transmission distance is often short due to power
limitation [2].

The signals from the on-body sensors may have a certain
degree of correlation because: (1) One copy of the transmit-
ted signal from the in-body will be received by a number
of the on-body sensors. (2) The on-body sensors are placed
physically close to sense the same medical parameters. It
has been theoretical established under the topic of the dis-
tributed lossy source coding problem that if the correlation
is taken into account to compress the source signal (see [?],
[3] and references therein), the compression efficiency is sig-
nificantly improved.

However, the cited works focus on deriving inner and outer
bounds for rate distortion regardless of delay and complexity
issues. In our engineering source coding problem for medi-
cal wireless sensor networks, the complexity and delay are
both critically limited. Hence, in this paper, we consider
a suboptimal multi-terminal source coding system, where
M encoders compress their own signals without cooperating
with one another. The compressed messages are then de-
livered to a common decoder over the constrained-rate and
noiseless channels. The considered system is suboptimal in
the sense that:

i) A scalar quantizer is used to convert the analog signal
to discrete form before applying lossless Slepian and
Wolf encoding.

ii) The design of the scalar quantizer in one on-body sen-
sor is independent of the others.

iii) The decoder restores each individual source with dif-
ferent distortion level.

The multi-terminal source coding has been considered since
the early 1970s. However, characterization of the rate dis-
tortion region is known only for some particular cases. For
the lossless discrete source coding problem, the rate distor-
tion region was completely solved by Slepian and Wolf [4]
in 1973. Some practical code designs based on their idea
that perform closely to the established theoretical limit are
now available and ready for implementation. However, the
characterization of the rate distortion region for the lossy
source coding problem is still open. In Beger and Tung’s
early work,[5],[6], the inner bound was derived, and later Y.
Oohama, [7], proved that the inner bound is partially tight
for a special case of Gaussian sources.
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Recently, Wagner and et al.,[3], have investigated the rate
distortion region for the special case of two Gaussian sources.
They proved that the source coding architecture based on
the vector quantization and the Slepian and Wolf encoding
techniques are optimal for this specific case. In another di-
rection, by using the approximation method, M. Ali and et
al [1] have derived the rate distortion region for three Gaus-
sian tree structured sources. That is, for this special case,
the rate distortion region of the approximation method is at
most 2.45 bits/sample from the cooperative bound.

In this paper, we use the technique in [8] to derive the
sum-rate distortion bound for the suboptimal multitermi-
nal source coding problem of general M Gaussian sources at
high fidelity region. The asymptotic gaps between the sub-
optimal bound and the optimal one for two Gaussian sources
and three Gaussian tree structured sources are also included.
The remaining of this paper is organized as follows. In Sec-
tion 2, we briefly describe the suboptimal system. In Section
3, the sum-rate distortion is derived. The asymptotic gaps
for two special cases are presented in Section 5. Section 6
concludes the paper.

2. SYSTEM DESCRIPTION
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Figure 1: Encoder of the considered system

In this paper, we consider a suboptimal source coding system
where M jointly Gaussian sources, denoted X1, X2, · · · , XM

with zero mean the correlation matrix KX , are the sources
to be transmitted to the same destination. The sources are
encoded separately at the encoders and jointly decoded at
the destination. Furthermore, each source is restored with
a different fidelity requirement.

The considered source coding system is depicted in Fig. 1
where each source sequence is first uniformly quantized by a
scalar quantizer to obtain a finite-level sequencesB1, B2, · · · , BM

and then the quantized outputs are encoded via Slepian and
Wolf source coders to exploit the correlation between them.
At the decoder side, the Slepian and Wolf decoder is used.
In the below section, we will derive the asymptotic sum-rate
distortion of this source coding problem under high fidelity
requirement.

3. ASYMPTOTIC SUM-RATE RESULT
Assuming that the mean square error is used as the fidelity
measure, the mean square error distortion for source m is

dm = E[(Xm − X̂m)2]. (1)

Theorem: For the high fidelity region, the sum rate of the

above source coding system is approximated by

Rsum ≈ 1

2
log

|KX |
|Dd|

+ 0, 255M, (2)

where |A| is the det of matrix A, M is the number of sources,
and Dd = diag(d1, d2, · · · , dM ), the diagonal matrix with
mth diagonal element of dm.

Proof:

To prove the theorem, we use the technique in [8]. Assume
that each source is quantized by splitting the range of Xm

into an infinite number of interval Inm = [gnm , gnm+1). The
quantized level is defined as

Um = Umn , Xm ∈ Inm . (3)

Note that each encoder can have a different partition de-
pending on its fidelity requirement.

By the quantizing process, the continuous sources are con-
verted into discrete form. The quantized signals, denoted
by (U1, U2, · · · , UM ), are correlated. Since the discrete cor-
related samples are then encoded by the Slepian and Wolf
encoder, the sum rate required to recover U1, U2, · · · , UM

with arbitrary small error probability at decoder is, [4],

Rsum = H(U1, U2, · · · , UM ) = −
∑

pnlogpn, (4)

where

pn = Pr[X1 ∈ In1 , X2 ∈ In2 , · · · , XM ∈ InM ] (5)

=

∫
In1

· · ·
∫
InM

f(x1, x2, · · · , xM )dx1dx2 · · · dxM .

f(x1, x2, · · · , xM ) is the joint density function. The corre-
sponding MSE distortion is

dm =
∑
nm

∫
Inm

fm(xm)(xm − Unm)2dxm, (6)

where fm(xm) is the marginal distribution of Xm.

We approximate pn by assuming that the lengths of all the
intervals are reasonably small

pn ≈ f(gn1 , gn2 , · · · , gnM )

M∏
m=1

(gnm+1 − gnm). (7)

By the same assumption, we can assign Unm equal to the
mid-point of the interval Inm , the following approximation
is obtained

Unm ≈ gnm+1 + gnm

2
(8)

and

dm ≈
∑
nm

fm(gnm)
(gnm+1 − gnm)3

12
. (9)

Define the mesh points gnm by

gnm = gm(nmδm), (10)

where gm(t) is some suitable smooth monotone increasing
function [8]. For δm small, we can approximate the term



gnm+1 − gnm as

gnm+1 − gnm ≈ δmg
′
m(δmnm), (11)

where the prime indicates derivative. Substituting (11) and
(7) into (4), the sum rate is approximated by

Rsum ≈ −
∑
n

{
f(gn1 , gn2 , · · · , gnM )

M∏
m=1

δmg
′
m(δmnm)

}

× log

[
f(gn1 , gn2 , · · · , gnM )

M∏
m=1

δmg
′
m(δmnm)

]
, (12)

and the MSE distortion is thus

dm ≈
∑

fm(gnm(δmnm))
(δmg

′
m(δmnm))3

12
. (13)

For δm small, the sums in (12) and (13) are further approx-
imated by integrals

Rsum ≈ −
∫

f(g1, g2, · · · , gM )

× log f(g1, g2, · · · , gM )dg1dg2dgM

−
M∑

m=1

log δm −
M∑

m=1

∫
log g

′
mf(gm)dgm (14)

and

dm ≈ δ2m
12

∫
g
′
m(xm)fm(xm)dxm. (15)

The problem is to choose {g1(t), g2(t), · · · , gM (t)} so that
for fixed δm,m = 1, 2, · · · ,M and dm,m = 1, 2, · · · ,M , the
Rsum is minimum. Using the Largrange technique, the re-

sulting function g
′
m(t) is independent of t. For convenience,

we choose g
′
m(t) = 1 and

gm(t) = t, ∀m = 1, 2, · · · ,M. (16)

Inserting (16) into (14) and (15), we have

Rsum ≈ H(X1, X2, · · · , XM )−
M∑

m=1

log δm, (17)

and

dm ≈ δ2m
12

. (18)

Combining (17) and (18), the resulting approximated sum-
rate distortion is

Rsum ≈ 1

2
log ((2πe)M |KX |)− 1

2

M∑
m=1

log (12dm)

≈ 1

2
log

|KX |
|Dd|

+ 0.255M, (19)

where |A| is the det of matrixA andDd = diag(d1, d2, · · · , dM ),
the diagonal matrix with the mth diagonal element of dm.

4. GAP TO THEORETICAL BOUNDS
We are now interested in considering how many bits per
source the suboptimal system looses in comparison with the

optimal outer bound. Let Ro
sum(d1, d2, · · · , dM ) be the outer

bound sum-rate of the source coding problem. Define the
gap per source between the sum-rate of the considered sub-
optimal system and the optimal system, denoted as ∆R:

∆R =
Rsum(d1, d2, · · · , dM )−Ro

sum(d1, d2, · · · , dM )

M
.

(20)

Since the source is jointly Gaussian, the outer bound on the
sum-rate is equal to [1]

Ro
sum(d1, d2, · · · , dM ) =

1

2
log

|KX |
|DE |

, (21)

where |DE | is achieved by the following convex optimization
problem

|DE | = max
D

|D| (22)

s.t 0 ≤ D ≤ KX

D(m,m) ≤ dm, ∀m = 1, 2, · · · ,M,

where DE is the optimal distortion matrix.

Combining (19) and (21), the gap is thus

∆R = 0.255 +
1

2M
log

|DE |
|Dd|

. (23)

The explicit result for (23) is not known in general. However,
we can have upper bound the gap by using the Hadamard
inequality [9] as follow.

|DE | ≤
M∏

m=1

DE(m,m) ≤
M∏

m=1

dm (24)

From (23) and (24), we have

∆R ≤ 0.255 bits/sample/source, (25)

which means that the penalty for suboptimality is at most
0.255 bits/sample per source.

5. TWO SPECIAL CASES
5.1 Two Gaussian Sources, M = 2
Assume we have two Gaussian sources with zero mean ad
covariance KX as

KX =

[
1 ρ
ρ 1

]
. (26)

The resulting gap of this special case is stated in the Theo-
rem below.

By evaluating (19) directly for M = 2 and covariance matrix
in (26), we have the asymptotic sum-rate as

Rsum =
1

2
log

[
(1− ρ2)

d1d2

]
+ 0.51. (27)

On the other hand, the outer sum-rate distortion for two
Gaussian source has been previously found as, [7],

Ro
sum =

1

2
log

[
(1− ρ2)

d1d2

]
. (28)



From (27) and (28), the asymptotic gap is

∆R = 0.255 (bits/sample/source), (29)

which is similar to the penalty of the single source regardless
the value of the correlation parameter.

However, in comparison with the inner bound [3], the asymp-
totical gap is thus

∆R = 0.255− 1

4
log

β

2
, (30)

where

β = 1 +

√
1 +

4ρ2d1d2
(1− ρ2)2

.

5.2 Three Gaussian tree structured sources,
M = 3

In this subsection, we consider the special case of a three-
tree structured source which has been previously studied by
Mohammad and et. al [1]. That is, there are three Gaus-
sian sources {X1(t), X2(t), X3(t)} which are the sequences of
idependent and identical Gaussian random variables, having
zero mean and covariance matrix in the following form

KX =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 . (31)

As proved in [1], the optimal distortion matrix DE is upper-
bounded as

DE = |D∗| ≤ d1d2d3(1− θ2(d1, d3))(1− θ2(d2, d3)), (32)

where

θ(di, dj) = max

{
0,

ρ12 −
√

(1− dj)(1− di)√
djdk

}
.

As a result, the gap is given by

∆R =
1

2
log

|DE |
|Dd|

+ 0.255

≤ 0.255 +
1

6
log [(1− θ2(d1, d3))(1− θ2(d2, d3))]

≤ 0.255, (33)

which is tighter than the universal approximated bound in
[1].

6. CONCLUSIONS
In this paper, we address the asymptotic sum-rate distortion
region for the suboptimal multiterminal source coding prob-
lem of M Gaussian sources for the high fidelity region. We
show that the penalty for the suboptimality is at most 0.255
bits/sample per source regardless of the number of sources.
This suboptimal bound will be the benchmark for the de-
sign of the source coder in medical wireless sensor networks
where the complexity is the critical constraint.

7. ACKNOWLEDGMENTS
This work was supported by the MELODY research project
funded by the Research Council of Norway under grant NFR
187857.S10.

8. REFERENCES
[1] M. Maddah-Ali and D. Tse, “Approximating the

rate-distortion region of the distributed source coding
for three jointly gaussian tree-structured sources,” in
Information Theory, 2009. ISIT 2009. IEEE
International Symposium on, pp. 1468 –1472, 28
2009-july 3 2009.

[2] R. Chavez-Santiago, A. Khaleghi, I. Balasingham, and
T. Ramstad, “Architecture of an ultra wideband
wireless body area network for medical applications,” in
Applied Sciences in Biomedical and Communication
Technologies, 2009. ISABEL 2009. 2nd International
Symposium on, pp. 1–6, Nov. 2009.

[3] A. Wagner, S. Tavildar, and P. Viswanath, “Rate region
of the quadratic gaussian two-encoder source-coding
problem,” IEEE Transactions on Information Theory,
vol. 54, pp. 1938 –1961, may 2008.

[4] D. Slepian and J. Wolf, “Noiseless coding of correlated
information sources,” IEEE Transactions on
Information Theory, vol. 19, pp. 471 – 480, jul 1973.

[5] T. Berger, “Multiterminal source coding,”The
Information Theory Approach to Communications, G.
Longo, Ed. New York: Springer Verlag, vol. 229,
pp. 171 – 231, 1978.

[6] S.-Y. Tung, “Multiterminal source coding,” Ph.D
Dessertation, School of Electrical Engineering, Cornell
Uni., Ithaca, NY, 1978.

[7] Y. Oohama, “Gaussian multiterminal source coding,”
IEEE Transactions on Information Theory, vol. 43,
pp. 1912 –1923, nov 1997.

[8] H. Gish and J. Pierce, “Asymptotically efficient
quantizing,” IEEE Transactions on Information
Theory, vol. 14, pp. 676 – 683, sep 1968.

[9] T. Cover and J. Thomas, Elementary of Information
Theory, second edition. John Wiley and Son, 2006.


