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ABSTRACT
Body sensor networks (BSNs) often operate in dynamic en-
vironments, with the collected data profiles—and the re-
sulting importance of data—varying throughout the system
runtime. Therefore, the potential for power reduction fluc-
tuates with changing user behavior, creating a dynamic bat-
tery lifetime-fidelity relationship that is subject to variations
throughout the battery lifetime corresponding to an individ-
ual’s daily activities—past, present, and future.

This paper explores the potential for optimizing the trade-
off between meeting a desired battery lifetime and maximiz-
ing system fidelity through run-time adaptation of sensor
acquisition (duty cycling) and profile-based predictions of
an individual’s future activities. A “personal activity pro-
file” describes the expected behavior of an individual and
is used to inform the desired battery discharge characteris-
tics over time. Using walking activity traces collected from
three human subjects wearing FitbitR© trackers over sev-
eral months in order to develop such activity profiles, the
approach is demonstrated in simulation based based on an
analytical power model for an inertial BSN platform incor-
porating recent sensors. Results show improvements over
statically setting a duty cycle for constant power consump-
tion with respect to ideally setting the duty cycle based upon
a priori knowledge of activities of interest throughout the
system lifetime.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Health, Medical infor-
mation systems
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1. INTRODUCTION
Optimizing the tradeoff between battery lifetime and sys-

tem fidelity is central to realizing the potential of body sen-
sor networks (BSNs). One central challenge to this trade-
off is that, for many applications, energy consumption and
data quality depend on the behavior and activities of the
wearer. For example, given some available control setting
(such as on-node data reduction through lossy compression,
sampling rate adjustment, or wholesale duty cycling), the
tradeoff between the fidelity level and remaining battery life-
time depends on how often the activities of interest will be
performed. If the projection is too high, the fidelity level
will be set unnecessarily low, leaving additional battery life
on the table come re-charge. Conversely, if the projection
is too low, the fidelity level will be set too high, expending
the battery before the projected re-charge, leaving activities
of interest entirely uncaptured. In order to properly opti-
mize such a battery lifetime-fidelity tradeoff, it is necessary
to predict and adapt to future dynamics over the course of
operation, informed by past observations.

This work explores the potential of such an approach in
the context of a gait monitoring application scenario (using
6 degrees-of-freedom motion capture), leveraging personal
daily activity profiles and feedback to improve the battery
lifetime-fidelity tradeoff. To illustrate, the focus is placed
on the variability of the amount of data of interest—that is,
the amount of time spent walking. During these periods of
interest, the node selects a short-term power-fidelity trade-
off by setting a duty cycle of operation (sensor acquisition
and radio transmission), but otherwise the node stays in a
low-power mode during periods of non-interest. The goal
is to capture the data at the highest allowable duty cycle
while satisfying a battery life requirement, or, more gener-
ally, to give “equal opportunity” or equal fidelity to all data
of interest within the specified monitoring period.

Daily walking traces were collected on three subjects for
133, 126, and 68 days, respectively, using FitbitR© trackers.
Simulations were performed based on an analytical power
model for an inertial motion capture system using recent
components, comparing the proposed approach against stat-
ically setting a duty cycle for constant power consumption
and ideally setting the duty cycle based upon a priori knowl-
edge of the amount of walking remaining before re-charge.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background about the application scenario
and related work. Section 3 describes the approach and
methods for profiling a user’s daily activity to estimate ex-
pected activity over the battery lifetime and adjust acquisi-
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tion duty cycling to meet the desired requirements. Section
4 describes the methodology used for evaluation of the pro-
posed technique and the experimental setup. Section 5 de-
scribes the results of the proposed scheme compared to static
settings and the ideal (“oracle”) case. Section 6 explains the
conclusions and ideas for future research.

2. BACKGROUND
As described above, this work targets an example appli-

cation involving continuous, longitudinal gait monitoring.
Sensor acquisition effort is focused on periods of walking or,
more generally, non-sedentary periods, which are of primary
interest for gait analysis and activity monitoring. This ex-
ample is motivated in part by ongoing research investigating
the use of activity level and gait analysis from 6 degrees-of-
freedom inertial BSNs to assess early warning signs for fall
risk in the elderly in a retirement facility or homecare setting
with the goal of intervening before fall events occur. It is im-
portant to capture high-precision inertial data continuously
for an individual, including throughout the night (nighttime
falls are common), to get accurate fall-risk estimates. The
BSN nodes may be swapped periodically—daily for older
platforms, but conceivably weekly for newer, more energy-
efficient platforms—by nursing staff during one of the orga-
nized meals or a home visit, thus requiring a battery lifetime
to cover the period between swapping or recharging.

The problem of optimizing fidelity over a battery life has
become of interest recently, with respect to mobile phones
as well as BSNs, both of which have limited energy capac-
ity and are subject to variable energy demand. In partic-
ular, related problems have been studied under assump-
tion of Markovian user state transitions using a Markov
Decision Process framework. On mobile phones, such ap-
proaches were used in conjunction with delaying update of
state knowledge based on the probability of a state change [8]
or choosing when to synchronize e-mail [5]. Others have ap-
plied the approach for health monitoring scenarios account-
ing for measures of health/criticality [7] or available energy
for harvesting [6]. These heavyweight methods require ex-
tended offline computation and, moreover, may require more
RAM (e.g, 128KB [7]) for storing decision tables than a typi-
cal low-power microcontroller, such as the TI MSP430F1611,
is likely to have. In contrast, this paper presents a simpler,
more straightforward approach for the purpose of explor-
ing the potential gains of leveraging activity profiles for im-
proved fidelity-battery lifetime performance.

3. APPROACH
As described above, this approach centers around a sce-

nario in which the BSN node is only operated during times
of detected activity (i.e., the wearer is walking), and other-
wise the node is in a low-power mode monitoring for walking
to begin again. This means that the achievable balance of
lifetime and fidelity is dependent upon the amount of walk-
ing occuring in the deployment period, which is not known
a priori. Thus, we present an analysis of the ideal operation
(if one did have a priori knowledge), followed by an explana-
tion of the proposed technique, whose rationale is informed
by the ideal operation. An example application-agnostic fi-
delity metric is presented for use within this work, although
more appropriate metrics better informed by a specific ap-
plication should be substituted.

3.1 Ideal Operation
Given the above-stated goal of capturing data from all

times of the day at an equal, maximal duty cycle, the ideal
operation, given a priori knowledge, would be as follows.
The starting battery energy, Ebatt, should be spread evenly
over the total amount of time, W spent walking during the
day. That is, the preferred average power during periods of
walking activity is

Pavg = min

(
Ebatt

W
,Pactive

)
, W 6= 0 (1)

where Pactive is the typical power when no duty-cycling is
applied. The corresponding ideal setting of the duty cycle,
dideal, is then simply

dideal =
Pavg

Pactive
(2)

That is, ideally, a fixed duty cycle would be chosen for the
entire day, given knowledge of Ebatt and W . However, since
W is not known at the start of the day, any static setting will
tend to be suboptimal, either exhausting the battery early
or using a suboptimal duty cycle. Thus, we seek a more
dynamic approach that makes adjustments in response to
the actual amount of activity observed throughout the day.

3.2 Activity Profiling
In order to adapt to the wearer’s true amount of activity

throughout the day, it is necessary to develop predictions,
for different times throughout the day, of the amount of
activity still to occur. Thus, we develop the notion of a
walking profile as follows. Dividing the day into time steps
k = 1, 2, . . . , N , let Wk denote the total amount of active
time remaining at time step k, and let wk be the amount
of active time within a single time step k. Wk and wk are
related by the following:

wk = Wk −Wk+1 (3)

and

Wk =

N∑
m=k

wm (4)

The activity profile, then, is a vector W =
(W1,W2, . . . ,WN )T , which is simply a sequence of predic-
tions of the total remaining active time at each time stage.

Figure 1 shows example profiles for 5 days. The profile
begins at midnight at a high number, indicating the walking-
to-go amount, in seconds, and remains constant until the
wearer engages in the activities of the day. It then decreases
steadily until the end of the day. On some days, for example,
the subject may take a noticeably long walk around noon,
causing that day’s initial value to start high, but nearer the
end of the day, the profiles converge closer to one another,
approaching 0 s of walking left at the end of the day.

The goal of activity profiling is to develop an estimate
profile, Ŵ, based on actual profiles observed for previous
days. The approach for training such an estimate profile is
discussed later in Sec. 3.4. First, the usage of this profile
during deployment is examined.

3.3 Profile-Informed Feedback
Once an estimate profile Ŵ is developed for the day under

test, it is used to employ a feedback algorithm. At each time



0 500 1000 1500
0

1000

2000

3000

4000

5000

6000

Elapsed Time (minutes)

A
ct

iv
e 

W
al

ki
ng

 T
im

e 
R

em
ai

ni
ng

 (
s)

Figure 1: Example W profiles from five sample days

step k, the node calculates its desired average power, Pk in
a similar fashion as Equation 1 but using the estimate Ŵk

instead of Wk, which is not known a priori :

Pk =

{
min

(
Ek/Ŵk, Pactive

)
, Ŵk 6= 0

Pmax, Ŵk = 0
(5)

which gives a corresponding duty cycle

dk =
Pk

Pactive
(6)

Applying the chosen Pk for the kth time step depletes the
energy in proportion to the amount of walking that occurs,
wk, leading to the following recursion for battery energy
remaining at time k:

Ek+1 = Ek − Pkwk (7)

Since the actual amount of active time, wk, is random,
the remaining energy at time k + 1 is itself a random quan-
tity, being a function of the previous w1, w2, . . . , wk. Thus,
the recalculation of desired power Pk+1 for time step k+1—
based on Ek+1 and prediction Ŵk+1—constitutes a feedback
loop by which the node adjusts to the actual behavior (ran-
dom disturbance) of the wearer over the course of a day.

In deploying this method, the BSN node must be aware
of its current remaining energy, Ek, in order to calculate
the proper duty cycle setting. Practically speaking, one can
either assume the power Pk is deterministic or, for greater
accuracy, track the energy consumption through the use of
coulomb counting [4] or current sensing [2].

3.4 Profile Training
It is desirable to develop an estimate profile Ŵ which

optimizes some expected cost or utility achieved by the sys-
tem. Let g(d,w) denote such a utility—or rather, fidelity—
function, where d = (d1, . . . , dN )T and w = (w1, . . . , wN )T .
Given the initial battery charge (E1) constraint, we have a
constrained optimization problem:

max g(d,w) s.t.

N∑
m=1

dmwmPmax ≤ E1 (8)
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Figure 2: Example candidate profiles generated
from the sample days.

where the dm result from the feedback method, and the wm

are the (random) active times in each stage m. For the
purposes of demonstrating of the usefulness of the profiling
technique, we do not attempt to model the wm probabilis-
tically or delve deeply into optimization strategies within
this work, but rather employ a simple heuristic approach, as
follows.

Given D days of previous observations, we develop D can-
didate estimate profiles (Ŵ(i), i = 1, . . . , D) and choose the
one which maximizes the average value of g over the D days.
The candidate profiles, however, are not simply the actual
profiles W(i) previously observed on days 1, . . . , D. Rather,

for each time step k, Ŵ
(i)
k = W

(ri)
k , where ri indicates rank

in sorted order at time k. That is, the ith candidate pro-
file’s estimate at time k is the (i/D)th percentile among

W
(1)
k ,W

(2)
k , . . . ,W

(D)
k .

This concept is illustrated in Figure 2, which depicts each
time stage as a boxplot showing the distribution ofWk across
previously observed days. Example candidate profiles are
drawn as lines on the figure (one in the bottom quartile
and one in the top quartile). The small circles indicate out-
liers, which may cause large jumps at those times among
the highest-rank candidate profiles, but the training process
should help to rule out those candidates if they are too ex-
treme.

The candidate profile which, when simulated with all D
days previously observed, maximizes the average utility g
over all days is chosen. That is,

max
i

1

D

D∑
m=1

g(d(m),w(m)) (9)

is used to choose the “best” profile, W(i)

3.5 Fidelity Metric
While the framework described previously can be used to

map to a particular set of utility/fidelity measures and/or
constraints, for the remainder of this work, we will consider
a specific fidelity metric designed to capture the objectives
that were expressed qualitatively until now. (Ideally such a
metric would be informed directly by the application, but for
now we choose a more agnostic metric.) Recall, we wish to
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Figure 3: Response of the utility measure as a func-
tion of duty cycle, given a fixed choice of duty cycle
for the day

capture the active periods at all times of the day at an equal,
maximal duty cycle. Therefore, a utility metric should re-
ward a high duty cycle while penalizing variations in the
choice of duty cycle over the day. If the battery is exhausted
prematurely, subsequent active times are treated as operat-
ing at a duty cycle of 0, manifesting as extra variation in
contrast to earlier periods of nonzero duty cycle.

Again, we emphasize that choice of fidelity metric may be
changed to suit one’s needs. For this work, we select the
following metric for a single day’s operation:

v = g(d,w) = mean(d)− V ar(d)

=
1

W1

(
N∑

k=1

dmwm −
N∑

k=1

wm(dm − µ)2
)

(10)

This function was chosen, in part, to give a reasonable
response for the fixed-duty-cycle baseline approach. The fi-
delity v is maximized when d = dideal (Equation 2), but
decreases linearly as d moves away from the dideal. This
is illustrated in Figure 3 for three possible values of dideal.
When the duty cycle is too conservative (0 ≤ d ≤ dideal), the
V ar(d) term is 0, leaving the linear function v = mean(d) =
d. When the duty cycle is too aggressive (dideal ≤ d ≤ 1),
the mean saturates at dideal while the V ar(d) term grows
due to periods of missed data (effective duty cycle of zero),
causing a linear decrease in v (specifically, v = dideal −
dideal(d− dideal)).

4. EVALUATION METHODOLOGY
The approach described above is evaluated in simulation

based on sample profiles collected from three human subjects
over several months. An energy model was developed for
calculating idle and active power figures for the system, and
step count data from a FitbitR© tracker were used as a proxy
for the profiles that would normally be collected directly
with the inertial BSN node running over multiple days.

4.1 Power Modeling
The various energy-consuming components of a BSN node

can be included in a power model to predict the average op-

erating power for collecting and sending sensor data. An
analytical power model allows for power-fidelity analysis to
be done off-line, and it can be easily modified for other hard-
ware platforms or components. The total average power
needed to collect and transmit data on a BSN node can be
broken into contributions from the various board-level hard-
ware components: the microcontroller (PMCU ), the radio
(Pradio), and the sensors (Psensor) as shown in (11).

PSY S = Psensor + Pradio + PMCU (11)

This work attempts to model a custom 6 degrees-of-freedom
inertial sensor node based upon the TEMPO inertial mea-
surement BSN node [3] with newer sensors and radio compo-
nents substituted. Specifically, the Analog Devices ADXL345
tri-axial digital accelerometer was chosen for its low-power
sensing mode, and the Invensense MPU-6000 was chosen as
the lowest-power available sensor providing a tri-axis gyro-
scope. In its low-power sensing mode, the ADXL345 con-
sumes only 50µA at a 100 Hz sampling rate; in its higher
power (lower-noise) mode, it consumes 140µA at the same
sampling rate. The MPU-6000 consumes 3.6 mA in active
mode, thus dominating the sensing power when turned on.

The radio consumption was modeled as a constant energy
per bit, Ebit, assessed to be approximately equal to 2.83µJ
using values from a common 2.4 GHz transceiver capable
of transmitting at 250 kbps [1]. The radio values assume
that the transceiver buffers the entirety of a message before
sending it across the body area channel. So higher compres-
sion ratios result in fewer messages being sent (as opposed
to shorter messages) which is desirable given the significant
overhead of sending a message. The average power of the
radio is expressed in terms of the average bitrate, fbit:

Pradio = fbitEbit (12)

The average power consumption of the microcontroller is
broken in contributions from active mode (PAM ) and low-
power mode (PLPM ),

PMCU = αAMPAM + αLPMPLPM + ELPM trans (13)

with αAM and αLPM defined as follows:

αAM = (tproc + tsend)/ttotal (14)

αLPM = (ttotal − tproc − tsend − tLPM trans)/ttotal (15)

are relative on-time factors which scale the raw power figures
to average power. The time amounts are relative to some
epoch of time ttotal in which the MCU burst-reads sensor
data and updates its walking detection algorithm (tproc),
and—if the wearer is walking—sends the data to the radio
(tsend). The time to switch into low-power mode and back
is denoted tLPM trans, while the finite energy required for
switching to LPM and back is ELPM trans.

All of these values are either known or found in the mi-
crocontroller documentation and datasheets except for tproc
and tsend. tproc is directly related to the number of clock
cycles needed to read in the sensor values and perform
walking detection, and tsend is directly related to the sam-
pling rate. An example of a simple walking detection al-
gorithm would consist of computing the vector magnitude
of each 3-axis accelerometer sample, periodically calculating
its variance over a recent window, and comparing to a pre-
determined threshold. Relative to a one-second epoch, at a
100-Hz sampling rate, this can be done in roughly 11.9 ms



Model Parameter Value
Paccel,low 165 µW
Paccel,high 462 µW
Pgyro 11.9 mW
fbit 9600 bps
Ebit 2.83 µJ
PAM 8.83 mW
PLPM 8.56 µW
ELPM trans 300 nJ
ttotal 1 s
tproc,idle 13.8 ms
tproc,active 16.2 ms
tsend 4.8 ms
tLPM trans 3 ns
Pactive 39.7 mW
Pidle 296 µW

Table 1: Energy model parameters

on a TI MSP430F1611 at 3.69 MHz. This microcontroller
power model was validated by measuring current consump-
tion through a sense resistor for a TIMSP430F1611 and was
shown to give values within 3% of those measured over a
sweep of processing cycles/epoch.

A summary of relevant parameters in the power model for
the BSN node model used in this work is given in Table 1.

4.2 FitbitR© Profiles
In a realistic deployment using this technique, one would

derive the observed walking profile W(i) for a given day,
i, directly using the capabalities of the sensor node, which
would use its accelerometer and a walk detection algorithm
to detect periods of activity and log them in local RAM
or flash memory. For example, a relatively high-granularity
walking profile consisting of one value—the number of sec-
onds active—for each minute of the day, would require 1440
bytes, which is not unreasonable for an embedded MCU such
as the TIMSP430F1611 used in our node model.

However, for the convenience of experimentation, we have
used the FitbitR© tracker as a proxy for the BSN node to col-
lect sample profiles from three subjects over extended peri-
ods of time. The FitbitR© is a commercial system consisting
of a small clip-on device that tracks daily activity levels. It
reports the total number of steps taken for each minute of
the day. This was multiplied by a sample cadence value for
the subject to get an estimate of the time spent walking for
each minute. Admittedly, this is only an estimate, as the
cadence cannot be assumed constant. When the cadence is
clearly underestimated, resulting in an apparent active time
of 60s for a given minute, this value is reduced to 60s. In
general, we expect that these profiles are a reasonable rep-
resentation of the relative intra-day and inter-day patterns
for the wearers and illustrate the value of the proposed ap-
proach, and are thus satisfactory for our initial analysis.

Three volunteer subjects (adult male) wore FitbitR© track-
ers, each beginning on a different date, resulting in 133, 126,
and 68 days of tracking, respectively. The subjects worked
40-50 hours a week, sitting down for the majority of the time.
Outside of work, the subjects went about their daily lives,
which consisted of typical daily activities (housework, exer-
cise, television watching, grocery shopping, computer work,
etc.). The distributions of total daily walking time for each
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Figure 4: Distribution of total daily walking time,
for each subject. D indicates the total number of
days in the data set for the particular subject.

subject are indicated by boxplots in Figure 4. Subject 1 in
particular exhibited the largest variation, including multiple
significant outliers (indicated by ‘+’ symbols).

4.3 Simulation
The profiling approach is explored via simulation in MAT-

LAB. The profiles collected from FitbitR© are partitioned
into a training set (60%) and a testing set (40%) for the
subject, and the training method described in Section 3.4
is applied to the training set using the fidelity metric de-
veloped in Section 3.5. To ensure fair comparison with the
static (fixed-duty-cycle) baseline approach, the static esti-

mate Ŵ is analagously developed by training. Note that
this is a scalar estimate used once at the beginning of the
day to select a static operating point.

One parameter of particular interest in simulation is the
starting battery capacity, Ebatt. The approach in this work
assumes that the battery is not large enough for the node
to run at full duty cycle for all days’ walking amounts, but
not so small that even an ideal control scheme would show
minimal improvement. Thus, the battery is studied over a
range of interest and its effect is explored in the final results.
Note: given the relatively low power model parameters as-
sumed here (Section 4.1), we assume the deployment would
target a weekly, rather than daily, recharge period, so Ebatt

reflects (1/7)th of the battery pre-allocated to a given day,
although one could imagine adapting the approach to use a
7-day, rather than 1-day, horizon.

During deployment, the node itself would be responsi-
ble for collecting the daily walking profiles in addition to
the primary task of capturing periods of walking activity.
For this analysis, we reserve a portion of the battery capac-
ity, Ereserve, sufficient to operate the node in idle mode for
the duration of the observation period. That is, Ereserve =
PidleTtarget (where we assume Ttarget = 24 hr). Therefore,
the value used for the starting energy (as in Section 3.3) is
E1 = E1,actual − Ereserve.

5. EXPERIMENTAL RESULTS
A simulation was performed as described in Section 4 us-

ing sample Fitbit profile data from a subject who wore the
device for a total of 126 days. Figure 5 illustrates the per-
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Figure 5: Distribution of fidelity, normalized to the ideal fidelity (v = dideal), provided by an oracle, for subject
2, for the static-choice baseline method (for Ebatt = 82.7 J).
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formance of the static baseline approach and the proposed
profiling technique. In each case, the resulting fidelity score
for each day has been normalized by the ideal (maximum
possible, as selected by an “oracle” with a priori knowledge)
fidelity for that day. Thus Figure 5 shows a histogram of
such normalized fidelity—for both the baseline static case
and the profiling technique—over all days in the test set, for
a particular battery size at the start of all days.

It can be seen that the distribution of normalized fidelity
tends to be both more concentrated and tends toward higher
values. The plots in Figure 6 show the same information for
the baseline and profiling techniques, respectively, as a func-
tion of starting battery capacity. That is, the histograms
from the previous figures become boxplots in the latter fig-
ures (one boxplot for each battery size). Again, the distri-
bution of normalized fidelity tends to exhibit less variation
and to tend more toward the ideal than in the static case.

However, there is significant variation among the three
subjects. Subject 2, in particular, exhibits the most pro-
nounced improvement, followed arguably by Subject 3, then
Subject 1. Consulting Figure 4 from Section 4.2, we can see
that, correspondingly, Subject 2 exhibits the least amount
of variation in daily walking-time totals, followed in order
by Subjects 3 and 1. This suggests that the proposed ap-
proach is more effective for a wearer whose routines are more
regular, as one would expect.

It is worth noting that the fidelity metric used here, as
explained in Section 3.5, exhibits a linear degradation in
fidelity—for the static baseline case—as the fixed choice of
duty cycle moves away from the ideal, which one might char-
acterize as forgiving. An alternate formulation with a dif-
ferent fidelity function (e.g., quadratic degradation) could
alter the results significantly.

6. CONCLUSION
This work presented a method for balancing competing

needs: ensuring battery life—or rather, capturing all data
of interest during a deployment period—and maximizing fi-
delity of captured data under uncertain amounts of load
(periods of interest). In order to accomplish this, personal
activity profiles were utilized to predict future user behav-
ior, allowing online adjustment (through feedback) to actual
behavior (and corresponding energy expenditure) to better
balance both battery lifetime and fidelity. It was shown
that, in a subject with reasonably regular behavior trends,
the level of fidelity (determined here by the chosen duty cy-
cle) can be increased and made more consistent across vari-
ous days. Such approaches as this, which combine feedback
with profile-based predictions, could help to better enable
BSNs for use in longitudinal studies of continuous monitor-
ing by reducing the necessary battery size and/or frequency
of recharges.

Future work will seek to further develop a general
profiling- and feedback-based battery lifetime-fidelity opti-
mization methodology, while addressing the limitations of
this initial approach. The methodology should support a
variety of BSN platforms and applications, each of which
implies a different power model, fidelity definition, and/or
power-fidelity settings (other than duty cycling). In addi-
tion, for multi-day recharge periods, prediction and feedback
accounting for the entire recharge period as a whole (rather
than individual days) will be explored. Finally, additional
exploration is needed in the probabilistic/statistical model-

ing of user behavior and optimization methods to produce
more accurate profiles that result in higher fidelity, including
incorporating or comparing with aspects of related methods
described in Section 2. For instance, the observations of
activity-so-far in a day (w1, . . . , wN ) may well be predictive
of future activity and thus could be used to update predic-
tions about the remainder of the day on-the-fly, rather than
only offline at the beginning of the day; this would be espe-
cially useful if the wearer’s profiles cluster into similar, yet
separate, groupings. This research direction will facilitate
pervasive adoption of BSNs by enabling them to intelligently
adapt to system dynamics and resource availability.

7. ACKNOWLEDGMENTS
The authors would like to thank Dr. Stephen D. Patek

(Systems & Information Engineering, UVA) for his helpful
input. This work is supported by the National Science Foun-
dation under grants ECCS-0901686 and CNS-1035771 and
the Graduate Research Fellowship (DGE-00809128).

8. REFERENCES
[1] Texas Instruments, CC2500 Low-cost low-power 2.4

GHzRF transceiver Datasheet, 2007.

[2] L. Au, W. Wu, M. Batalin, D. McIntire, and
W. Kaiser. Microleap: Energy-aware wireless sensor
platform for biomedical sensing applications. In IEEE
Biomedical Circuits and Systems Conference (BioCAS),
pages 158–162, 2007.

[3] A. T. Barth, M. A. Hanson, H. C. Powell Jr., and
J. Lach. TEMPO 3.1: A body area sensor network
platform for continuous movement assessment. In
International Conference on Body Sensor Networks
(BSN), pages 71–76. IEEE, 2009.

[4] A. T. Barth, M. A. Hanson, H. C. Powell Jr., and
J. Lach. Online data and execution profiling for
dynamic energy-fidelity optimization in body sensor
networks. In Proceedings of the 2010 International
Conference on Body Sensor Networks, BSN ’10, pages
213–218, Washington, DC, USA, 2010. IEEE Computer
Society.

[5] T. L. Cheung, K. Okamoto, F. Maker, X. Liue, and
V. Akella. Markov decision process (mdp) framework
for optimizing software on mobile phones. In
Proceedings of the Seventh ACM International
Conference on Embedded Software, EMSOFT ’09, pages
11–20, New York, NY, USA, 2009. ACM.

[6] Y. He, W. Zhu, and L. Guan. Optimal resource
allocation for pervasive health monitoring systems with
body sensor networks. IEEE Transactions on Mobile
Computing, 10(11):1558–1575, Nov. 2011.

[7] A. Panangadan, S. M. Ali, and A. Talukder. Markov
decision processes for control of a sensor network-based
health monitoring system. In Proceedings of the 17th
Conference on Innovative Applications of Artificial
Intelligence - Volume 3, IAAI’05, pages 1529–1534.
AAAI Press, 2005.

[8] Y. Wang, B. Krishnamachari, Q. Zhao, and
M. Annavaram. Markov-optimal sensing policy for user
state estimation in mobile devices. In Proceedings of the
9th ACM/IEEE International Conference on
Information Processing in Sensor Networks, IPSN ’10,
pages 268–278, New York, NY, USA, 2010. ACM.


