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Abstract- Current portable healthcare monitoring systems are 

small, battery-operated electrocardiograph devices that are 

used to record the heart’s rhythm and activity.  These on-body 

healthcare devices fall short on delivering real-time continuous 

monitoring of early detection of cardiac atrial fibrillation (A-

Fib) when the symptoms last only a short period of time and 

require a long battery life. The focus of this paper is the design 

of an energy efficient model for real-time early detection of A-

Fib in a wearable computing device. The design is realized by 

incorporating an A-Fib risk factor and a real-time A-Fib 

incidence-based detection algorithm. The results of the design 

show that the proposed energy efficient model performs better 

than a telemetry energy model. The design shows promising 

results in meeting the energy needs of real-time monitoring, 

detecting and reporting required in wearable computing 
healthcare applications. 
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1. INTRODUCTION 
Atrial fibrillation (A-Fib) is the most common cardiac arrhythmia 
[1] [2] [3]. The American College of Cardiology and the American 
Heart Association define A-Fib as a supraventricular 

tachyarrhythmia characterized by uncoordinated atrial activation 
accompanied by the deterioration of atrial mechanical function. A-
Fib is responsible for approximately 15 percent of the strokes 
occurring in people with A-Fib. The cost to treat A-Fib in the 
United States exceeds $6.4 billion per year [4]. Small battery 
operated portable healthcare monitoring systems are used to 
monitor arrhythmia by recording the heart’s rhythm and activities. 
The recorded data is eventually transmitted either to a physician’s 
office or to a healthcare center for analysis and detection. 

Unfortunately, these on-body devices are plagued by energy 
constraints, process optimization problems, data security risks [5] 
[6] and interference, among others. They need to optimize energy 
consumption and implement energy management in order to 
balance innovative interfaces, network resources, continuous 
monitoring and apropos detection energy requirements.  
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The energy consumption must be efficiently allocated. Decisions 
of which various processes need to run, and when, must be made 
judiciously in order to deliver essential results in a critical device 

energy shortage. In addition, wearable healthcare computing 
devices need the ability to analyze and accurately detect 
arrhythmia and other medical ailments [7]. 
This paper presents the design of an incidence-based energy-aware 
model for real-time detection and reporting of atrial fibrillation in 
wearable computing devices. Section 1 briefly motivates the need 
for energy optimization in wearable computing healthcare devices. 
Section 2 highlights related work. Section 3 describes the required 

energy components in an A-Fib wearable computing system and 
defines the incidence, the diagnosis accuracy and the predictors of 
A-Fib. Section 4 presents the energy models to detect A-Fib, and 
compares the incidence-based energy-aware model to a telemetry 
energy model. 

2. RELATED WORK 
Wearable devices face high performance requirements in the 
middle of energy constraint challenges. Studies and research [8] 
[9] [10] [11] suggest various methods to minimize power 
consumption in mobile devices. The authors of [8] describe a 
framework that is used to reduce the energy consumption of 

sensors by temporarily turning them off. In study [9], the battery 
life is extended by as much as 30% through a collaborative 
relationship between the operating system and applications. In 
[10], the authors propose ways to enable systems to trade 
computational accuracy for resources by scaling down the data or 
feature set for use on a remote healthcare system. The study reports 
significant resource savings for small amounts of utility 
degradation, e.g., 33% of bandwidth saving for only a 1% of 

accuracy degradation. Study [11] suggests a trade-off between 
power saving and detection accuracy or performance, they show 
how power can be saved at the loss of a small amount of accuracy 
by applying different techniques using a low power real-time 
epilepsy seizure detection algorithm. In project [18], the battery 
life of a wireless healthcare system is optimized using a dynamic 
scheduling technique by efficiently assigning tasks to the available 
resources. The Framingham heart study [17] [20] developed a risk 

score to calculate an individual’s risk of developing atrial 
fibrillation and a development framework for researcher. The 
research funded by the Health Technology Assessment Program 
addresses the accuracy of electrocardiogram (ECG) for the 
diagnosis of A-Fib and the potential risk of A-Fib misinterpretation 
errors[12] [13] [14]. Finally, a mobile medical device, dubbed 
HeartSaver [15] was developed to monitor the onset of atrial 
fibrillation and other cardiac pathologies. Our design extends 

battery life in a Risk Incidence-Based energy-aware model that 
may be applied in wearable computing devices to continuously 
monitor and detect the onset of A-Fib. 
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3. PRELIMINARIES 
This section describes the required energy components in an 

A-Fib wearable computing system and defines the 

incidence, the clinical diagnosis accuracy and the predictors 

of A-Fib. 
 

3.1 Devices 

Typically, a wearable computing device requires energy for signal 
sensing (EECGsense), for Bluetooth signal transmitting from the 

sensor to the GSM phone (EECGTx), for GSM phone signal 
receiving from the Bluetooth sensor (EECGRx), for GSM phone 
analysis and detection (Eclassify), and for the GSM phone 
transmitting results (ERep) (see Figure 1). We compare the energy 
consumed by a Risk and Incidence Based A-Fib Detection Scheme 
to the energy consumed by a telemetry model. In this study, we use 
the two-lead ECG Alive Technologies Heart Monitoring Device 
A102D7 (650 mAh at 3.7 V) [16]. The device monitors and 
transmits ECG signals via Bluetooth to an Apple MacBook 

computer (see Figure 2). We assume that the telemetry model 
continuously monitors and transmits ECG signals during a 24-hour 
period. 

 

 
Figure 1: Wearable computing energy functional requirements 

 

 
 

Figure 2: Alive Technologies Heart Monitoring Device A102D7 
 

3.2 Understanding A-Fib 

The following subsections define the incidence rate of A-Fib, the 
clinical diagnosis accuracy of the onset of A-Fib, and the 
predictors A-Fib. 
 

3.2.1 Incidence Rate of A-Fib 
Among all arrhythmia, A-Fib is the most frequently diagnosed and 

affects 2.5 million people in the United States, or close to 1% of 
the total population [4]. The Manitoba study [37] concluded that 
the incidence of A-Fib is 0.13 to 0.36 for people between 25 and 
60 years old, 5.7 per 1,000 person-years after age 60, and 9.7 per 
1,000 person-years after age 70. The Framingham Heart study [36] 
and other studies draw attention to the significance of the higher 
frequency of A-Fib with advancing age [19]. Patients with A-Fib 
have a 1.5-2 fold increase in mortality rate when compared with 

the general population as suggested by Framingham Heart study 
data [17] [20]. Early recognition of A-Fib is difficult because most 
people are not aware of this silent rhythm disturbance [21]. Today, 
frequent monitoring and screening of patients allow for early 
detection of arrhythmia.  
 

3.2.2 Clinical Diagnosis Accuracy of A-Fib 
At least one-third of the A-Fib episodes go undetected because 
either people do not get screened often, or A-Fib diagnosis is 

missed by a general practitioner or practice nurse [23]. Few studies 
have addressed the misdiagnosis of A-Fib from an 
electrocardiogram (ECG) and the potential risk of A-Fib 
misinterpretation errors. Knight et al. [13] concluded that A-Fib is 
more often misdiagnosed by internists than cardiology fellows and 
cardiologists. Mant et al. [23] discovered that general practitioners 
correctly detected A-Fib 80% (true positive) of the time when 
interpreting 12-lead ECG data and misinterpreted 8% (false 

positive) of sinus rhythm cases as A-Fib. One of the major 
misdiagnosis confuses A-Fib with atrial flutter [13] [24].  
 

3.2.3 Predictors of A-Fib 
A-Fib is the most prevalent arrhythmia in the United States and 
accounts for more than 750,000 strokes per year [25]. According to 
classification guidelines used by cardiologists and electro-
physiologists, for the management of patients with A-Fib [26], 
after the first A-Fib is detected, there are mainly four types of A-
Fib: Paroxysmal, persistent, longstanding persistent, and 

permanent. A-Fib is termed progressive, as once a patient is 
diagnosed with a paroxysmal A-Fib, he or she will eventually 
migrate to persistent A-Fib. Similarly, a patient diagnosed with 
persistent A-Fib, will drift to longstanding persistent A-Fib and in 
time to permanent A-Fib [27].  
Some of the ECG waves and intervals in figure 3 are used to derive 
our A-Fib detection algorithm. The latter plays an integral part in 
the Risk Incidence-Based energy model. The QRS interval is the 

duration of the ventricular muscle depolarization. The P wave is 
a record of the electrical activity or the sequential activation 

(depolarization) through the right and left atria. The PR 

interval is the time interval measured from the beginning of 

the P wave (atrial depolarization) to the onset of the QRS 

complex (ventricular depolarization). The RR interval is the 

duration of the ventricular cardiac cycle; it is an indicator of 

the ventricular rate. The PP interval is the duration of the 

atrial cycle; it is an indicator of the atrial rate. 
 



 
Figure 3: Typical ECG wave and intervals 

 
During A-Fib, the electrical signal begins in a different part of the 

atria instead of the SA node. The abnormal signal causes the atria 
to quiver rapidly instead of contracting normally. The atria do not 
pump blood efficiently into the ventricles causing the blood to pool 
in the atria where clots can form. Blood clots may travel from the 
heart to the brain resulting in strokes (Figure 4 describes the path 
of the electrical signals during an A-Fib episode). 

 
 

 
Figure 4: Describing A-Fib chaotic electrical signals 

 

We acknowledge detecting A-Fib is difficult and requires a more 
intense research, however one of the strong indicators of A-Fib 
presence is the absence of P waves on the ECG plot and an erratic 
noise-like activity in their place combined with irregular R-R 
intervals [28][25][27]. Sometimes when the heart rate is too fast, 
irregular RR intervals may be difficult to determine [19]. Wide 
QRS complexes may be present with rapid ventricular response.  

4. ENERGY  MODELS TO DETECT A-FIB 

Today, portable healthcare monitoring devices such as Holter 
monitors, event monitors, and telemetry devices are small battery 
operated electrocardiograph (ECG) devices, which are used to 
monitor a patient’s heart activity for periods of time ranging from 
days to weeks. Sensed or recorded ECG data is sent to a doctor or a 
care center for analysis and reporting. Unfortunately these on-body 
devices are not energy efficient; they drain batteries quickly and 
necessitate patients to replace batteries sometimes daily [29]. This 
weakness in wearable computing devices runs the risk of missing 
the first 30 seconds of A-Fib or might not be possible if the user is 
incapacitated. They also fall short on delivering real-time detection; 
the patient waits for the eventually transmitted recorded data to be 
analyzed and results fed back to him. Telemetry and wearable 
healthcare computing systems are concerned with three main 
components: monitoring, detection, and reporting. In an energy-

aware environment, the different components must run sensibly in 
order to extend battery life. 

 

4.1 Telemetry Energy Model 

When prescribed by a physician, telemetry may be applied 
continuously for few days in the hope of capturing episodes of A-
Fib. Telemetry may also be user-triggered by the patient as soon as 
he or she feels symptoms of A-Fib (such as heart palpitations). We 
assume that telemetry ECG interpretations are conducted by a 
cardiologist or a cardio-physiologist who is a trained expert at ECG 

readings thus, all judgments of what constitutes A-Fib are going to 
be assumed to be as accurate as possible. The total energy 
consumed is the sum of the energies that are required for sensing 
ECG signals, transmitting to the cell phone via Bluetooth, receiving 
ECG record, and reporting ECG record for a period of 24 hours. 

 

                                                            (1) 

 

The telemetry report includes all positive and negative results. 
False positive outcomes are usually interpreted as false alarms; 
they contribute to wasted or needless energy spent in transmitting 
inaccurate information. In a 24-hour period, such a telemetry 
system would use approximately 50% of the capacity of the Heart 
Monitoring Device battery. Typical monitoring and detection 
healthcare wearable body network devices have limited energy and 
therefore limited monitoring duration.  

4.2 Risk and Incindence Based Energy Model 

The implementation of a risk and incidence based A-Fib detection 
model in A-Fib monitoring devices alleviates the aforementioned 
challenges in telemetry[30] [31]. For instance, knowing the A-Fib 
risk factor of a patient allows one to prescribe an A-Fib monitoring 
and detection schedule. A high A-Fib risk factor may suggest more 
frequent monitoring compared to a low A-Fib risk factor. Because 
A-Fib is not a common occurrence [23], we want to report a result 
only when there is an actual occurrence of A-Fib. We adopt an A-
Fib logistic regression model to detect the first episode of A-Fib, 
that is the first 30 seconds of continuous A-Fib. After the first 30 
seconds of A-Fib is detected, monitoring may proceed beyond 24 
hours to detect paroxysmal, persistent, long-standing persistent and 
permanent A-Fib. Monitoring may be prescribed for days or weeks. 
 

4.2.1 Assessing the A-Fib Risk Factor 
The Cox proportional-hazards regression [32] is used to analyze 
the effect of risk factors on survival. The probability of the onset of 
A-Fib is called the hazard. The following covariates and their 
corresponding coefficients responsible for predicting A-Fib risk in 

people aged between 45 and 95 years old are extracted from the 
Framingham Heart Study [17] [20]: Age, Age2, Gender, Body 
Mass Index (BMI), Systolic Blood Pressure (SBP), Treatment for 
Hypertension (TH), Significant Heart Murmur (SHM), Prevalent 
Heart Failure (PHF), Gender*age2, and Age*PHF, PR Interval 
(PRinterval). We can express the hazard or risk of getting A-Fib at 
time t as: 

                                           ( )     ( )   
∑      
 
                          ( ) 

 

Where H0 (10) = 0.96337 is the 10 year baseline survival or 
cumulative hazard function at time t = 10 years extracted from the 
Framingham Heart study [17] [20]. 
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For example, the predicted Risk Factor for a male person, who is 
70 years old, who weighs 70 kg, with a body mass index of 22.96, 
a systolic blood pressure (SBP) of 130, no hypertension, a PR 
interval measuring of 16 ms, no significant heart murmur, and no 
previous heart failure, is 0.0863. This is compared to the risk for a 
person of the same age and gender, with BMI 20 to 24.9, a normal 

SBP (120 to 129), no treatment for hypertension, a PR Interval of 
16, no significant murmur or prevalent heart failure. 
 

4.2.2 Implementing A-Fib Detection 
The dataset used in our analysis was extracted from the Machine 
Learning Repository at University of California, Irvine [33], MIT-
BIH Atrial Fibrillation database [34] and from data donated and 
corroborated by a cardiologist. The dataset describes the attributes 
for diagnosing cardiac A-Fib where each instance or patient is 

classified into two categories: presence of cardiac A-Fib and 
absence of cardiac A-Fib. The resulting dataset contains 304 
records including 80 A-Fib cases, 224 non-A-Fib cases, seven 
attributes and two classes (A-Fib Present, A-Fib Absent).  The 
cardiologist’s classification is used as a reference (see Figure 5). 
 

 Variable Description Value 

1  age Age in years , linear real 

2 Age2 Age2 in years2 real 

3  Gender Gender (0 = male; 1 = female) , 
nominal 

{0, 1} 

4  BMI Kg/m2, Linear  real 

5 QRSduration Average of QRS duration in 

msec., linear 

real 

6  PRinterval Average duration between onset 
of P and Q waves in msec., 
linear 

real 

7  heartrate Number of heart beats per min, 
linear 

real 

 class {A-Fib present, A-Fib absent} binary 

 
Figure 5: A-Fib attributes. 

 
Logistic regression determines the relative effect of independent 
variables xi on the dependent variable Y or class and their 
statistical significance. This effect is usually explained in terms of 

odds ratios where the odds of an event x occurring with probability 
p is defined as: odds (p) = p / (1-p) where p is the probability of the 
presence of the disease. The logit transformation is defined as the 
natural log of odds,  
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xi =(x1, x2 , . . . , xk ) is the covariate vector and    (           )  
denotes the coefficients of the k predictors. Fitting a logistic 
regression model to a given data implies deriving estimates of the 

coefficients    that maximize the likelihood of the model. The 
outcomes of the Logistic Regression include all True Positive and 

False Positive results. They may be triggered at A-Fib incidence 
rates reported in the Manitoba studies [37] where the incidence of 
A-Fib is 0.13 to 0.36 for people between 25 and 60 years old, 5.7 
per 1,000 person-years after age 60, and 9.7 per 1,000 person-years 
after age 70 .  

 
A-Fib is predicted present if probability p (A-Fib is Present | age, 
age2, gender, BMI, QRSduration, PRinterval, heartrate) > 0.5  

Otherwise, A-Fib is absent.                                                         (7) 
 
logit (p)  = - 41.175 + 0.820 age – 0.006 age2 + 4.737 Gender  

- 0.047 BMI  +  0.098 QRSduration  - 0.178 PRinterval    
+ 0.066Heartrate                                                       (8) 

 
and  p = 1 / (1 + e-logit (p) )                                                            (9) 
 

Figure 6 describes a possible daily monitoring and detection of 
episodes of A-Fib according to a logistic regression model. 
 

 
 

Figure 6: A-Fib Episodes 
 

4.2.2.1 Evaluating Classifier Performance 

Given an ECG record, a binary classification has four possible 
outcomes or rates: True negative (TN), False Positive (FP), True 
Positive (TP), and False Negative (FN). Detection rates are 
measured in terms of sensitivity and specificity [26]. Both the 
overall classification accuracy and the overall classification error 
defined below may be used to evaluate the performance of the 
classifier: 

                    
     

               
 = 2.63%                        (10) 

 

                  
     

               
= 97.37%                        (11) 

 
However, when the cost of misclassifications of the different 
classes is uneven, this measure may be unacceptable. In order to 
take into account the unevenness of misclassification costs when 



evaluating a classifier, area under the Receiver Operating 
Characteristic (or ROC) curve is explored.  ROC curves have been 
used in biomedical informatics [7] to express the sensitivity versus 
specificity of classifiers.  
The ROC curve plot displays the False Positive rate on the X-axis 

(1- Specificity) and the True Positive rate (Sensitivity) on the Y-
axis. Each point on the ROC curve represents a sensitivity / (1-
specificity) pair corresponding to a particular decision threshold. 
The area under the ROC curve measures how well a particular 
parameter can distinguish between two diagnostic groups (such as 
presence of a disease/ absence of A-Fib). The bigger the area is 
and the closest to 1, the better the classifier performance.  The area 
under the ROC curve for the derived logistic regression model is 

0.986.  
The A-Fib detection algorithm is triggered by the onset of A-Fib. 
Suggested studies [24] reveal that clinical measurement of 
sensitivity (True Positive rate) of 80% and specificity (True 
Negative rate) of 92% when internists and general practitioners 
instead of cardiologists diagnose A-Fib. Our logistic regression 
classification of A-Fib has a measurement of sensitivity of 98.8% 
and specificity of 96.9%.  The false positive results, usually 

interpreted as false alarms, contribute to wasted or needless energy 
spent in transmitting inaccurate information. 
 

4.3 Applying Risk and Incidence Based  

Energy Model to A-Fib Detection  
A-Fib monitoring devices may become impractical when they run 
out of battery energy. Typical monitoring and detection healthcare 
wearable body network devices have limited energy and therefore 
limited monitoring duration. The implementation of a risk and 
incidence based A-Fib detection in such devices helps extends a 

monitoring device battery life. For instance, A-Fib risk factors may 
be classified in three categories made up of risk ranges such as k < 
0.05, 0.05 < k < 0.15, k > 0.15. Knowing the A-Fib risk factor of a 
patient allows one to prescribe an A-Fib monitoring and detection 
schedule (see Figures 7). A high A-Fib risk factor may suggest 
more frequent monitoring compared to a low A-Fib risk factor. 
 

 
Figure 7: Overview of an efficient wearable computing device 

 
We design an A-Fib detection energy model by adopting an A-Fib 
risk factor assessment algorithm from [20] and a logistic regression 
model. We consider an incidence rate equal to 2% for illustration 
purposes.  The total energy consumed during a 24-hour period is 
the sum of the following energies, EECGsense for continuously 

sensing ECG signals, EECGTx for transmitting ECG signals to the 
cell phone via Bluetooth, EECGRx for receiving ECG signals, Eclassify 
for classifying the received data, and ERep for reporting when there 
is an episode of A-Fib suggested by the detection algorithm output 
at the positive rate rp. 
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Figures 1 and 8 illustrate the major components in the A-Fib 
detection energy model.  
Ideally, when there are no A-Fib episodes, rp is equal to 0 that is, 
the model spends its time in a monitoring state. On the other hand, 
when the model continuously monitors, and continuously transmits, 
rp is equal 1. False positive outcomes result in wasted energy that is 
needlessly spent transmitting inaccurate information. In a 24-hour 
period, such a detection system would necessitate 31.1% of the 
capacity of the Heart Monitoring Device battery. This is equivalent 
to 61.8% of the energy consumed by a telemetry energy model. 

 

The authors plan to implement a risk and incidence based atrial 
fibrillation detection scheme in a wearable device and further 
validate the results in a clinical setting. 
 

 

 
 

Figure 8: Overview of a wearable A-Fib detection system 
 
Figure 9 illustrates the energy consumption as the positive 

detection rate varies with respect to the clinical incidence rate.  
 

 

 
Figure 9: Energy consumption versus A-Fib positive rate rp 

 



Figure 10 suggests that the ideal detection case is when the logistic 
regression positive rate rp is equal to cardiologist referenced A-Fib 
incidence rate i. The worst case is when the positive rate equals 1, 
which corresponds to a telemetry energy model. 

 

 
 

Figure 10: Energy required as positive rate varies with respect to incidence 

rate 

 

4.4 A-Fib Energy Model Versus Telemetry 

Telemetry is ubiquitous in health care monitoring. 
Unfortunately, it places high demand on energy consumption 

necessitating daily replacement of batteries in the telemetry 
monitoring device. If the positive rate rp is equal to the incidence 
rate i then if the classification detection algorithm correctly 
classifies 100% of the episodes of A-Fib, one may conclude that 
the general classification energy-aware model combined with an 
incidence rate delivers better results in energy consumption than 
the telemetry model.  
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Figure 11 depicts how the risk factor and incidence based energy 
efficient model combined with an A-Fib incidence rate of 2% 
consumes approximately 38% less energy than the telemetry 
model. 

 

 

Figure 11: Comparing energy-aware model to telemetry energy model 

 

5. CONCLUSION  

Early recognition of A-Fib is difficult because most people are not 
aware of this silent rhythm disturbance [19]. A-Fib is typically 
diagnosed, or misdiagnosed, during a routine screening visit or 
during a yearly scheduled check-up, by a general practitioner or a 
referred cardiologist. Current cardiac A-Fib telemetry devices do 

not deliver continuous real-time monitoring and require a long 
battery life. Furthermore, because some of these solutions require 
patient interaction and device activation, they may become 

impractical when the patient is incapacitated during symptomatic 
periods. In this paper we design an energy efficient model for real-
time monitoring and detection of cardiac A-Fib using A-Fib risk 
factor assessment and A-Fib incidence rate. Though our energy-
aware model depends on detection accuracy, the wearable 

computing detection model shows promising results in meeting the 
energy needs of real-time monitoring, detecting and reporting 
required in wearable computing healthcare applications. 
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