
Token Evolution in an Ill-posed Constraint Petri-net

Hideaki Suzuki
Center for Information and Neural Networks

(CiNet)
National Institute of Information and
Communications Technology (NICT)

588-2, Iwaoka, Iwaokaka-cho, Nishi-ku, Kobe,
651-2492 Japan

hsuzuki@nict.go.jp

Yoh Iwasa
Department of Biology

Faculty of Science
Kyushu University

6-10-1, Hakozaki, Higashi-ku, Fukuoka,
812-8581 Japan

yohiwasa@kyudai.jp

ABSTRACT
Unification constraints of predicate logic or string rewriting rules
of context free grammar can be represented by a Petri-net with the
AND/OR tree structure. In this network, deductive inference or
parsing can be formulated as a problem to find a solution subtree
within which variables have consistent substitution. The paper fo-
cuses on a token-based heuristic method to solve such an ill-posed
problem, and presents three prerequisite conditions to be satisfied
by tokens which propagate and evolve in the network. Incorporat-
ing these requirements would enable us to design highly distributed
algorithms for deduction or parsing.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—
Logic programming

Keywords
Petri-net, AND/OR-tree, Deductive inference, Token, Ill-posed prob-
lem

1. INTRODUCTION
For a long time, researchers in the computer science have tried to
implement intelligence in a computer in two different ways: a way
to manipulate symbols within the framework of Artificial Intelli-
gence [15] and a softer and more resilient way that borrows biolog-
ical mechanisms and emulates such systems as neural networks [6,
2], biological evolution [5], and so on) (this latter approach is some-
times called Computational Intelligence nowadays). Above all, as
exemplified by artificial neural networks [6], network representa-
tion has been regarded as a metaphor of brain, and has been most
often taken as a representation scheme within the latter approach.

This situation, however, is gradually changing after we began to
take a third, intermediate approach between symbols and emula-
tion, a way to manipulate symbols in artificial networks. One of
the most representative models in this approach would be Bayesian
networks which explicitly cope with probability with prepared tran-

sition tables [2, 4, 9]. Besides that, Suzuki et al. recently ex-
tended a historic approach named High-level Petri-net [8, 16, 12,
13, 10, 7] and proposed a novel network model named Knowledge
Transitive Networks − data-flow-based Knowledge Transitive Net-
work (dKTN) [17, 18, 21] and Petri-net-based Knowledge Transi-
tive Network (pKTN) [22, 24, 25]. The distinctive features of the
KTNs are summarized as follows:

• Knowledge is purely represented by the topological structure
of a network. This is in contrast with the High-level Petri-net
which represents predicate logic by the aid of arc labels.

• They are a kind of direct representation of first-order pred-
icate logic including variables and function symbols. This
is in contrast with the Bayesian networks which basically
propositionalizes first-order logic (i.e., eliminates variables)
for probabilistic reasoning.

• Deductive inference is propelled by a method named ELISE
(ELiminating Inconsistency by SElection) [19, 20, 18, 21]
which uses parallel propagation and evolution of tokens in a
network. This could enable us to represent a kind of ‘ambi-
guity’ in inference.

Although the KTN was originally introduced to visualize a logic
program, it (particularly the pKTN) is intimately related with con-
straint programming (CP) which tries to find consistent substitution
for variables under a set of prepared constraints [26, 1]. The CP
is sometimes represented using a constraint network whose nodes
represent variables and whose edges represent constraints [11, 3].
The pKTN’s places stand for variables and transitions stand for uni-
fication constraints, so in this sense, the pKTN can be regarded as
a kind of constraint networks; and yet, these two have striking dif-
ference in the following point.

When we solve constraint satisfaction problems by the CP, their
solutions are usually required to satisfy all the constraints (all the
edges in constraint networks). Whereas in the pKTN, a solution
(variables’ substitution) is required to satisfy only a part of the
pKTN’s expansion tree which can grow semi-infinitely. This makes
a problem ‘ill-posed’, and to solve it, we have to evaluate a solution
under two criteria, appropriate choice of a subnet in the network
and variables’ consistency within the subnet. The present paper fo-
cuses on this type of problems in a constraint network, and studies
a way to deal with them. Specifically, the paper takes ELISE that
solves deduction in the pKTN and theoretically analyzes its token
dynamics.



Figure 1: (a) Expanded pKTN for logic program (1a)∼(1d), and (b) its solution subtree.

In the following, we first present two typical examples of constraint
Petri-nets with ill-posedness (pKTN and AND/OR graph represent-
ing generative grammar) in Section 2. After briefly describing the
basic ways of ELISE in Section 3, we consider how to propagate
and evolve tokens in ELISE and present three necessary conditions
to be satisfied by the tokens in Section 4. Section 5 gives conclud-
ing remarks.

2. CONSTRAINT PETRI-NETS
Let us consider a logic program for family relationship

[Fact] Wife(Mary ,Paul). (1a)

[Fact] Child(Tom,Paul). (1b)

[Rule] Child(x, y) ← Wife(y, z),Child(x, z). (1c)

[Goal] ← Child(q,Mary). (1d)

Here, Wife and Child are predicates, Paul , Mary , and Tom are

constants, x, y, and z are variables, and q is a specific query vari-
able. Since this program has predicate Child in both of the head
and body of clause (1c), the expanded pKTN for this program is a
semi-infinite AND/OR tree [22, 24, 25]. Figure 1(a) shows the first
three tiers of the tree, and Fig. 1(b) shows its solution subtree. Here
and in Fig. 2(b), the solution tree (‘true branches’) is drawn in thick
bold lines, and the remaining parts (‘false branches’) are drawn in
light dotted lines. In all the figures, transitions are expressed as
squares, and places are expressed as circles/ellipses. In Fig. 1, the
place circles have their constants’, variables’, or predicates’ names;
however, only constants’ names have significant meaning for de-
duction. When firing, a transition with symbol ‘∈’ splits/combines
token terms (splits a term vector into elements or combines terms
into a vector), and that with symbol ‘&’ calculates ‘Logical AND’.
According to [21], it is proved that the existence of a consistent
solution tree in an expanded pKTN is equivalent to the truthful-
ness of the whole expansion tree under some unification, namely



Figure 2: (a) AND/OR graph for context free grammar (2) with input sequence aab, and (b) its solution subtree.

the existence of a solution for the deductive inference (soundness
and completeness).

Another constraint Petri-net we argue here is one obtained from
generative grammar in the formal language theory. Let us con-
sider the following context free grammar that generates language
{ambn|m, n ≥ 0}:

S → AB
A → aA
A → ε
B → bB
B → ε

9>>>=
>>>;

. (2)

Here, S is the starting symbol, A, B are non-terminal symbols,
a, b are terminal symbols, and ε is the empty symbol. Since non-
terminal symbols A and B appear on both sides of the rewriting
rules, an AND/OR tree that graphically represents derivation by
this grammar is also semi-infinite. Figure 2(a) shows its first three
tiers with a constraint part by the input sequence aab. Here, a tran-
sition has a function for ‘concatenate’ (∈) or ‘equal’ (=) depend-
ing on the number of operands concatenated. With this AND/OR
tree, syntax analysis is formulated as the search for a solution sub-
tree within which non-terminal symbols (variables) have consistent
symbol sequences with the constraints [23].

In these examples, deduction or parsing can be regarded as an ill-
posed problem which seeks an appropriate subtree out of the semi-
infinite tree wherein variables have consistent substitution. In the
next section, we argue a method to solve this problem by a token-

based algorithm.

3. ELISE
ELISE (ELiminating Inconsistency by SElection) is a method to
solve a system of simultaneous constraint equations by using a
data-flow network or Petri-net that represents constraints.

As is well known, when we use a Petri-net for parallel computa-
tion, the calculation is propelled by the local operation (firing) of a
transition that changes the numerical value of a token [14]. ELISE
extends this value (denoted by x) to symbol, term (sequences of
symbols), or term list, and at the same time, tags a token with a
real number named ‘reliability’ (denoted by r), that is a measure
for inter-token consistency. While tokens propagate in the network,
evolutionary operations take place in pools prepared at some places
of the network, which makes tokens with larger rs survive and the
xs converge to ones consistent with the constraint conditions.

So far, ELISE has been applied to data-flow networks representing
a system of numerical equations [19, 20] and symbolic equations
[18, 21], demonstrating its ability to solve the equations asymptot-
ically/approximately. However, the constraint networks of these
experiments had no ‘redundancy’, and tokens had to be consis-
tent assuming that all the constraints in the network are valid. (In
the case of numerical equations, some inconsistency was often in-
cluded, but in this case as well, ELISE was required to solve them
approximately taking all the constraints into consideration.) When
we solve the ill-posed problem, on the other hand, the situation is
very different. Tokens have to find consistent substitution of vari-



ables in a subnet while choosing the subnet itself. If the chosen
subnet is too large, the variables cannot be consistent, whereas if
the chosen subnet is too small, tokens will converge to trivial val-
ues with no meaning.

In the next section, we present some prerequisite conditions to be
satisfied by evolutionary operations of tokens, which will help us
design token-based algorithms like ELISE for the ill-posed prob-
lem.

4. PREREQUISITE CONDITIONS FOR TO-
KEN EVOLUTION

(1) Information about small r caused by inconsistency should
be transmitted through the entire network. We consider a token
population distributed through a constraint Petri-net. At a place of
this network, let us assume that a token has come to have a small
r on account of its inconsistency with neighboring tokens. If we
evolve tokens constantly and locally at places in the network, this
token will soon die out by selection, but this causes disadvantage
from the perspective of evolution of the whole population. See the
expanded pKTN in Fig.1. At first, the backward (leaf to root) token
propagation in this Petri-net makes tokens arrive at an OR (Child )
place from both true and false branches. Out of these, a token from
a false branch later causes inconsistency at a distant z place, for
example, but this information is important to a token that goes to
the q place as well. If this information on inconsistency at the z
place is not transmitted to the token at the q place, the token from
the false branch might survive at the q place for a long time, which
can hinder the population from converging to the correct answer.
In order to stop this, information on inconsistency of a token at a
place should be swiftly transmitted to all of the tokens consistent
with the token and had in common.

(2) Inconsistency at a place inside the solution subtree and that
surrounding the solution subtree should be discriminated. Let
us assume that the former requirement was met and we have ac-
tualized a scheme that weeds out all the tokens consistent with an
inconsistent token at a place. This scheme, however, causes another
problem in the network. Again, we take a solution subtree (thick
bold tree) in Fig.1(b) as an example. When this subtree is suc-
cessfully extracted and all the pools inside of the subtree are filled
with correct (consistent) tokens, the two Child places in the sub-
tree will be dominated by (Tom,Mary) tokens (on the left side)
or (Tom,Paul) tokens (on the right side). If we prohibit a tran-
sition from creating a value inconsistent with a constant place, a
(Tom,Mary) token at the left Child place does not cause a prob-
lem, i.e., does not cause the firing of the upper right transition in
the false branch; whereas with a (Tom,Paul) token at the right
Child place, this is not the case. The right Child place’s lower
right transition in the false branch has x, y variable places on the
right-hand side, and can always fire and create a Tom token at the
x and a Paul token at the y place. These tokens can be inconsis-
tent with tokens from the false branch; hence if this was transmitted
to tokens in the solution subtree, they might be also exterminated.
The tokens in the solution subtree cannot stably exist without some
scheme that discriminates between inconsistency at an inside place
and that at a peripheral place.

(3) AND/OR structure of the constraints should be considered.
On top of the former conditions, here we require that the control
mechanisms of token propagation should incorporate the overall
logical (AND/OR) structure of the network in order for a solution
subtree to be properly extracted and kept stably. In such a model
as ELISE wherein token propagation is triggered by the transition
firing, this requirement would be actualized by a scheme that reg-
ulates the transition firing (by adjusting the firing probability, etc.)
or makes each token choose appropriate arcs during propagation.

5. CONCLUSION
Using the constraint Petri-nets that represent such declarative knowl-
edge as predicate logic or generative grammar, deductive inference
or parsing on context free grammar can be formulated as an ill-
posed problem that requires extraction of a subnet from the network
and consistency between variables’ substitution within the subnet.
A token-based method to solve this type of problems was taken in
this paper, and we presented three prerequisite conditions to be sat-
isfied by the token evolution and propagation. Future research in
this line includes the design of a concrete method that meets these
requirements and its evaluation by some numerical experiments.

6. REFERENCES
[1] Barták, R.: Constraint Programming: In Pursuit of the Holy Grail. In:

Proceedings of the Week of Doctoral Students (WDS99), Part IV.
MatFyzPress, Prague (1999) 555-564

[2] Bishop, C.M.: Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag (2006)

[3] Dechter, R.: From local to global consistency. Proceedings of the 8th
CSCSI (Canadian AI Conference), Ottawa, Canada (1990) pp.
231-237 (best paper award) Artificial Intelligence 55(1) (1992)
87-107

[4] De Raedt, L.: Logical and Relational Learning (Cognitive
Technologies). Springer (2008)

[5] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing
(Natural Computing Series). Springer (2003)

[6] Haykin, S.: Neural networks and learning machines. Prentice-Hall,
Inc. (2009)

[7] Jeffrey, J., Lobo, J., Murata, T.: A high-level Petri net for
goal-directed semantics of Horn clause logic. IEEE Transactions on
Knowledge and Data Engineering 8(2) (1996) 241-259 DOI:
10.1109/69.494164

[8] Jensen, K.: Coloured Petri Nets and the Invariant Method.
Theoretical Computer Science 14 (1981) 317-336 North-Holland
Publishing Company.

[9] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles
and Techniques (Adaptive Computation and Machine Learning
series). The MIT Press (2009)

[10] Lin, C., Chaudhury, A., Whinston, A.B., Marinescu, D.C.: Logical
Inference of Horn Clauses in Petri Net Models. IEEE Transactions
on Knowledge and Data Engineering 5(3) (1993) 416-425

[11] Montanary, U.: Networks of constraints fundamental properties and
applications to picture processing. Information Sciences 7 (1974)
95-132

[12] Murata, T., Zhang, D.: A predicate-transition net model for parallel
interpretation of logic programs. IEEE Transactions on Software
Engineering 14(4) (1988) 481-497

[13] Peterka, G., Murata, T.: Proof procedure and answer extraction in
Petri net model of logic programs. IEEE Transactions on Software
Engineering 15(2) (1989) 209-217 DOI: 10.1109/32.21746

[14] Peterson, J.L.: Petri Net Theory and the Modeling of Systems.
Prentice Hall (1981)

[15] Poole, D.L., Mackworth, A.K.: Artificial Intelligence. Cambridge
University Press (2013)

[16] Reisig, W.: Petri nets: an introduction. Springer-Verlag, New York,
Inc. New York, NY, USA (1985)

[17] Suzuki, H., Yoshida, M., Sawai, H.: A proposal of data-flow network
for deductive inference. In: The Special Interest Group Notes of the



Japanese Society for Artificial Intelligence: Fundamental Problems
of Artificial Intelligence. SIG-FPAI-B102 (2011) 1-7 (Japanese)

[18] Suzuki, H., Yoshida, M., Sawai, H.: A data-flow network that
represents first-order logic for inference. In: Kuo, Y.H., Tseng,
V.S.M., Kao, H.Y., Hong, T.P., Horng, M.F. (eds.): The 2012
Conference on Technologies and Applications of Artificial
Intelligence TAAI, Proceedings (2012) 211-218 DOI:
10.1109/TAAI.2012.44

[19] Suzuki, H.: Proposal of a data-flow network that solves simultaneous
equations by back-calculation and evolution. Proceedings of the 57th
Annual Conference of the Institute of Systems, Control and
Information Engineerings (SCI’13). ISCIE, Kobe (2013) 317-4
(Japanese)

[20] Suzuki, H., Iwasa, Y.: A network-based evolutionary method to solve
inconsistent simultaneous equations approximately. AIP Conf. Proc.
1558 (11th International Conference of Numerical Analysis and
Applied Mathematics - ICNAAM) (2013) 2486-2491 doi:
10.1063/1.4826045

[21] Suzuki, H., Yoshida, M., Sawai, H.: A network representation of
first-order logic that uses token evolution for inference. Journal of
Information Science and Engineering (JISE) 30(3) (2014) 669-686

[22] Suzuki, H., Yoshida, M.: Logical representation and deduction by a
Petri-net-based KTN with predicates as variable nodes In:
Proceedings of the 41st SICE Symposium on Intelligent Systems,
The Society of Instrument and Control Engineers (2014) B22-3
(Japanese)

[23] Suzuki, H.: Proposal of a syntax analyzer that allows ambiguity in
input words. In: Proceedings of the 20th Annual Meeting of The
Association for Natural Language Processing (2014) 428-431
(Japanese)

[24] Suzuki, H., Yoshida, M.: Direct graphical representation of
first-order logic for inference. In: Lambert, M.J. (ed.): Logic
Programming: Theory, Practices and Challenges. Chap.4. Nova
Science Publishers, Inc. (2014) 117-142 ISBN: 978-1-63117-853-5

[25] Suzuki, H.: A method to solve an ill-posed problem in networks
representing constraints In: Proceedings of the fifth Meeting of the
Special Interest Group, Computational Intelligence. The Society of
Instrument and Control Engineers (SICE) PG0008/14/0000-0037
(2014) (Japanese)

[26] Van Hentenryck, P.: Constraint Satisfaction in Logic Programming.
MIT Press, (1989)


