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ABSTRACT

Cognitive radio technology improves efficiency of radio resource
usage and quality of services in congested mobile networks, by
reconfiguring the wireless connection settings according to the
optimum decisions, which are made based on the collected
context information. This paper focuses on the optimization
algorithms for the decision-making to optimize radio resource
usage in heterogeneous cognitive wireless networks. For the
networks with centralized management, we can apply the
algorithms to obtain rigorous solutions, because all of the network
context information can be collected at the central manager. In
order to avoid exponential increase of computational complexity
in large-scale wireless networks, we model the target optimization
problem as a minimum cost flow problem, and make it possible to
solve the problem in polynomial time. In the networks with
distributed management, the central network manager is not
necessary, but the algorithms have to be run in a distributed
manner. In order to optimize the defined objective function, we
introduce the distributed energy minimization of the Hopfield-
Tank neural network. We derive the decision-making rule for each
terminal to optimize the entire network. We show validity of the
proposed algorithms by numerical simulations.
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1. INTRODUCTION

Cognitive Radio Technology [1,2] has been developed to improve
radio resource usage of the wireless network environment.
Recently, various wireless services have been widely deployed
and the amount of the mobile traffic is continuously and rapidly
increasing. To satisfy such a high demand to the mobile
communications, the capacity of the mobile wireless networks has
to be increased and some additional radio frequency bands are
needed for them. However, the most of the frequency bands
suitable for the mobile communication have already been assigned
to the existing wireless services and the remaining bands are
limited. Therefore, optimization of the radio resource usage of the
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wireless network is a very important issue in the current wireless
networks.

The key idea of the cognitive radio is to efficiently utilize
limited radio resources by dynamic spectrum access. In the
conventional wireless systems, the radio access networks or the
spectrum bands are statically assigned to the mobile systems. In
such a case, some network or some frequency band may be highly
congested, while some others have many available resources with
small traffics. By dynamical use of the radio access networks or
the spectrum bands, usage of limited radio resources can be
optimized and the capacity and the quality of the wireless systems
can be highly improved.

In the original definition of the cognitive radio [1,2], it has
been defined as a kind of cognitive dynamic systems [3]. The
cognitive radio systems observe and recognize radio network
environment, make reconfiguration decisions, and apply the
corresponding action to reconfigure the network. By this approach,
various kinds of radio parameters in the wireless communication
systems can be optimized by appropriate actions. By learning
relation between the actions and the improvement of the
performance, its recognition part will be improved with increase
of the samples. For some of the performance factors, the relation
between the actions and the performance improvement can be
approximately predefined. The best decision can be selected by
solving an optimization problem, which can be formulated based
on the relation between the actions and the performance
improvement. In this paper, we focus on the optimization
algorithm for the best decision. We deal with the latter case of the
cognitive radio system and discuss optimization algorithms.

There are various optimization problems, which can be
defined to improve the radio resource usages [4]-[8]. It depends
on the observable factors and tunable parameters of the system. In
this paper, we deal with the problem in heterogeneous wireless
networks, in which various different types of wireless services
coexist. As one of the standards to realize such a cognitive radio
system, IEEE Std. 1900.4 [9] includes the distributed radio
resource usage optimization (DRRUO) as a use case of its defined
cognitive radio system. The terminals select the best radio
resource from various types to optimize the efficiency of the radio
resource usage. In order to make the optimal decision, necessary
information can be collected using the architecture and protocol
defined in IEEE1900.4.

In this paper, we focus on optimization techniques to
maximize the efficiency of the radio resource usage in
heterogeneous wireless networks. First, we define an optimization
problem of load balancing, which improves service quality of the



IP-based heterogeneous wireless networks. Second, under the
assumption that the entire network can be managed at a
centralized server based on IEEE1900.4, we develop an
optimization algorithm to obtain rigorous solution in short time.
Third, since such a centralized management becomes difficult for
huge-scale networks, we develop a distributed optimization
algorithm based on the theory of Hopfield-Tank neural networks
[10].

2. HETEROGENEOUS COGNITIVE
RADIO NETWORKS AND ITS
OPTIMIZATION PROBLEM

Recently, several wireless communication standards based on the
idea of the cognitive radio have been developed. In IEEE802,
wireless LANs, 802.11af [11], wireless broadband systems,
802.22 [12] and IEEE802.16h[13], have been developed as the
real services using the cognitive radio technology, which utilizes
white spaces of the TV spectrum bands. Such cognitive radio
systems obtain available spectrum resource information and select
the best one from them with avoiding interferences to the primary
wireless systems, TV broadcasting.

On the other hand, optimal selection of the best wireless
service also improves quality of wireless services by efficient
radio resource usage defined as the DRRUO in IEEE1900.4 [9].
In such wireless networks, when the improvement of the quality
can be estimated by the collected information, the selection of the
most appropriate action can be defined as an optimization
problem.
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Figure 1. A cognitive radio system.

Figure 1 shows a general cognitive radio system, which can
be applied to the systems described above. It observes the state of
the cognitive radio system, estimates the relation between the
action and performance improvement, and finds the best action
based on the estimated relation. Generally, the relation between
the action and the corresponding performance, f(x), is unknown,

and it has to be estimated by some learning algorithm. Selection
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of the best action can be achieved by searching the optimal state
of f(x), that corresponds to solving the optimization problem. In

this paper, we focus on this part, selection of the best action, by
optimization algorithms.

There are two approaches to optimize the network. One is to
calculate the optimal state at a centralized server, which manages
all of the wireless connections. For such case it is possible to
rigorously optimize the entire network. The drawback of such
centralized schemes is that it is necessary to collect all of the
information at the center, which may generate the overheads for
exchanging the context information and the control information of
entire networks. Therefore, as the second, we consider to apply
distributed optimization algorithms, which run in parallel, for the
large-scale network optimization.

X
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Figure 2. Management archtecture of IEEE1900.4 to optimize radio
resource usage in heterogeneous wireless networks [9].

As a cognitive radio system, which can be optimized by
those optimization algorithms, IEEE1900.4 defines the
architecture to exchange the context information and the spectrum
selection policy between the terminal side and the network side
[9], whose management architecture is shown in Fig. 2. The
network reconfiguration manager (NRM) collects context
information of the radio access networks (RAN) via the RAN
measurement collector (RMC). The terminal reconfiguration
manager (TRM) collects the terminal context information by the
terminal measurement collector (TMC). The collected information
at the NRM and the TRM are exchanged between the terminal
side and the network side, via the radio enabler (RE). After the
information collection, the NRM and the TRM can make decision
for reconfiguration. The action for the selected reconfiguration
will be taken using the RAN reconfiguration controller (RRC) for
the network side and the terminal reconfiguration controller
(TRC) at the terminal side. Using this architecture, an
optimization algorithm for the best decision making can be
calculated at either at the NRM or at the TRM. For the centralized
optimization, the NRM will collect all of the information, make



decision, and notify the best action for all of the TRMs on the
terminals. For the distributed optimization, the TRMs on the
terminals will collect necessary context information via the NRM,
and make the best decision at themselves.

In this paper, we focus on the optimization algorithms for the

best action selection in heterogeneous cognitive wireless networks.

As a typical example of optimization problems for the cognitive
radio networks, we deal with the avoidance of the traffic
congestions by the load balancing. In the IEEE1900.4 standard
document [9], the load balancing is defined as a typical example
use case to improve the radio resource usage.

There may be several ways to formulate the optimization
problem of load balancing. In this paper, we formulate the
objective function, based on several assumptions that should be
introduced for optimization of the heterogeneous wireless
networks.

The first assumption is that the cognitive wireless network is
heterogeneous. Recently, various kinds of wireless networks are
available, such as the cellular phone system, wireless LAN,
wireless broadband systems and so on, to connect to the Internet.
Recent mobile terminals are equipped with several wireless
modules to connect several of those heterogeneous wireless
networks. The capacities of the networks are different among
those systems. In such heterogeneous wireless networks, a high
capacity network can accept more terminals for the same
congestion level. Therefore, the optimum state of the traffic load
balancing should be defined so that all of the communicating
terminals will have the same throughput to transmit packets. Since
the communicating terminals will utilize all of the network

resources, whose entire capacity is constant, Ec ;= ETl = const.

jl
will be satisfied, where c; is the capacity of the jth base station, T;
is the available throughput for the ith terminal, » is the number of
the base stations, and m is the number of the communicating
terminals, respectively. Therefore, the optimum state of the load
balancing in the heterogeneous network can be obtained by
minimizing

i=1

m

1
FOBJ(T)=E? > ()

with satisfying ET} <c; for all j, where §; is a set of the
i€S;

terminals connecting to the jth base station.

The second assumption is that those wireless networks are
IP-based. Recent wireless services, such as the wireless LAN,
LTE and so on, are packet-based networks, which share limited
radio resources with many terminals. For example, in the wireless
LAN systems, the transmission opportunities for the mobile
terminals are almost equal by highly fair MAC protocol.
Therefore, the throughput of each terminal can be assumed as

CrLi)

T, = for such networks, where ‘S j‘ is the number of

‘ L(i)
mobile terminals connecting to the base station j, and L(i) is the
base station to which the terminal i is connecting, respectively.

Based on the above assumptions, the traffic load-balancing
problem in heterogeneous IP-based wireless networks can be
formulated as minimization of
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under the condition that all the communicating terminal i are
located in the service area of its selected base station L(7),
L()EA,, where A, is a set of available base stations for the

terminal .

This objective function is of the vector L, which is the list of
the connecting base station of each communicating mobile
terminal. In this combinatorial optimization problem, the number
of combinations becomes ", and it becomes very hard to solve
when the number of base stations increases. For such a problem
having combinatorial explosion, it is difficult to find the optimum
state. Therefore, we usually give up to find the optimum solution
and try to find good approximate solution. In the next section, we
show that this problem can be rigorously solved with small
computational amount.

3. OPTIMIZING COGNITIVE RADIO
NETWORKS BY A CENTRALIZED

ALGORITHM

In the IEEE 1900.4 architecture [9], it is possible to optimize the
heterogeneous wireless network usage by computation at the
centralized manager, NRM. Various kinds of the network context
information can be collected to the NRM, which can solve the
optimal action for the entire wireless network by optimization
algorithms. The selected optimal action will be notified from the
NRM to the TRMs of each terminal device, which will switch the
selection of the network to the appropriate one.

In the combinatorial optimization problem in Eq. (2) to find
the optimum base station selections L, the number of
combinations increases exponentially with the increase of the
number of base stations. In this section, we show that the problem
can be solved rigorously by the following algorithm even for
large-scale heterogeneous wireless networks.

3.1 A Rigorous Algorithm to Solve Exactly
Optimum State of Cognitive Radio Networks

Our proposed approach is to formulate the combinatorial
optimization problem as a network flow problem with modeling a
graph. We transform the heterogeneous base station selection
problem in Eq. (2) to a minimum cost flow problem, which can be
rigorously solved by small computational complexity.

The minimum cost flow problem is to find the optimal flow
z, for each edge e in the graph G, eE F (G), with minimizing

the entire cost in a directional graph. It is minimization of

Fyer(2) = E uz, ,

¢EE(G)

3)

with satisfying z, < p,, where u, is the cost, and p, is the capacity
of the edge e. Some of the vertices in the graph G, have the supply
or the demand of some amount of the flow, which is defined as b,
When b,>0, the vertex v supplies the output flow whose amount is
|b,|, while when 5,<0, the vertex v demands the input flow amount
|b,|. All of the flow z, should be integer numbers in this problem.
There are several optimization algorithms to obtain the exact
minimum value of Eq. (3) by small computation complexity



[14]—[17]. In this paper, we formulate the base station selection
problem defined in the previous section as the minimum cost flow
problem to obtain the exactly optimum solution even for the large-
scale networks.

Based on the assumption that the base station of the IP-based
wireless network gives fair transmission timing to each
connecting terminals, the throughput for the terminals connecting
to the same base station becomes equal. Therefore, the objective
function in Eq. (2) can be transformed to the following form using
the set of the connecting terminal to the jth base station, S;:

m 1 n 1 n 1
Fops = Elf= Ef‘sj‘ = E;‘S./‘z :
i=] i 7 i 7 J

This objective function is also optimized by the selection of the

“)

links between the terminals and the base stations. Since the ‘S j‘

can be regarded as the flow between the base station j and the
global network, we formulate the minimization problem in Eq. (4)
as a minimum cost flow problem, which can be rigorously solved
without exponential increase of the computation amount.

In order to formulate this problem as the minimum cost flow
problem shown in Eq. (3), we need to remove the square term,

8
of Eq. (4). Using ‘Sj‘z = EZZ—I , we modify Eq. (4) to the

=1

s

i

following form:

h 1 B8 w87
Fo = 3+ 321-1- 3 S 2L

Joi =l JjoI=1 J

)

To minimize this equation, we design a graph shown in Fig.
3. The cost and the capacity are expressed as (wy, p;) for each
edge. The vertices v correspond to the ith mobile terminals, and

the vertices vf to the jth base stations, respectively.

Figure 3. Load-balancing problem formulated as a minimum cost flow

problem.

The supplied flow from the source s and the demanded flow
by the sink 7 are set at the number of mobile terminals m. The
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edges between the sink ¢ and all of the v are set at (1,1), since it

is assumed that each terminal establishes a wireless link with one
base station for each. This means that the flows z , —on all edges

between the sink ¢ and all of the v/* becomes 1. Also for the
edges between the vertices v and vf , we set (1,1), for the pairs

that the base station j is available for the communicating terminal
i, jEA,.Since each v has one exit, which goes to the sink ¢,

M

exactly one edge from vertices vf to v/" will have flow 1, and

the selected edge having this flow will be the connection between
the base station and the communicating terminals, which should
be established in the optimal state. The cost calculated in Eq. (5)
is added in the edges between the source vertex s and the vertices

vf , which have cost 201 . When ‘S j‘ terminals selected the
C.
J
. 13 281
Sj‘ edges having smaller costs, —,—,...,————

¢ ¢ ¢;

base station j,

s

will be selected by minimization of the total cost. Therefore, the

o . o 1o S

transformed objective function, E—‘S ;| » can be minimized by
~ C.
Jo

the selection of the optimal wireless links between the terminals

and base stations.

3.2 Computational Complexity

In order to obtain the solution of this minimum cost flow problem
for RAN selection, we use the algorithm in Ref. [17], which
solves the exact optimum solution with small computational
complexity whose order is O(N, N, log(N,C)), where N, and N,

are the numbers of the vertices and the edges, and C is the
maximum cost on the edges. In the minimum cost flow problem
for the base station selection designed in Fig. 3, it becomes

0(m(m+n+2)(m+n+l)log(C(m+n+2))) . In the originally

defined combinatorial optimization problem of load balancing for
the packet based heterogeneous wireless networks in Eq. (2), the
number of combinations was ", which increases exponentially.
It is difficult to obtain the exact solution of such combinatorial
optimization problems whose size is large-scale. Our proposed
algorithm clarifies that such a problem with combinatorial
explosion is not always NP-hard and we can obtain the exact
solution by small computational amount. The proposed scheme
does not require large computational load even for very large
problems.

We evaluate the increase of the computational time of the
proposed scheme by computer simulations. Figure 4 shows the
CPU time required for obtaining the rigorous solutions by our
proposed scheme with changing the number of base stations and
terminals. We run the scheme on Solaris 10 installed in a server
computer with floating point operating at 2926 MHz.

The results in Fig. 4 clarify that the proposed scheme can
obtain rigorous solutions in short time, even for large-scale
networks. In the largest case, 500 base stations and 900 mobile
terminals, only 0.036 seconds was required to obtain the rigorous
solution. Increase of the computational time is not exponential,
but almost proportional to the number of the mobile terminals or
the number of base stations. In the maximum case with 900
terminals, the required time was about 0.008 seconds for the 100
base stations, while it was about 0.036 seconds for the 500 base



stations case. This means that we do not have to use heuristic
algorithms, which can only obtain approximate solutions, for
network load balancing, when the centralized server can manage
all of heterogeneous wireless connections of the terminals.
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Figure 4. CPU time to obtain rigorous solutions of BS selection problem
for large scale wireless networks.

4. OPTIMIZING COGNITIVE RADIO
NETWORKS BY A NEURAL NETWORK
BASED DECENTRALIZED ALGORITHM

In the previous section, we showed that it is possible to solve the
exactly optimum state of the heterogeneous wireless network, by
modeling the problem as a minimum cost flow problem. However,
it is not easy to develop a centralized management network for the
large-scale wireless systems, in which a centralized server
manages a huge number of wireless links with notifying the
optimum selection to all of the communicating terminals.
Therefore, in this section, we consider the case that there is no
centralized server to compute the optimum state and the
computation have to be done in a distributed method.

As a distributed optimization algorithm to minimize the
objective function, we introduce the Hopfield-Tank neural
network [10]. It is a mutually connected neural network, in which
each neuron updates their state by the following equations:

1 when EEWWXUU) >6;,

k=1 I=1 (6)

x,(t+1)=

0 otherwise,

where x,(r) is the state of the (i, /)th neuron at time ¢, wy, is the

connection weight between the (i, j)th and (k, /)th neurons, and
0, is the threshold of the (7, j)th neuron.

In this neural network, by setting the same weights for the
both directions of each connection, w,,, =w,,. , zero weights for

the self-connections,  w,, =0 , and updating each neuron

asynchronously, the update of the neural network will converge to
some state within some iterations. At each update of this neural
network, the energy function
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Wi XX + E E 0%,

i=1 j=1

Py (N
243 j=1 k=1 I=

always decreases. The state the neural network converges to a
state corresponds to a minimum of the energy function E(¢) by
updating by Eq. (6). It means the simple neuronal update can
make a distribute search of a state x corresponding to the
minimum of the energy function E(x).

In previous researches, this minimization property has been
applied to combinatorial optimization problems [10]. First, the
state of the optimization problem should be defined by the state of
neurons x, and the objective function has to be expressed as a

function of the neuronal states. By comparing the function with
the energy function of the neuronal state in Eq. (7), the connection
weight w,, and the threshold 6, can be calculated. By updating

and 6, the state of the

ikl
neurons using Eq. (6) with those w,,
neural network corresponding to the minimum value of the energy
function can be autonomously obtained by distributed neuronal
updates. This minimum corresponds to the minimum of the
objective function of the original problem and the optimum state
will be obtained by checking the state of the neurons.

In this paper, we show a scheme to optimize the base station
selection problem by this distributed optimization algorithm. We
defined the state matrix x of the neural network for the connection
matrix between the terminals and base stations. x is defined only
for the available connections, x; €A,. When the terminal i is

connecting to the base station j at time ¢, x,(r)=1. Otherwise,
x,;(t)=0. By using x;;, the number of terminals connecting to the

base station j, which is ‘B ;| » can be counted by

m
‘BJ‘ = E"kf :
k=1

Since each communicating terminal selects only one base station
for each, only one x; among x,,...,x;,, becomes 1, corresponding

®)

B, ..
to the selected base station j by the terminal i. Therefore, m
CLi
for the terminal i can be determined using x;; as
B, =B,
(i) J
Pl _$IB1,, ©)
Loy €

Using Egs. (8) and (9), the problem defined in Eq. (2) can be
transformed to minimization of

Fop, (X) = iicix,jixkj
=1 j= k=1

i=1 j=1 7j

(10)

under the constrain that x;=0 for j&ZA, .

In order to minimize this objective function by the neuronal
updates, the objective function defined in Eq. (10) is transformed
to the following form of the energy function:



noom n

Fopy (x) = iE E Eciéﬂxuxw ’

i=l j=1 k=1 1=1

(In
where ¢, is the Kronecker delta, §,=1 when i=j, ¢,=0
otherwise. Here, we have to care that the self-connection weight

should be 0, but there are coefficient on x,x,, in this form of Eq.

(11). In order to remove the self-connections, we transform this
equation to the following form, by using x,x, = x,, because x;

takes the values 0 or 1 only:

m n.m n

Fom () = E E E E CL (1=0,)0;x;%,
i=1 j=1 k=1 I=1 ~j
* 2 E CL Xij+

i=1 j=1 ¢

(12)

Comparing the coefficients of the neuron states x,(r) in this form

of the objective function with the energy function of the neural
network in Eq. (7), the connection weight w,,, and the threshold

6. to minimize the objective function can be obtained as follows:

u

1
Wi = _2?(1 =8,)5;, (13)

0,=—. (14)

Since we assume that each terminal can have a wireless
connection with only one base station, we use the following
update function to keep one firing for each terminal,

when y,(t +1) = max[y, (1 +1),

Yy (D],
0 otherwise,

(15)

x;(t+1)=

Yyt D)= Fowyx, ()= 6, (16)

k=1 [=1

By updating the neurons by Egs. (15) and (16) with the
connections and thresholds in Eqs. (13) and (14), the state of the
neural network converges to the minimum of Eq. (12), which
corresponds to the optimal state of the base station selection.

Examples of simulation results are shown in Figs. 5 and 6. In
this simulation, 1000 base stations are located in a square field
whose size is varied. In order to check effectiveness of the
proposed scheme, the average throughput and the fairness of the
throughput are evaluated. For the fairness, Jain’s fairness index
[18] is used. For the comparison, general distributed base station
selection schemes, random selection, nearest base station selection
and capacity-based selection are also shown.
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Figure 5. Experimental results on the average throughput of the
distributed load balance optimization implemented on a heterogeneous
cognitive wireless network system.
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Figure 6. Experimental results on the fairness index of the distributed
load balance optimization implemented on a heterogeneous cognitive
wireless network system.

The graphs clarify that the proposed neural selection can
improve the highest throughput and the highest fairness. Since
distributed implementation of the neuronal update is possible, this
neural approach can be applied to the case that a centralized
server is not available or not prepared in the networks. By the
corporative exchange of the state of neurons among the updating
devices, each device can select the best resource without any
centralized management.

The optimization problem, which we have dealt with in this
paper, is very simple and its objective function could be
transformed to the 2nd order function of the neural network state
x; » the same order as the original Hopfield-Tank neural networks.

For more higher-order objective function, we can introduce the
high-order neural networks [19], which autonomously decreases
higher-order energy function by distributed neuronal updates. We
have already applied such higher-order neural network in Ref.
[20] to higher-order optimization problems in distributed
cognitive radio networks.



5. CONCLUSION

In this paper, we have defined optimization algorithms for
heterogeneous cognitive wireless networks. As a typical
optimization problem, we introduced load balancing to improve
the service quality of the entire wireless networks. To optimize
the problem, we propose two algorithms. For the network which
can be managed by a centralized server, we have realized an
rigorous optimization algorithm, by modeling the problem as a
minimum cost flow problem. For the network which cannot be
managed by a centralized server, we apply a distributed algorithm
based on the Hopfield-Tank neural network.

We have dealt with a problem in heterogeneous wireless
networks, traffic load balancing, which is a typical optimization
problem to avoid congestion of the traffic. In order to improve the
radio resource usage of the wireless networks, there are various
other factors, which should be optimized. In this paper, we
showed two examples how to optimize the network. The proposed
optimization framework can be also applied to various more
complicated optimization problems in wireless networks. Further,
we have implemented the proposed algorithms on an experimental
wireless network, Cognitive Wireless Cloud system [21,22].
Using the implemented system, we have shown that the
distributed algorithm works correctly by our design of protocol
based on IEEE1900.4 architecture [23].

Our important future work is to realize a general
optimization algorithm, which can be applied to the cognitive
radio system including the estimated function f(x) as defined in

Fig. 1. Although this paper focused on a predefined static
optimization problem, relation between the action and the
performance improvement f(x) has to be learned based on the

experiences in more general cognitive radio systems. As an
example of such cognitive radio systems optimizing the decision
based on estimated f(x) as in Fig. 1, we have applied a full

search for the throughput maximization of network aggregation in
Ref. [24]. We are working toward development of more efficient
optimization algorithms for the function estimated by learning
algorithms in the cognitive radio system.
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