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Abstract—We consider the application of linear physical layer
network coding to next generation radio access networks (LPNC-
RAN). We introduce a linear physical layer network coding
scheme based on binary matrices, and illustrate its application to
a simple example network topology. We compare this to
benchmark schemes based on coordinated multipoint (CoMP),
and show that while its performance is poorer than ideal CoMP
with unlimited backhaul, it is significantly better than a practical
CoMP scheme, while also giving rise to much lower backhaul
load.
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I. INTRODUCTION

Fifth generation wireless networks will undoubtedly be
called upon to provide unprecedented capacity-density: figures
up to 25 Gbit/s/km2 have been suggested [1], and even higher
densities may be required in some applications. This inevitably
means that cell sizes will have to further reduce, requiring
vastly larger numbers of base stations. To make this feasible in
terms both of cost and energy efficiency clearly requires
revolutionary change in access networks: the cost of providing
both backhaul capacity and power would otherwise be
unsustainable.

Fortunately in the past decade it has been realized that the
current cellular paradigm is highly inefficient in its use both of
bandwidth and of power, and that dramatic gains are in
principle possible through the use of the network MIMO
concept, also known as coordinated multipoint (CoMP) –
although the latter incorporates a range of options, of which
what we may call “full” network MIMO is only one [2].

The essential concept here is that instead of competing with
one another for resources to serve user terminals in their own
cells, base stations instead cooperate to jointly serve all users
across all cells. The competitive approach limits the bandwidth
available to each user, and inevitably results in interference
between users in neighbouring cells. In network MIMO, on the
other hand, interference is effectively eliminated, because
neighbouring base stations now cooperate to transmit signals to
a given user. Such a system can in principle be regarded as a

single multiuser MIMO system (hence the term “network
MIMO”), in which the cooperating base stations across the
whole network act as a single, distributed base station with a
much larger number of antennas, and therefore a much larger
potential MIMO gain.

The obvious disadvantage of this approach, however, is its
complexity. In particular it gives rise to a very large backhaul
load, since in principle the signals at each base station antenna
have to be sampled and transmitted to some central point where
the signal processing will take place. Moreover channel state
information (CSI) is required for channels between all base
stations and all user terminals, which again must be transferred
via the backhaul.

The objective of this paper is to describe an alternative
approach which is capable of achieving most of the benefit of
network MIMO with (in principle) no increase in backhaul load
compared to a non-cooperative network. This is based on
another new technology developed in the course of the past
decade or so: network coding [3], and in particular physical-
layer network coding (PNC) [4, 5]. We will restrict our
attention here to forms of PNC which may be described in a
sense we will discuss below as linear, and will discuss a very
simple example topology in which they can achieve
performance very close to full network MIMO, and much
better than network MIMO with realistic backhaul constraints.

In the next section we will outlined the network model
assumed in this paper, including a simplified topology which
we will use later to illustrate the approach. Then in section III
we describe linear physical-layer network coding (LPNC), and
in particular we will introduce a form of LPNC based on
multiplication by binary matrices. We will then discuss the
application of LPNC to radio access networks (LPNC-RAN),
especially with reference to our simple example topology, on
both uplink and downlink, and finally we will give simulation
results comparing LPNC-RAN to both ideal and more practical
CoMP, to show the potential benefit of the scheme, and
conclude the paper.
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II. NETWORK MODEL

Figure 1 shows the general network we consider in this
paper. We assume that K user terminals (T1 – TK) are served
by L base stations (acting as relays, R1 – RL), which in turn are
connected via a backhaul network to a hub, which is further
connected to the core network. Here we assume that the
backhaul is perfect in the sense that the data is transferred
without error, but that it may have limited capacity, and also
that the data is transferred in digital rather than analogue form.

Figure 1 Network Model

The wireless links between terminals and base stations are
referred to as the access network: they are assumed to be
subject to uncorrelated flat fading, with the fade coefficient
between the ith relay and the jth terminal being denoted as hij. In
this paper for simplicity we assume that both terminals and
base stations are equipped with only one antenna each. We
also assume that all terminals and base stations use the same
resources: that is, the network employs 100% frequency reuse.
Terminal Tj transmits symbol sj, modulated as signal xj, and the
corresponding received signal at relay Ri is denoted yi. Then:
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where ni denotes the noise at the ith relay.

The benchmark scheme for comparison here is network
MIMO, as mentioned in section I. Here we assume that the
base stations collaborate perfectly to serve the terminals: that
is, the analogue signals received by the base stations (on the
uplink) are available at full precision at the hub for joint
processing, and conversely are perfectly transferred from the
hub to base stations on the downlink. In addition perfect CSI
for all access links is available at the hub. It is clear that in
principle this requires infinite backhaul capacity. We will also
consider, however, the effect of limited backhaul on this
scheme. This benchmark scheme acts as a multiuser MIMO
system with (on the uplink) K single-antenna users and L
receive antennas.

For purposes of illustration we will analyse a much simpler
network, including only two terminals and two base stations, as
illustrated in Figure 2. This will suffice to demonstrate the
principle and the potential benefits available.

Figure 2 Simplified topology

III. LINEAR PHYSICAL-LAYER NETWORK CODING FOR

RADIO ACCESS NETWORKS (LPNC-RAN)

In network coding a node in a network which receives more
than one stream of data simultaneously forwards some function
of both streams, rather than selecting only one to forward.
However this requires the two streams to be received on
separate channels, which in a wireless network requires
additional time/spectrum resources. Physical-layer network
coding, on the other hand, allows the two streams to be
received simultaneously at the node on the same channel. The
node then decodes the required function directly from the
received signal, even if it is not possible to decode the two data
streams separately.

A. Example 1: BPSK on Defined Channel

We use a simple example based on the topology of Figure 2
to demonstrate this. Assume for the purpose of illustration that
in Figure 2 h11 = h21 = h22 = 1, and h12 = 0, and also that both
terminals transmit using BPSK. The scenario is illustrated in
Figure 3, which shows also the constellations transmitted from
the terminals and received at the relays.

Figure 3 Illustration of PNC in simplified topology

Note that at R1 the same signal is received for s1s2 = ‘10’
and for s1s2 = ‘01’. This means that it is not possible for R1
reliably to decode either of the symbols s1 or s2 from T1 or T2.
At R2 on the other hand, it is clear that only s2 can be decoded,
because the link from T1 is fully faded. However R1 can

decode the function  
1 1 2
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decoded at the hub, since    
1 2 1 2 2 1

R Rs s s s s s     . To

achieve this with either conventional decode and forward
relaying, or even with network coding, would require T1 and
T2 to signal in separate channels, occupying twice the spectrum
resource on the access network.

Note that the PNC approach maintains the same total
backhaul load, 2 symbols, as would a more conventional
scheme in which each relay decoded the symbol from the
corresponding terminal (if that were possible). The CoMP or
network MIMO solution would quantize and forward the
received signal at each relay, which would increase the
backhaul load several-fold.

B. LPNC over Rings and Fields

This is in fact a very simple example of LPNC, since the
exclusive OR function 1 2s s is a linear function of the two

symbols in the binary field GF(2) or 2. Here we generalize

that to allow relay Ri to decode the result of any linear function
of the form:

 
1 2 1 21 2,i j j i j i jf s s a s a s      (1)

where j1, j2… denote the terminals in the connection set of
relay Ri, that is those from which a significant signal is
received. The a’s denote coefficients of the linear function.
We use ⊕ and ⨀ to denote addition and multiplication since
these are defined on some finite algebraic ring or field. This
generalization allows us to use larger constellations.

We can allow the symbols and the coefficients to be drawn
from any ring or field. Although it is conventional to use an
algebraic field in these functions, we have shown elsewhere
that it is also possible also to use a ring [6], provided the
coefficients are not zero-divisors and have unique inverses in
the ring. This provides added flexibility.

The simplest approach is to use an integer ring, in which
symbols are the integers 0 to q-1, where q is the size, or
cardinality, of the ring (and hence of the signaling
constellation). Then ⊕ and ⨀ denote addition and
multiplication, respectively, modulo-q. It is easy to show that a
coefficient a has a unique inverse, and is not a zero-divisor, if
and only if it is relatively prime to q, so all other elements can
be used as coefficients.

If q is prime, then the ring becomes a field, and all elements
may be used as coefficients. However with the exception of
q = 2, the field size is then not a power of 2, and hence the
constellation size is inconvenient for a practical communication
system.

An alternative framework is provided by the extension
fields, and especially the binary extension fields, in which the
field elements consist of polynomials of order p-1 in some
dummy variable (here we use t) with binary coefficients.
Addition ⊕ is then addition of coefficients modulo-2, and
multiplication ⨀ is multiplication of polynomials (using
modulo-2 arithmetic for the coefficients) modulo some
irreducible polynomial of order p. The cardinality of these

fields is 2p, and their elements can readily be converted to
binary form.

Table 1 lists the non-zero elements of GF(4), giving them
also in binary form and as powers of a primitive element  = t.

 1 10 1 0
0 1
 
  

 t 01 0 1
1 1
 
  



 2 2mod 1 1t t t t    11 1 1
1 0
 
  

 = 

   2 2mod 1 1t t t t    10

Table 1 Elements of GF(4)

This field can also be represented in the form of binary p×p
matrices, whose rows are the binary representation of an
element, in the form given in Table 1, followed by the next p-1
powers of  in binary form. They are given in this form in the
last column of Table 1. Addition and multiplication are then
modulo-2 addition and multiplication of the matrices. It will be
noted that all the non-zero matrices in Table 1 are full rank, and
therefore invertible, and also that none are zero divisors.

C. LPNC over Ring of Binary Matrices

This matrix notation provides a convenient form for LPNC:
the coefficients at a relay can be represented by p×p binary
matrices, and the symbols by length p binary vectors sj.
However this representation of binary extension fields includes
only a small subset of the possible p×p binary matrices, and in
fact does not include all those that are full. This inspires an
extension to a larger set of matrices.

In fact the set of all p×p binary matrices is a ring in which
addition is again element-by-element addition modulo-2, and
multiplication is matrix multiplication using modulo-2
arithmetic. The additive identity is the all zeros matrix; the
multiplicative identity is the identity matrix. Not all non-zero
ring elements have inverses, since some matrices are singular,
and some elements are zero divisors. Hence this is not a field.

Note however, as mentioned, that there are some full rank
p×p matrices which do not occur in the representation of the
extension field described above. These are also not zero
divisors. Hence this ring can be used provided only full rank
coefficient matrices are used. It will provide a much larger
range of functions which can be used at the relays, which may
have advantages when used in WPNC. For example among the
22 matrices there are three matrices:

0 1 1 0 1 1, ,
1 0 1 1 0 1
     
          

which are full rank but which do not appear in Table 1.

We will use the notation ijA to refer to the coefficient

matrix of sj in the function at Ri. Then we may write the
function output:

    1
1 1 2 2 1 2

2

R

i i i i i
   
  

s
s A s A s A A

s
(2)



The combined data received at the hub is then:

 
 

 
1 11 12 1

21 22 22

R
R

R

                

s A A s
s As

A A ss
(3)

where the coefficient matrices of all symbols at all relays are
combined in a single composite binary matrix A. It is clear that
this matrix must be invertible, and hence full rank, if the
symbols from all terminals are to be recoverable at the hub.

IV. PERFORMANCE ON FADING WIRELESS CHANNELS

A. Effect of Fading

The performance of the network using LPNC is evidently
significantly affected by the fading of the access links, and it is
necessary for the encoding functions to adapt to the channel
from the terminals to each relay. For certain values of fading
coefficients, referred to as singular fade states, two different
pairs of transmitted symbols result in the same received signal.
This occurs in Example 1 in section III.A, where the signals
corresponding to data ‘10’ and ‘01’ are the same at R1. As we
noted, this implies that these pairs cannot be distinguished.
However if, as in Example 1, these pairs result in the same
network code function output, this is not a problem: we say the
singular fade state is resolved.

Of course it is possible for nearly singular fade states to
occur, where the signals corresponding to different symbol
pairs are close, and may be confused due to noise. Hence for
any fade state the optimum (or at least near optimum) approach
may be to choose the network code function such that symbol
pairs that result in different network coded symbols correspond
to received signals which are as far apart as possible. Note,
however, as mentioned in section III.C above, the resulting
matrix A due to functions at all relays must be full rank, so that
the data can be recovered at the hub. Hence we seek the full
rank matrix A which maximizes the minimum distance
between constellation points corresponding to symbol pairs
yielding different network coded symbols.

B. Example 2: QPSK over Random Channels

We now consider a second example, this time using QPSK
transmission and randomly-chosen fading channels. Figure 4
shows the constellation of signals received at a relay for three
different pairs of complex random fade coefficients on the links
between the terminals and the relay. Appropriate mapping

functions are applied at the relay which assign different
received points to different network coded symbols. The points
corresponding to the same network coded symbol are plotted in
the same colour in the figure.

In principle a search should be performed through all the

possible pairs of mappings, corresponding to all the
242 p

binary matrices A to determine the full rank matrix which
maximises the minimum distance over the received mapped
constellations at both relays. This however would require a
very large number of possible mappings to be examined. In
practice we have found that several different mappings give the
same minimum distance for a given set of channel fading
coefficients, and in fact that a much reduced subset of the
possible mappings is sufficient to ensure that an optimum
mapping can always be found among them.

a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1
e 1 0 1 0
f 0 1 0 1
g 1 0 0 1
h 0 1 1 0
i 1 1 0 1

Table 2 Rows of network code matrix A

These matrices always have rows chosen from Table 2.
Hence rows may be selected from this table to fulfil the
requirements. It is interesting to consider the effect of some of
these mapping matrices. For example a matrix at one relay
made up of rows a and b would simply map according to the
first terminal symbol, neglecting the other terminal. This
would be optimum if one signal is much stronger than the
other, as in the constellation illustrated in Figure 4(a).
Similarly rows c and d would map according to the second
terminal symbol. Rows e and f effectively form the XOR of
the two bits of the constellation labels. This might be optimum
in the case of the constellation of Figure 4(b); in some cases
rows g and h may be optimum there (depending on the relative
phase shift).
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Figure 4 Signal constellations at relay for three different random channels

Note that in some cases, where symbols from both
terminals are heavily attenuated at one relay, it may be
preferable to ignore that relay, and instead decode both
symbols at the other relay and forward that to the destination.
This case can also be treated as a special case of the network
coding in which the matrix at one relay is set to unity while the
other is null, and selected when optimum in the same way as
the others.

V. LPNC-RAN DOWNLINK TRANSMISSION

The LPNC-RAN approach can also be applied in the
downlink direction. In this case the vector of data at the hub to
be transmitted to the terminals is multiplied by a precoding
matrix B, which in general is defined over the ring used for the
network coding functions on the uplink, and in our case is
again a binary matrix. This defines the symbols transmitted
from the relays. The matrix B is again chosen to be full rank,
and also to maximize the minimum distance in the
constellations received at the terminals between signal points
corresponding to different symbols at that terminal. In general,
if the access link channels are reciprocal, B should be the
inverse of the transpose of A – which of course is invertible
since it is required to be full rank.

Figure 5 Simple downlink transmission example

Figure 5 illustrates this for the scenario of Example 1 in
section III.A, where now the relays transmit BPSK signals to

the terminals. In Example 1 the matrix A is in fact 1 1
0 1
 
  

,

denoting that R1 decodes 1 2s s and R2 decodes s2. In the

downlink scheme we use the inverse of the transpose of this

matrix, which is in this case 1 0
1 1
 
  

. Thus now R1 transmits s1

and R2 transmits 1 2s s . The figure shows the constellation

received at each terminal. At T1 s1 is received: at T2 the
signals corresponding to s2 = 0 lie at the origin, while those
corresponding to s2 = 1 lie at ±2 – hence s2 can be decoded at
T2, as required.

This example highlights that in general the constellation at
the terminals may be composite: that is, in general several
constellation points may correspond to one data symbol. These

may appear as a cluster of points, or as several discrete points.
In many cases a modulo operation can be applied to generate a
constellation in which the points corresponding to one symbol
always occur as a cluster.

VI. PERFORMANCE RESULTS

In Figure 6 we present performance results for the uplink of
LPNC-RAN compared with three benchmark schemes based
on “full” CoMP or Network MIMO. In all cases the network
topology is that shown in Figure 2, and the terminals transmit
QPSK. The channels between terminals and relays are subject
to uncorrelated Rayleigh fading, with mean square fade

coefficient
2

1, ,ijh i j  , which is assumed to be stationary in

each frame period. We plot frame error ratio (FER) for frames
of length 100 symbols against signal to noise ratio (SNR),
defined as the ratio of the transmit power at each terminal to
the total noise power at each relay.

Figure 6 Simulation result for uplink LPNC compared to benchmark
CoMP schemes

A. LPNC simulation

In the LPNC-RAN system (referred to as “Adaptive PNC”
in Figure 6), in each frame period the random channels are
determined, and the system chooses the network code matrix A
as the full rank matrix which maximizes the minimum distance
between signals at relays corresponding to different network
coded symbols. Note that this assumes that full CSI for all
channels is available to some central coordination function,
probably located at the hub, which can then distribute the
network code matrices to the relays. We then use Monte Carlo
simulation to determine the probability that at least one symbol
error occurs in a frame. No FEC coding is employed.

As mentioned above, in the LPNC scheme the total
backhaul load is equal to the total number of bits generated: i.e.
4 bits per symbol period.
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B. Benchmark schemes

We compare the results for LPNC with three benchmark
schemes. The first is ideal CoMP, in which the received noisy
signal from each relay is directly forwarded to the hub via the
backhaul. Since we are assuming a digital implementation of
the backhaul, this implicitly assumes unlimited backhaul
capacity. At the hub we perform maximum likelihood (ML)
detection for each symbol, that is the vector of estimates of the
transmitted symbols:

1 2

2
1

2 ,

ˆˆ arg minˆ
s s

s
s 

   
   x

s y Hx (4)

We also consider two CoMP schemes with limited
backhaul load. Here we calculate the log-likelihood ratio
(LLR) of each bit of each terminal’s symbol at each relay,
using:

 
 

 
 

 
 

 
 

:b 1 :b 1

,

:b 0 :b 0

log log
j k j j k j

j k j j k j

j i i j

s s s s

ij k

j i i j
s s s s

P s y P y s

L
P s y P y s

 

   

  
  
   

   
   
   

 

 
(5)

where Lij,k denotes the LLR of the kth bit of the binary
representation of the symbol from the jth terminal, measured at

the ith relay, and  bk s represents the kth bit of the binary

representation of symbol s. Note that this assumes that all
transmitted symbols are equiprobable.

We quantize this using a scalar quantizer, and transmit to
the hub, where the LLRs are combined and data decisions
carried out. We consider two quantization schemes which
quantize LLRs to 2 bits and 4 bits respectively. Four LLRs
(two bits for each symbol at each terminal) are calculated at
each relay, and hence the total backhaul load is 16 and 32
bits/symbol period for the 2 and 4 bit quantization schemes,
respectively.

C. Results and Comparison

Figure 6 shows that ideal CoMP has the best FER
performance, as might be expected. It achieves a diversity
order of 2, again as expected given there are two receive
antennas. LPNC however also achieves the same diversity
order, showing that the PNC can also exploit the diversity

available from the two relays. Its performance is around 3.5
dB poorer than ideal CoMP.

However restricting the backhaul capacity for CoMP has a
significant impact on performance. The degradation with 4 bit
quantization is 8.5 dB and with 2 bit quantization is 13.5 dB.
The backhaul load in these two cases is respectively 8 and 4
times that required in LPNC. Hence LPNC has about 5 dB
better performance while requiring only one eighth of the
backhaul load compared with 4 bit quantized CoMP.

VII. CONCLUSIONS

We have discussed the application of linear physical layer
network coding to next generation radio access networks. We
have introduced a form of LPNC using network coding
functions defined by binary matrices, showing how this can be
obtained as a generalization of LPNC based on the binary
extension fields GF(2q). We illustrate the operation of the
scheme with respect to a simple network containing two
terminals communicating with a hub via two base stations
acting as relays, and with give simulation results for the uplink
of LPNC-RAN compared with both ideal CoMP and CoMP
with restricted backhaul, While the LPNC-RAN has about 3.5
dB poorer performance than ideal CoMP, it is around 5 dB
better than CoMP with a quantized backhaul, with one eighth
of the backhaul load. We also discuss how the scheme can be
applied in the downlink.
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