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Abstract—In wideband sensing receivers, especially in low- a wideband spectrum is assigned to a number of primary
cost mass-product devices, the sensing operation is usually doneysers, secondary users can search for unoccupied channels
in a range where the RF front-end components, such as the (gnectrum holes) within the wideband spectrum and commu-

LNAs exhibit a nonlinear behavior. Consequently, intermodula- . . o .
tion (IMD) and crossmodulation (XM) are generated and cause nicate in that band. The traditional way for detecting holes

distortion in the spectrum sensing region. This paper investigates IN @ wideband spectrum is channel-by-channel scanning.[5-8
the impact on the threshold level setting of a wideband energy In order to implement this method, an RF front-end with a

detection based spectrum sensing caused by a nonlinear LNApank of tunable and narrow bandpass filters is needed. The
at the radio frequency (RF) front-end of a wideband cognitive occupancy of each channel can be determined by measuring

radio receiver. The third and fifth order terms of the expansion . . .
of the nonlinearity characteristics are modeled using a memory- the energy of the signal at the output of each filter. The high

polynomial model. The main contribution of this study is the Ccomplexity encountered by such approach is a major chaleng
derivation of a proper threshold level for different frequency as numerous RF components are required for the implemen-
bins. tation. Wideband direct-conversion receivers (DCRs)K(éa.
_Index Terms—Wideband spectrum sensing, nonlinear distor- homodyne, synchrodyne, or zero-intermediate frequerigy (I
tion, memory-polynomial, exponential distribution. receiver) have become more and more popular due to their
inherent advantages over superheterodyne receivers §@]. F
instance, because the IF is zero, the image to the desired RF
Cognitive radio (CR) is an advanced software-defined radsignal is the desired signal itself, which means DCRs do not
that can be programmed and configured dynamically [fhce conventional image problems. Therefore, bulky, bffsc
It can efficiently use the wireless channels in its vicinityfront-end image-reject filters are unnecessary in DCRs. The
Such a radio automatically detects available channelsén tirect-conversion architecture is highly attractive fotegrated
wireless spectrum, then accordingly changes its trangmissRF receivers as the reduction in off-chip components leads
or reception parameters to allow more concurrent wireless higher levels of integration and lower costs [9]. However
communications in a given spectrum band at one location. ODERs (especially the low cost ones) suffer the RF impair-
of the main functions of cognitive radios is spectrum segsinments, for instance, 1/Q imbalance and nonlinear distortio
i.e., detecting unused spectrum and sharing it, withouthar [9]. The nonlinearity causes signal compression and asuit res
interference to other users [2,3]. This kind of opportuaistintroduces distortion and intermodulation. Consequettiigy
spectrum access introduces the possibility for a secondagn cause false alarms in spectrum sensing when a vacant
user, who does not have a license for a particular band, deannel contains the distortion and is falsely interpredasd
transmit when the primary is not using that band. Thereforegccupied by a primary user.
the secondary user should search for spectrum bands lefTo reduce such an effect, the operating point of an amplifier
unused by several primary users, and operate over suchsspacrist be set far from the compression point which in turn
There has been extensive work on spectrum sensingciauses low power efficiency. This concept is called “power av
a narrowband setup. Narrowband spectrum sensing cons@&isge back-off.” Typically, additional back-off is alsaered
of observing a relatively narrow radio spectrum band artd ensure that the transistor is not driven into saturatidrere
deciding whether there is a signal or there is noise [4]. Whénbecomes very nonlinear and creates substantial spectral
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multiple channels at a time, consequently it is more flexible
as sensing multiple channels and can operate in parallel on
Antenna the digital back-end, reducing the time to find a spectrum
RF IF hole. However, wideband sensing receivers, which usually
RFFilter LNA  Mixen  Gain IF Filter ~ADC are DCRs, will operate in a range where the RF front-end
components, such as the LNAs exhibit a nonlinear behavior

\ introduced by the solid state transistors [10]. Therefor&r-

modulation (IMD) and crossmodulation (XM) are generated

[9]. The IMD terms that arise in wideband receivers can fall

within the channel being downconverted. These IMD terms

Fig. 1. Cognitive radio receiver structure. cannot be filtered out as in the narrowband approach since

they overlap with the underlying primary user signals that
need to be sensed. As a result, it is important to analyze the

regrowth. This behavior incurs a further loss of efficiencgpectrum sensing degradation caused by wideband front-end

Moreover, it is also not cost efficient since high cost trettss  nonlinearities. The baseband equivalent of the widebamuhsi

with much more power are needed for a sufficient back-adfiter the nonlinear LNA can be then expressed as

power. As a result, its implementation is costly. In additio

this power loss causes over-heating problem and shortens yo[n] = G(2[n]) + wa[n], (1)

the battery life. The use of high cost transistors is alsghere the wideband signal can be written by[n] =
not feasible for mass-product devices, e.g., cognitiveimobR{yb[n] exp (j2m fet)}, x[n] is the received baseband equiv-
phone. Therefore, a careful analysis of the nonlinearity gfent wideband signal and consists gfi] + wy[n]. s[n] is
an LNA is necessary in order to operate without using sugRe primary signal, whereas,[n] andw,[n] are the additive
an expensive technique. To overcome this, many lineaizatitnermal noise before and after the LNA, respectively. They a
techniques have been developed like feedback, feedforwagdsumed to be white Gaussian process with zero mean and unit
predistortion, etc. The linearization approach is not @ered yariance.G(-) specifies the nonlinearity model of the LNA.
in this paper. The memory effect is omitted in most of the existing literatu
In this paper, we study the impact on the energy detectigply due to simplicity [10]. However, the effect is always
based spectrum sensing caused by a nonlinear low noiggre in LNAs and really matters when signal statistics are
amplier (LNA) at the RF front-end of a wideband cognitiveested for spectrum sensing. A nonlinear model with memory
radio receiver. The nonlinearity with memory is modeleg considered in our study using a memory-polynomial model
using a memory-polynomial model. We will see that threshofd 1], which is the truncated version of the general Volterra
levels are needed to be set properly according to the differgeries model [12]. The memory-polynomial consists of saver
statistics along the whole frequency range. delay taps and nonlinear static functions considering only
diagonal terms in the Volterra kernels, thus, the numbehef t
parameters is significantly reduced compared to the general
A Simple structure of a Cognitive radio receiver is illustc \olterra series [12] Thug(x[n]) in (1) can be represented
in Figure 1. The radio frequency (RF) signal at frequelficis  with a memory polynomial model as
first captured by the RF antenna, passed through the RF filter 0 K
and a low noise amplifier(LNA). It is then downconverted by a G B 2(k-1) _ 2
mixer and local oscillator (LO) to the intermediate freqagn (z[n]) = Z Zaz’“‘l"I|x[n i an—d, @)
fir, followed by an IF filter and subsequently by an analog-to-
digital converter (ADC) at RF. The received signal is furthevherea is the model coefficients)) is the tap number, and
processed, i.e., communication and sensing processirtein #/ — 1 is the order of the polynomial. This model considers
digital domain. The scanned spectrum is divided into smanly odd-order nonlinear terms due to bandpass nonlinear
sub-bands of interest and a decision about the occupattm seharacteristics and the terms up2e— @ that are considered
of these sub-bands will be made depending on the analyignodeling because the even-order terms are usually eutsid
of the spectral density, i.e., either energy detection tewt Of the operational bandwidth of the signal and can be easily

feature detection algorithms. The decision is made taking i filtered out [13]. An input signal, with a delay of up @
account adjustable thresholds. samples, is considered in this model. The scenario in a given

An LNA is the first amplifier in the RF receiver front-end;Subband of interest after downconversion to an intermediat
typically it is the first or second component after the angennfrequencyfir is considered. The signal df= is written by
It is designed to increase the power of the received signal - .
which is usually very weak. LNAs are designed to add as little yln] = G(zln]) exp (727 firt) + win), )
noise as possible, such that the signal to noise ratio (SNRjere the additive noise afir is denoted byw[n] with
stays above the minimum required SNR of the receiver. A CRro mean and variance?. Note that as one of the other
receiver equipped with a wideband radio front-end can elesemames of DCRs, i.e., zero-IF receivefr in (3) is equal to

Il. SIGNAL AND SYSTEM MODELS

q=0 k=1



zero. That is DCRs demodulates the incoming radio signal Conn
using synchronous detection driven by a local oscillatooseh
frequency is identical to, or very close to the carrier fremgy
of the intended signal [9].
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IIl. SPECTRUMSENSING METHODS AND THEEFFECT OF 10!
NONLINEARITY WITH MEMORY

m

We consider a simple Nyquist wideband sensing approach
i.e., the wideband received signgln| is firstly sampled by 10
a high sampling rate ADC, after which a serial to parallel
conversion circuit is used to divide the sampled data into
parallel data streams. A Fast Fourier transform (FFT) isluse 10°

0 1 2 3

to convert the wideband signals to the frequency domain. 10 oo 10 10
The wideband spectruny (f) is then divided into a series Fig. 2. Covariance matrix of the sequence of the noise ampliafter the
of subnarrowbands specti (f),..., Yn,,(f), where Ny, nonlinear LNA.

denotes the number of subnarrowbands. Each subnarrowband

consists ofNeer frequency bins. The function of the spectrunwhen the primary signal is absent, the decision statistic is
sensing of cognitive radio devices is to detect whether @nym followed by Zﬁ’zl |G (wy[n]) + wq[n]|?. First, we look at the
users are absent or present in each subband spectra with gagbability density function (pdf) of(wy[n]) + wa[n], which
hypotheses;}, and #, respectively. A hypothesis test isis the convolution of the pdf of(w;,[n]) and the pdf ofw, [n].
formulated based on the type of detector. For instance, thee pdf of each component af(wy[n]) can be analyzed
energy detector [13] used in our study performs the foll@vinusing the function of random variable method [14], whereas

hypothesis test the pdf ofw,[n] is already known as a Gaussian distribution.
U B () We consider a random variable, which is related to another
0 Eyi(pn <(f), @ random variableX as
Hi: Ey.(p) > , A
v Bvgn > () Y = g(X) = bX2 L k=12, K, %

whereEy, ) is the energy in subbanidof the received signal
Y;(f) and equals td_, Y;(f)Yi(f)*, and~(f) is the decision
threshold that is set to maintain a minimum probability dééa

whereb is a constant. Due to the monotonic property of the
function g(X), the pdf of Y’ can be expressed as

alarm P, = Pr{Ey, > ~|Ho}. _ dg~!
fa r{Ey, > [Ho} fr(y) =fx(g 1(y))‘ gdy(y) 7
A. Threshold Selection ) 1 .
Firstly, without considering the nonlinearity distortiaf :fX((B)%_l) b7T| (26— 1) N
the LNA, the threshold statistic is determined by the adéliti
white Gaussian noise[n] after the FFT as . (%zi‘ll) .
1 A iomk Ty T 2 v
—j2mwkn - 2%-1 s
Wi = — wln] exp(————), (5)
Vi ;O [n] exp( ) -

wherek is the integers inbetweef and N — 1. Since each Where X is a Gaussian distributed random variable with

value of W, is the summation ofV independent white Gaus-Z€r0 mean and unit variance. As we can see, whem
sian noise samples;[n], it follows that W}, is an independent (8) is equal to 1,V is also a Gaussian distributed random
white Gaussian noise process. Therefore, the threshotd leyariable. OtherwiseY” becomes a non-Gaussian distributed
~(f) used in wideband sensing has the same central ¢andom variable. The summation of correlated non-Gaussian
square distribution withV degrees of freedom for the entirednd Gaussian random variables in (6) can be approximated
frequency range. using a multivariate Gaussian mixtures with the correspand
When the nonlinearity of the LNA is considered, the threst§ovariance matrices [15]. An example of the corresponding ¢
old level has to be carefully selected. For easier undedstgn variance matrice€,,.,, of the sequence of the noise amplitude

we expandG(z[n]) in (2) as after the nonlinear LNA is shown in Figure 2. Therefore, the
threshold statistic is now determined by a correlated Ganss
G(z[n]) =a1,0z(n) + ... + a1,0z(n — Q), sequence instead of a white Gaussian sequence as the input
+azor®(n) + ... +azori(n —Q), of the FFT.

IV. SIMULATION

tagk 1,025 () + . ask 10227 (n — Q). A Monte-Carlo simulation was run with0* realizations.
(6) All the other simulation parameters are listed in Table 1e Th



TABLE |
SIMULATION PARAMETERS

Parameters ‘

Values (Units)

Monte-Carlo run

10% (runs)

The number of samples

16384 (samples)

Number of FFT points ;)

1024 (points)

Nonlinearity model coefficientsaj | [14.85 0 -23.35; 0 33.83 0; -25.42 0 7.38]
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Fig. 3. Probability density function of the noise amplitudeeathe nonlinear
LNA.
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Fig. 4. Normalized power spectral density of each subnaramabof the
noise after the nonlinear LNA.
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Fig. 5. The proper threshold level along the whole frequency
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Fig. 6. The probability of threshold being exceeded whely anise is present
for the targetPi, set to 0.1.
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Fig. 7. The probability of threshold being exceeded whewy apise is present
for the targetP;, set to 0.01.

memory polynomial coefficienta are also given in Table 1.
The given coefficients mean@ = 2 and K = 3, i.e., the
third order and the fifth order IMD are considered. The even-
order terms are set to zero since they are usually outsideeof t
operational bandwidth of the signal and can be easily filtere
out as previously explained. The coefficients are chosen to
be real in order to model amplitude-to-amplitude (AM-AM)
distortion of the LNA. The pdfs of the noise amplitude after
the nonlinear LNA are shown in Figure 3. We can see that the
correlated Gaussian pdf fits the pdf of the nonlinear filtered
noise better than the uncorrelated Gaussian pdf. The nermal
ized power spectral density of each subnarrowband of the
noise after the nonlinear LNA is shown in Figure 4. It shows
that the noise after the FFT is better fitted by the correlated



Gaussian random vector. The theoretical result curve fitg vg10] M. Grimm, M. Allen, J. Marttila, M. Valkama, and R. Thém“Joint

well the simulation one. To obtain the theoretical resuie t mitigation of nonlinear RF and baseband distortions in weahebdirect-
ffi f . fG . d iabl . d conversion receivers/EEE Trans. on Microwave Theory and Techniques,
affine transformation of Gaussian random variables is uged t 62, pp. 166 - 182, Jan. 2014.

model the FFT [16]. And that, magnitude-squared complgxi] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, JnKiand

Gaussians follow the exponential, where the mean level can € R Giardina, “Memory polynomial predistorter based on thdirect
. . . learning architecture,” in Pro¢EEE Global Telecomm. Conf., pp. 967971,
be found using the affine transformation theory. Thereftre, Nov. 2002.

threshold levels along the whole frequency can be properhy] M. SchetzenThe \olterra and Wiener Theories of Non-Linear Systems.

set as the threshold statistic of each frequency bin has theNew York: Wiley-Interscience, 1980. . o
ial distribution as shown in Figure 5. As can 6&3] V. |. Kostylev, “Energy detection of a signal with randoamplitude,
exponential distributi wn In Figu : in Proc.|EEE Int. Conf. on Commun. (ICC), pp. 16061610, May 2002.

seen in Figure 6, the selected threshold level will give thes) ;?1\. Papoulis, Probability, Random Variables and Stochastic Processes.
probability of threshold being exceeded, when only noise js 3" Edition-McGraw-Hill, 1991.

[15] R. S. Blum , Y. Zhang , B. M. Sadler , R. J. Kozick, “On the
present, exce"ently matches the targigtset to 0.1. However, Approximation of Correlated Non-Gaussian Noise Pdfs usirgisSian

the reason of the fluctuation in the case of theoretical tulds Mixture Models,” Conf. Appl. Heavy Tailed Distributions Econom., Eng.,

is due to a finite number of samples used in the simulation, Statist., Washington, DC, June 1999. . .
. . 16] H. Michiel, ed., “Affine transformation,” Encyclopedi@ Mathematics,
Therefore, the probability of threshold being exceededeWh™ ™ gpinger, 1SBN 978-1-55608-010-4, 2001.

only noise is present, in this case cannot exactly equaldo th
target P,. Figure 7 confirms the validity of the result for the
case of the targePs, set to 0.01. To obtain those theoretical
results, the affine transformation of Gaussian random bkesa
was used to model the FFT [16]. And that, magnitude-squared
complex Gaussians follow the exponential, where the mean
level was found using the affine transformation theory.

V. CONCLUSION

In this paper, we studied the impact of the nonlinear
distortion caused by an LNA at the RF front-end of a wideband
cognitive radio receiver. A memory-polynomial model was
used to take into account the memory effect of this nonlin-
earity. The distribution of the noise introduced by the LNA
is determined using a correlated Gaussian sequence. Based o
the study, the proper threshold levels for different fregye
bins can be set. This study can contribute to the topic of
implementing low cost wideband cognitive radio devices.
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