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Abstract—In wideband sensing receivers, especially in low-
cost mass-product devices, the sensing operation is usually done
in a range where the RF front-end components, such as the
LNAs exhibit a nonlinear behavior. Consequently, intermodula-
tion (IMD) and crossmodulation (XM) are generated and cause
distortion in the spectrum sensing region. This paper investigates
the impact on the threshold level setting of a wideband energy
detection based spectrum sensing caused by a nonlinear LNA
at the radio frequency (RF) front-end of a wideband cognitive
radio receiver. The third and fifth order terms of the expansion
of the nonlinearity characteristics are modeled using a memory-
polynomial model. The main contribution of this study is the
derivation of a proper threshold level for different frequency
bins.

Index Terms—Wideband spectrum sensing, nonlinear distor-
tion, memory-polynomial, exponential distribution.

I. I NTRODUCTION

Cognitive radio (CR) is an advanced software-defined radio
that can be programmed and configured dynamically [1].
It can efficiently use the wireless channels in its vicinity.
Such a radio automatically detects available channels in the
wireless spectrum, then accordingly changes its transmission
or reception parameters to allow more concurrent wireless
communications in a given spectrum band at one location. One
of the main functions of cognitive radios is spectrum sensing,
i.e., detecting unused spectrum and sharing it, without harmful
interference to other users [2,3]. This kind of opportunistic
spectrum access introduces the possibility for a secondary
user, who does not have a license for a particular band, to
transmit when the primary is not using that band. Therefore,
the secondary user should search for spectrum bands left
unused by several primary users, and operate over such spaces.

There has been extensive work on spectrum sensing in
a narrowband setup. Narrowband spectrum sensing consists
of observing a relatively narrow radio spectrum band and
deciding whether there is a signal or there is noise [4]. When

a wideband spectrum is assigned to a number of primary
users, secondary users can search for unoccupied channels
(spectrum holes) within the wideband spectrum and commu-
nicate in that band. The traditional way for detecting holes
in a wideband spectrum is channel-by-channel scanning [5-8].
In order to implement this method, an RF front-end with a
bank of tunable and narrow bandpass filters is needed. The
occupancy of each channel can be determined by measuring
the energy of the signal at the output of each filter. The high
complexity encountered by such approach is a major challenge
as numerous RF components are required for the implemen-
tation. Wideband direct-conversion receivers (DCRs) ((a.k.a.
homodyne, synchrodyne, or zero-intermediate frequency (IF)
receiver) have become more and more popular due to their
inherent advantages over superheterodyne receivers [9]. For
instance, because the IF is zero, the image to the desired RF
signal is the desired signal itself, which means DCRs do not
face conventional image problems. Therefore, bulky, off-chip,
front-end image-reject filters are unnecessary in DCRs. The
direct-conversion architecture is highly attractive for integrated
RF receivers as the reduction in off-chip components leads
to higher levels of integration and lower costs [9]. However,
DCRs (especially the low cost ones) suffer the RF impair-
ments, for instance, I/Q imbalance and nonlinear distortion
[9]. The nonlinearity causes signal compression and as a result
introduces distortion and intermodulation. Consequently, they
can cause false alarms in spectrum sensing when a vacant
channel contains the distortion and is falsely interpretedas
occupied by a primary user.

To reduce such an effect, the operating point of an amplifier
must be set far from the compression point which in turn
causes low power efficiency. This concept is called “power av-
erage back-off.” Typically, additional back-off is also required
to ensure that the transistor is not driven into saturation,where
it becomes very nonlinear and creates substantial spectral
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Fig. 1. Cognitive radio receiver structure.

regrowth. This behavior incurs a further loss of efficiency.
Moreover, it is also not cost efficient since high cost transistors
with much more power are needed for a sufficient back-off
power. As a result, its implementation is costly. In addition,
this power loss causes over-heating problem and shortens
the battery life. The use of high cost transistors is also
not feasible for mass-product devices, e.g., cognitive mobile
phone. Therefore, a careful analysis of the nonlinearity of
an LNA is necessary in order to operate without using such
an expensive technique. To overcome this, many linearization
techniques have been developed like feedback, feedforward,
predistortion, etc. The linearization approach is not considered
in this paper.

In this paper, we study the impact on the energy detection
based spectrum sensing caused by a nonlinear low noise
amplier (LNA) at the RF front-end of a wideband cognitive
radio receiver. The nonlinearity with memory is modeled
using a memory-polynomial model. We will see that threshold
levels are needed to be set properly according to the different
statistics along the whole frequency range.

II. SIGNAL AND SYSTEM MODELS

A simple structure of a cognitive radio receiver is illustrated
in Figure 1. The radio frequency (RF) signal at frequencyfc is
first captured by the RF antenna, passed through the RF filter
and a low noise amplifier(LNA). It is then downconverted by a
mixer and local oscillator (LO) to the intermediate frequency
fIF, followed by an IF filter and subsequently by an analog-to-
digital converter (ADC) at RF. The received signal is further
processed, i.e., communication and sensing processing in the
digital domain. The scanned spectrum is divided into small
sub-bands of interest and a decision about the occupation state
of these sub-bands will be made depending on the analysis
of the spectral density, i.e., either energy detection or other
feature detection algorithms. The decision is made taking into
account adjustable thresholds.

An LNA is the first amplifier in the RF receiver front-end;
typically it is the first or second component after the antenna.
It is designed to increase the power of the received signal
which is usually very weak. LNAs are designed to add as little
noise as possible, such that the signal to noise ratio (SNR)
stays above the minimum required SNR of the receiver. A CR
receiver equipped with a wideband radio front-end can observe

multiple channels at a time, consequently it is more flexible
as sensing multiple channels and can operate in parallel on
the digital back-end, reducing the time to find a spectrum
hole. However, wideband sensing receivers, which usually
are DCRs, will operate in a range where the RF front-end
components, such as the LNAs exhibit a nonlinear behavior
introduced by the solid state transistors [10]. Therefore,inter-
modulation (IMD) and crossmodulation (XM) are generated
[9]. The IMD terms that arise in wideband receivers can fall
within the channel being downconverted. These IMD terms
cannot be filtered out as in the narrowband approach since
they overlap with the underlying primary user signals that
need to be sensed. As a result, it is important to analyze the
spectrum sensing degradation caused by wideband front-end
nonlinearities. The baseband equivalent of the wideband signal
after the nonlinear LNA can be then expressed as

yb[n] = G(x[n]) + wa[n], (1)

where the wideband signal can be written byyw[n] =
R{yb[n] exp (j2πfct)}, x[n] is the received baseband equiv-
alent wideband signal and consists ofs[n] + wb[n]. s[n] is
the primary signal, whereaswb[n] andwa[n] are the additive
thermal noise before and after the LNA, respectively. They are
assumed to be white Gaussian process with zero mean and unit
variance.G(·) specifies the nonlinearity model of the LNA.
The memory effect is omitted in most of the existing literatures
only due to simplicity [10]. However, the effect is always
there in LNAs and really matters when signal statistics are
tested for spectrum sensing. A nonlinear model with memory
is considered in our study using a memory-polynomial model
[11], which is the truncated version of the general Volterra
series model [12]. The memory-polynomial consists of several
delay taps and nonlinear static functions considering only
diagonal terms in the Volterra kernels, thus, the number of the
parameters is significantly reduced compared to the general
Volterra series [12]. Thus,G(x[n]) in (1) can be represented
with a memory polynomial model as

G(x[n]) =

Q
∑

q=0

K
∑

k=1

a2k−1,q|x[n− q]|2(k−1).x[n− q], (2)

wherea is the model coefficients,Q is the tap number, and
2K − 1 is the order of the polynomial. This model considers
only odd-order nonlinear terms due to bandpass nonlinear
characteristics and the terms up to2n−Q that are considered
in modeling because the even-order terms are usually outside
of the operational bandwidth of the signal and can be easily
filtered out [13]. An input signal, with a delay of up toQ
samples, is considered in this model. The scenario in a given
subband of interest after downconversion to an intermediate
frequencyfIF is considered. The signal atfIF is written by

y[n] = G(x[n]) exp (j2πfIFt) + w[n], (3)

where the additive noise atfIF is denoted byw[n] with
zero mean and varianceσ2

w. Note that as one of the other
names of DCRs, i.e., zero-IF receiver,fIF in (3) is equal to



zero. That is DCRs demodulates the incoming radio signal
using synchronous detection driven by a local oscillator whose
frequency is identical to, or very close to the carrier frequency
of the intended signal [9].

III. SPECTRUMSENSING METHODS AND THEEFFECT OF

NONLINEARITY WITH MEMORY

We consider a simple Nyquist wideband sensing approach,
i.e., the wideband received signaly[n] is firstly sampled by
a high sampling rate ADC, after which a serial to parallel
conversion circuit is used to divide the sampled data into
parallel data streams. A Fast Fourier transform (FFT) is used
to convert the wideband signals to the frequency domain.
The wideband spectrumY (f) is then divided into a series
of subnarrowbands spectraY1(f), . . . , YNsub(f), whereNsub

denotes the number of subnarrowbands. Each subnarrowband
consists ofNFFT frequency bins. The function of the spectrum
sensing of cognitive radio devices is to detect whether primary
users are absent or present in each subband spectra with two
hypotheses,H0 and H1, respectively. A hypothesis test is
formulated based on the type of detector. For instance, the
energy detector [13] used in our study performs the following
hypothesis test

H0 : EYi(f) < γ(f),

H1 : EYi(f) > γ(f), (4)

whereEYi(f) is the energy in subbandi of the received signal
Yi(f) and equals to

∑

f Yi(f)Yi(f)
∗, andγ(f) is the decision

threshold that is set to maintain a minimum probability of false
alarmPfa = Pr{EYi

> γ|H0}.

A. Threshold Selection

Firstly, without considering the nonlinearity distortionof
the LNA, the threshold statistic is determined by the additive
white Gaussian noisew[n] after the FFT as

Wk =
1√
N

N−1
∑

n=0

w[n] exp(
−j2πkn

N
), (5)

wherek is the integers inbetween0 andN − 1. Since each
value ofWk is the summation ofN independent white Gaus-
sian noise samples,w[n], it follows thatWk is an independent
white Gaussian noise process. Therefore, the threshold level
γ(f) used in wideband sensing has the same central chi
square distribution withN degrees of freedom for the entire
frequency range.

When the nonlinearity of the LNA is considered, the thresh-
old level has to be carefully selected. For easier understanding,
we expandG(x[n]) in (2) as

G(x[n]) =a1,0x(n) + . . .+ a1,Qx(n−Q),

+a3,0x
3(n) + . . .+ a3,Qx

3(n−Q),

. . .

+a2K−1,0x
2K−1(n) + . . .+ a2K−1,Qx

2K−1(n−Q).
(6)

 

 

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10

20

30

40

50

60

Cmn

m

n

Fig. 2. Covariance matrix of the sequence of the noise amplitude after the
nonlinear LNA.

When the primary signal is absent, the decision statistic is
followed by

∑N

n=1 |G(wb[n]) +wa[n]|2. First, we look at the
probability density function (pdf) ofG(wb[n])+wa[n], which
is the convolution of the pdf ofG(wb[n]) and the pdf ofwa[n].
The pdf of each component ofG(wb[n]) can be analyzed
using the function of random variable method [14], whereas
the pdf ofwa[n] is already known as a Gaussian distribution.
We consider a random variableY , which is related to another
random variableX as

Y = g(X) = bX2k−1, k = 1, 2, . . . ,K, (7)

whereb is a constant. Due to the monotonic property of the
function g(X), the pdf ofY can be expressed as

fY (y) =fX(g−1(y))
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(8)

where X is a Gaussian distributed random variable with
zero mean and unit variance. As we can see, whenk in
(8) is equal to 1,Y is also a Gaussian distributed random
variable. Otherwise,Y becomes a non-Gaussian distributed
random variable. The summation of correlated non-Gaussian
and Gaussian random variables in (6) can be approximated
using a multivariate Gaussian mixtures with the corresponding
covariance matrices [15]. An example of the corresponding co-
variance matricesCmn of the sequence of the noise amplitude
after the nonlinear LNA is shown in Figure 2. Therefore, the
threshold statistic is now determined by a correlated Gaussian
sequence instead of a white Gaussian sequence as the input
of the FFT.

IV. SIMULATION

A Monte-Carlo simulation was run with104 realizations.
All the other simulation parameters are listed in Table 1. The



TABLE I
SIMULATION PARAMETERS

Parameters Values (Units)

Monte-Carlo run 10
4 (runs)

The number of samples 16384 (samples)

Number of FFT points (Nf ) 1024 (points)

Nonlinearity model coefficients (a) [14.85 0 -23.35; 0 33.83 0; -25.42 0 7.38]

TargetPfa 0.1 and 0.01
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Fig. 3. Probability density function of the noise amplitude after the nonlinear
LNA.
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Fig. 5. The proper threshold level along the whole frequency.
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Fig. 6. The probability of threshold being exceeded when only noise is present
for the targetPfa set to 0.1.
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Fig. 7. The probability of threshold being exceeded when only noise is present
for the targetPfa set to 0.01.

memory polynomial coefficientsa are also given in Table 1.
The given coefficients meansQ = 2 and K = 3, i.e., the
third order and the fifth order IMD are considered. The even-
order terms are set to zero since they are usually outside of the
operational bandwidth of the signal and can be easily filtered
out as previously explained. The coefficients are chosen to
be real in order to model amplitude-to-amplitude (AM-AM)
distortion of the LNA. The pdfs of the noise amplitude after
the nonlinear LNA are shown in Figure 3. We can see that the
correlated Gaussian pdf fits the pdf of the nonlinear filtered
noise better than the uncorrelated Gaussian pdf. The normal-
ized power spectral density of each subnarrowband of the
noise after the nonlinear LNA is shown in Figure 4. It shows
that the noise after the FFT is better fitted by the correlated



Gaussian random vector. The theoretical result curve fits very
well the simulation one. To obtain the theoretical result, the
affine transformation of Gaussian random variables is used to
model the FFT [16]. And that, magnitude-squared complex
Gaussians follow the exponential, where the mean level can
be found using the affine transformation theory. Therefore,the
threshold levels along the whole frequency can be properly
set as the threshold statistic of each frequency bin has the
exponential distribution as shown in Figure 5. As can be
seen in Figure 6, the selected threshold level will give the
probability of threshold being exceeded, when only noise is
present, excellently matches the targetPfa set to 0.1. However,
the reason of the fluctuation in the case of theoretical threshold
is due to a finite number of samples used in the simulation.
Therefore, the probability of threshold being exceeded, when
only noise is present, in this case cannot exactly equal to the
targetPfa. Figure 7 confirms the validity of the result for the
case of the targetPfa set to 0.01. To obtain those theoretical
results, the affine transformation of Gaussian random variables
was used to model the FFT [16]. And that, magnitude-squared
complex Gaussians follow the exponential, where the mean
level was found using the affine transformation theory.

V. CONCLUSION

In this paper, we studied the impact of the nonlinear
distortion caused by an LNA at the RF front-end of a wideband
cognitive radio receiver. A memory-polynomial model was
used to take into account the memory effect of this nonlin-
earity. The distribution of the noise introduced by the LNA
is determined using a correlated Gaussian sequence. Based on
the study, the proper threshold levels for different frequency
bins can be set. This study can contribute to the topic of
implementing low cost wideband cognitive radio devices.
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