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Outage Probability for MIMO MAC Channels
Claudio Ferreira Dias, Gabriel Fernando Pivaro, and Gustavo Fraidenraich

Abstract—In this paper, we investigate the outage probability
for the mutual information of the sum rate for the MIMO
(multiple input multiple output) MAC (multiple access channel)
channel. We derive exact results for the “two users” case with
two antennas and a general result for K users with an arbitrary
number of antennas and different signal-to-noise ratios. As a
secondary result, we derive an exact expression for the single user
outage probability for the MIMO channel with two antennas.

Index Terms—MIMO, mutual information, outage probability,
Wishart matrices

I. INTRODUCTION

Wireless systems have uninterrupted interest for higher data
rates even after all of the evolution that has happened in the
telecommunications area during the last ten years. A very
well-known triad for the design of wireless devices keeps the
focus on power, bandwidth, and complexity. Pioneering work
by [1], Foschini [2], and Telatar [3] led to a huge interest
in the research community by predicting very high spectral
efficiencies for wireless systems that fed an enthusiasm by
researchers to pursue more and more throughput. From this
motivation, this work studies the outage probability for the
mutual information of the sum rate for the MIMO MAC
channel.

We focus on MIMO channel capacity in the sense of the
Shannon theory. The Shannon capacity of a single-user time-
invariant channel is defined as the maximum mutual informa-
tion between the channel input and output. This maximum
mutual information is shown by Shannon’s capacity theorem
to be the maximum data rate that can be transmitted over
the channel with an arbitrarily small error probability. The
capacity definitions, intended for this work, deal with channels
that are minimum-rate capacity. These capacities require a
fixed data rate in all nonoutage channel states.

It is also important to consider the transmission strategy. In
this case we assume a strategy based on the channel distribu-
tion instead of the instantaneous channel state. The channel
coefficients are typically assumed to be jointly Gaussian, so
the channel distribution is specified by the channel mean and
covariance matrices. In scenarios were the users do not move
fast, the slow-fading dominates the channel. In this case, the
time duration in which the channel behaves in a correlated
way is long compared with the time duration of a transmission
symbol [4]. Thus, one can expect the channel state to virtually
remain unchanged during the time in which a symbol is
transmitted (block fading). The primary degradation in a slow-
fading channel is a loss in signal-to-noise ratio (SNR). Because
the receiver needs at least a sufficient signal to noise ratio
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(SNR) level in order to correctly decode the transmitted signal,
it is of extreme importance to estimate the probability of the
received signal which will be below an arbitrary threshold.
In other words, for each realization of the random MIMO
channel, there is an associated mutual information for the
sum rate, denoted here by (IMAC), between transmitted and
received signals. The outage probability Pout is the probability
that conditional IMAC is less than a given rate R. Therefore,
Pout is a function of R.

The MIMO outage probability is still an open subject due
to the intricate nature of the problem. There are some results
for the outage probability in the high SNR regime [5], but
unfortunately they are not all valid for the SNR region.

In this paper, we wish to exploit the Wishart matrix prop-
erties and calculate the outage probability for the sum rate
of the MIMO MAC channel. According to reference [6], it
is possible to derive analytical expressions for Pout in terms
of the moment generating function (MGF) of the random
variable I for single user case. In [5], it is shown how to
compute the joint probability density for the eigenvalues of
a Wishart matrix. In [6], it is shown that the PDF of I can
be well approximated by a Gaussian distribution, where the
mean of (µI) and variance of (σ2

I) are calculated by using the
probability density distribution of these eigenvalues.

The extension of this idea can be applied for the multi-
user case. First, we develop an analytical formulation for a
generic case with (M,N ) antennas. In the MAC case the
sum rate random variable IMAC is a function of the sum
of Wishart matrices and some properties of Wishart matrix
can be exploited. It is possible to find an exact analytical
expression for the outage probability for the two-user 2x2
MIMO case when the users have the same SNR as described
in the section II. For other combinations of (M,N ) antennas,
we have to use the Gaussian approximation approach because
of the complexity associated with the number of integrals and
other aspects related with the analytic expressions that makes
the solution very intricate.

The contributions of this paper are: 1) a new exact expres-
sion for the MIMO MAC sum rate for two user with two
antennas per user; 2) the distribution of a1W1+a2W2, where
W1 and W2 are Wishart matrices is known to be Wishart
distributed only for the case a1 = a2, in this paper we
propose an excellent approximation for arbitrary a1 and a2;
3) We extend the result of the Gaussian approximation for the
mutual information for a single user MIMO case to the mutual
information for the sum rate of the MAC case.

To the best of our knowledge, all the results mentioned
above are not known in the literature.
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Fig. 1. MIMO MAC channel model

II. SYSTEM MODEL

Consider a general MIMO MAC channel described by Fig.
1. In this case, we consider K users with (M x 1) antennas,
one base station with (N x 1) antennas. The received signal
at uplink node can be written as

Yd =
K∑

n=1

√
ηnHnXn + Zd (1)

where
• Xn are vectors (Mn x 1) of transmitted signals from the

user nodes; the power constraints on the transmit signals
are E1[X†

nXn] ≤ Mn;
• Yd is a vector (N x 1) of received signals at the

destination node.
• Hn are matrices of channel gains (Mn x N ). We consider

the scenario where Hn are random and independent ma-
trices, and the entries of each matrix are independent and
identically distributed (i.i.d.) complex Gaussian variables
with zero-mean, independent real and imaginary parts,
each with variance σ2, and they are available at the
receiver node only (i.e. receiver CSI only).

• ηn are parameters related to the SNR [7]

ηn =
SNRn

Mn
(2)

where SNRn are the normalized power ratios of the Xn

to the noise at each antenna of the destination node;
• Zd is an independent (N x 1) circularly symmetric

complex Gaussian noise vector with distribution CN (0,
IN ) and uncorrelated to Xn.

Corollary 1: Define

Wl =

{
H†

lHl N < Ml

HlH
†
l N ≥ Ml

(3)

1E[·] denotes the expectation operator.

where l is the index that identifies the user and the symbol
† denotes the transposed conjugated matrix operator. Thus
Wl is Wishart distributed according to

Wl ∼ Wm(p,Σl). (4)

where p = min (M,N) and Σl is the covariance matrix for
each user.

III. SUM RATE OUTAGE PROBABILITY

The mutual information for the sum rate for MIMO MAC
case is given by [3]

IMAC = log2

[
det

(
I+

K∑
n=1

ηnWn

)]
(5)

where I, is the identity matrix. The MIMO sum rate outage
probability for the IMAC is defined as

Pout(R) := Pr [IMAC < R] , (6)

In this paper for the sake of complexity, we assume that all
the users are equipped with the same number of antennas, i.e.,
Mn = M for all n.

The joint probability density function of the complex
Wishart W, i.e. the multivariate density function of the
real random variables W = W11,. . . , Wmm, Re[W12],
Im[W12],. . . , Re[Wm−1,m], Im[Wm−1,m] is defined by [8]

pW (W) =
det(W)p−m exp(−tr(Σ−1W))

π
m(m−1)

2 det(Σ)p
∏m

k=1 Γ(p − k + 1)
(7)

where

Γ(z) =
∫ ∞

0

tz−1et dt (8)

is the Gamma function. As we can see from (7), the pW (W)
is a function of the W and Σ. Since we are assuming the
Rayleigh case channel, then E[Hl] = 0, which refers to the
central Wishart case [9], [10].

Corollary 2: If W1 and W2 are distributed as W =
Wm(p1,Σ) and W = Wm(p2,Σ), respectively, therefore from
[11] the sum of W1 and W2 is distributed as W1+2 ∼
Wm(p1 + p2,Σ).

In the same way, the unordered joint density eigenvalue
distribution is given by [12]

pλ(λ1, ..., λm) =
1

m!Km,n

∏
i

e−λiλn−m
i

∏
i<j

(λi − λj)
2 (9)

where Km,n is a normalizing factor.

IV. THE TWO USERS CASE

For the two user case, (5) specializes to

IMAC = log2 [det (IN + η1W1 + η2W2)] . (10)

When η1 = η2, then Corollary 2 can be applied. Using the
property of the determinant, it is possible to write

IMAC = log2 ((1 + ηλ1) (1 + ηλ2)) (11)
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where η = η1 = η2 and λ1, λ2 are the eigenvalues of the sum
matrix W1 + W2. The sum rate outage probability can be
found as

Pr (IMAC < R) = Pr
(
(1 + ηλ1) (1 + ηλ2) < 2R

)
Pr (IMAC < R) =

∫ 2R

0

∫ 2R

1+λ2
−1

0

p (λ1, λ2) dλ1dλ2 (12)

For the sake of simplicity, the value of η can be incorporated
in the parameter σ of the function p(λ1, λ2), (13).

Of course, it is clear that the joint probability density
function of the eigenvalues is necessary in order to compute
the outage probability.

For the case where M = N = 2, W1 +W2 is a Wishart
matrix with four degrees of freedom and the joint eigenvalue
distribution can be found as

p(λ1, λ2) =
λ2
1 (λ1 − λ2)

2λ2
2e

−λ1+λ2
σ2

24σ16
, (13)

where σ =
√
η.

Now, using (13) in (12), the outage probability can be found
in an exact manner as given in (15).

A. Single User MIMO case with M = N = 2

The outage probability for a single MIMO user can also
be calculated for the case M = N = 2, following the same
rationale. In this case, the eigenvalue joint probability function
for single user case with M = N = 2 can be written as,

p(λ1, λ2) =
(λ1 − λ2)

2e−
λ1+λ2

σ2

2σ8
(14)

Now, using the joint eigenvalue distribution obtained in (14),
it is possible to compute the exact outage probability for a
single user mutual information, ISU , given as the equation
(16).

V. GAUSSIAN APPROXIMATION FOR SAME η AND
ARBITRARY M,N

The sum rate outage probability for the MIMO MAC case
for an arbitrary number of antennas is still an open problem
due to its complexity. In order to circumvent this difficulty
and based on the result for a single user MIMO channel [6],
we propose to approximate the sum rate mutual information,
IMAC , as a Gaussian random variate

p(IMAC ,M,N) ≈ 1√
2πσIMAC

exp
(
− (I − µIMAC

)2

2σ2
IMAC

)
(17)

where µIMAC and σ2
IMAC

are the mean and variance of
Gaussian variable and can written as

µIMAC =

∫ ∞

0

log(1 + λ̃ρ/M)K(λ̃, λ̃)dλ̃ (18)

σ2
IMAC

=

∫ ∞

0

log2(1 + λ̃ρ/M)K(λ̃, λ̃) (19)

−
∫ ∞

0

∫ ∞

0

log(1 + λ̃1ρ/M) (20)

log(1 + λ̃2ρ/M)K2(λ̃, λ̃)dλ̃1dλ̃2 (21)

where the auxiliary functions are given by [6],

K(x, y) :=
k−1∑
i=0

ϕ̃i(x)ϕ̃i(y) (22)

Ld
i (λ̃) :=

1

i!
exp(λ̃)λ̃−d d

dλ̃i
(e−λ̃λ̃d+i) (23)

ϕ̃i(λ̃) := [i!/(i+ d)!]
1
2 Li

d(λ̃)λ̃
d
2 e

λ̃
2 (24)

where k = min(M,N) and d = max(M,N) − k. In order
to find a Gaussian approximation that represents the sum of
two Wishart distributions we state that k = min(M, 2N) and
d = max(M, 2N). Thus, the outage probability can be easily
be computed as a Gaussian cumulative density function (CDF)
[13], given by

Pr[IMAC < R] =
1

2

(
1 + erf

(
R− µ√

2σ

))
(25)

where the function erf (·) denotes the Gaussian error function.
It is very important to note that the main reason to use the

Gaussian approximation is to verify that the sum of Wishart
matrices is still a Wishart matrix. Note that this condition will
be true only for the same SNR (η) scenario.

A. Gaussian Approximation for different η and arbitrary M,N

In order to work with different η, lets state η1 ̸= η2 and
write it in the following way,

η1W1 + η2W2 = η1 (W1 + ηW2) (26)

where η = η2/η1. Unfortunately, linear combination of
Wisharts with distinct coefficients is not Wishart distributed.
In order to circumvent this problem, we propose a close
approximation for the sum of Wisharts.

First, for values of η very close to one, if the situation
discussed in section V holds, then the property of corollary 2
can be applied, that is, sum of two Wisharts is distributed as
a Wishart with the sum of the degrees of freedom. For large
values of η, we notice that the term ηW2 dominates the sum
and therefore the sum has a distribution closer to a Wishart
with the same degrees of freedom of W2. Based on this, we
propose that the number of degrees of freedom be a function
of η in the following manner

W1 + ηW2 ∼ (1 + η)W3 (27)

where W1 ∼ W1(p1,Σ), W2 ∼ W2(p2,Σ), and W3 ∼
W3(p3,Σ) with

p3 = p2 +

⌊
p1√
η

⌋
(28)

where ⌊·⌋ denotes the floor operator.
Note that for η = 1, this approximation leads to the same

result of Corollary 2. On the other hand, for η → ∞, p3 → p2
since the ηW2 term dominates the sum.

The validation of this approximation will be shown in the
numerical results section.
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Pr (IMAC < R) =

∫ 2R

0

1

24σ16
λ2
2

(
2σ6e−

λ2
σ2
(
λ2
2 − 6λ2σ

2 + 12σ4
)

− σ2e−
λ2+ 2R

λ2+1
−1

σ2

(
2σ4

(
λ2
2 − 6λ2σ

2 + 12σ4
)
+
(
λ2
2 − 6λ2σ

2 + 12σ4
)( 2R

λ2 + 1
− 1

)2

+2σ2
(
λ2
2 − 6λ2σ

2 + 12σ4
)( 2R

λ2 + 1
− 1

)
− 2

(
λ2 − 2σ2

)( 2R

λ2 + 1
− 1

)3

+

(
2R

λ2 + 1
− 1

)4
))

dλ2

(15)

Pr (ISU < R) =

∫ 2R

0

1

2σ6
e−

λ2
σ2

(
λ2
2 − 2λ2σ

2 − e
λ2−2R+1

(λ2+1)σ2(
λ2
2 − 2λ2σ

2 + 2σ2

(
2R

λ2 + 1
− 1

)
+

(
2R

λ2 + 1
− 1

)2

− 2λ2

(
2R

λ2 + 1
− 1

)
+ 2σ4

)
+ 2σ4

)
dλ2

(16)
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Fig. 2. Marginal Probability Density Function for M = N = 2.
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Fig. 3. Marginal Probability Density Function for M = N = 2.

VI. NUMERICAL RESULTS

In this section we will show some numerical results in order
to validate our analytical framework.

A. The M = 2, N = 2 case

Fig. 2 shows the analytical result for the marginal prob-
ability density function of the eigenvalues obtained as the
integration of (13) and also the computer simulation using
the Mathematicar software. As can be seen, the agreement
is perfect. The numerical simulation has been done with a
SNR=10 dB.

In the same way, Fig. 3 shows the analytical (15) and
simulated outage probability using the same parameters.
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Fig. 4. Analytical Gaussian approximation and simulation for the marginal
eigenvalue probability density function, pIMAC

(x), for several SNR values
and M,N configurations.

B. Gaussian Approximation for same SNR and arbitrary M,N

Fig. 4 compares the analytical and simulated marginal
eigenvalue probability density function for the “two users”
case with the same SNR and several combinations of M and
N . As it can be seen, in all the cases the approximation renders
an excellent fit.

C. Arbitrary number of users

In order to show that the concept of the Wishart Matrices
sum can be extended for more than two users, Fig. 5 shows the
marginal probability density function for six users considering
M = N = 5 and SNR = 10 dB. Fig. 6 shows the outage
probability using the same parameters. Notice again, the excel-
lent agreement between the proposed analytical approximation
and the simulated curves.

D. Gaussian Approximation for different SNR and arbitrary
M,N

In this subsection we want to validate our approximation
given in (28) for two users using different values of η.
Fig. 7 shows the outage probability for several values of
η. In this figure, the dashed curve represents the simulation
and the continuous curve represents the analytical Gaussian
approximation for M = N = 2. Notice that for extreme values



5

27 28 29 30 31
I

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pI HxL

Fig. 5. Simulation and the Gaussian analytical approximation for pIMAC
(x)

for 6 users and M = N = 5.
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Fig. 6. Simulation and the Gaussian analytical approximation for the outage
probability Pr (IMAC < R) for 6 users and M = N = 5.
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Fig. 7. Outage probability: comparison between analytic curves and
simulation for several values of η and M = N = 2

of η (close to one or very large η) the Gaussian approximation
is closer to the simulation curve, as expected. Fig. 8 shows
the outage probability for a similar setup but for the case
M = N = 4.

VII. CONCLUSIONS

This work studied the mutual information outage probability
at multiple-input multiple-output (MIMO) nodes for MAC
channels based on the eigenvalues’ distribution of the sum of
Wishart matrices. It was shown that the mutual information

of the sum rate can be well approximated by a Gaussian
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Fig. 8. Outage probability: Comparison between analytic curves and
simulation for several values of η and M = N = 4

distribution. The analytical expression for the outage prob-
ability was calculated in an exact manner considering two
users with M = N = 2 antennas. Furthermore, we proposed
an approximation of the sum of two Wisharts matrices with
different SNRs as being a Wishart matrix with a variable
number of degrees of freedom. All the results were validated
using computer simulation.
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