
Globus GridFTP: What’s New in 2007 (Invited Paper)

John Bresnahan1,2,3, Michael Link1,2, Gaurav Khanna4, Zulfikar Imani3,
Rajkumar Kettimuthu1,2 and Ian Foster1,2,3

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
2Computation Institute, University of Chicago, Chicago, IL 60637

3Department of Computer Science, University of Chicago, Chicago, IL 60637
4Department of Computer Science & Engineering, Ohio State University, Columbus, OH 43210

ABSTRACT

GridFTP is a high-performance, secure, reliable data
transfer protocol optimized for high-bandwidth wide-area
networks. It is based on the Internet FTP protocol, and it
defines extensions for high-performance operation and
security. The Globus implementation of GridFTP
provides a software suite optimized for the gamut of data
access issues—from bulk file transfer to the details of
getting data out of complex storage systems within sites.
We summarize some recent developments in Globus
GridFTP.

Keywords
GridFTP, LOSF, Split DSI, GridFTP over UDT, GWFTP

1. INTRODUCTION
Science is increasingly data-driven. Geographically
distributed communities of scientists need to access and
analyze large amounts of data, both in simulation science
applications such as climate modeling and in
experimental science applications such as high-energy
physics.
Transferring terabytes or even petabytes of data over
wide-area networks at speeds of multigigabit per second
necessitates the use of advanced network transport and
provisioning technologies to dynamically provision,
configure and control, and monitor the wide-area
networking infrastructure. In this short paper, we discuss
new functionalities and recent developments that we have
incorporated into the Globus GridFTP framework [1] to
take advantage of the latest network technologies and
transport protocols. Specifically, we describe the
following six initiatives.

1. GridFTP Pipelining, which improves the
performance of lots of small files transfers

2. GridFTP over UDT, which can provide
significantly higher end-to-end performance than
GridFTP over TCP, particularly on wide area
networks

3. Split DSI for GridFTP, which can help overcome
some of the TCP limitations and can also help to
avoid some bottleneck links.

4. GridFTP Where there is FTP (GWFTP), which
allows the use of ordinary FTP clients to invoke
operations on GridFTP servers

5. Network provisioning, which allows for binding
of GridFTP transfers to optical paths

6. GridFTP over Infiniband, which enables
GridFTP to take advantage of the recent
developments in Infiniband over SONET to
achieve high performance on wide area
networks.

Because of lack of space, we do not discuss three other
initiatives that should also be of interest to many: the
ability to dynamically add or remove data nodes from a
striped GridFTP server, which helps to improve resource
utilization and to be robust in the presence of data node
failures; SSH authentication, for environments where
Grid Security Infrastructure is not supported or required;
and space and bandwidth management, to increase the
reliability of transfers.

2. GridFTP Pipelining:
Given resources, the GridFTP implementation provided
by the Globus Toolkit can scale to network speeds and
has been shown to deliver 27 Gb/s on 30 Gb/s links. The
protocol is optimized to transfer large volumes of data
commonly found in Grid applications. Datasets of sizes
from hundreds of megabytes to terabytes and beyond can
be transferred at close to network speeds by using
GridFTP.
Unfortunately, conventional implementations of GridFTP
have a limitation as to how the data must be partitioned to
reach these high-throughput levels. Not only must the
amount of data to transfer be large enough to allow TCP
to reach full throttle, but the data must also be in large
files, ideally in one single file. If the dataset is large but
partitioned into many small files (on gigabit networks we
consider any file smaller than 100 MB as a small file), the
performance of GridFTP servers suffers drastically
This problem is known as the “lots of small files” (LOSF)
problem. In this paper we study the LOSF problem and
present a solution known as pipelining.

peri
Typewriter
GridNets 2007 October 17-19, 2007, Lyon, France.

Copyright 2007 ICST ISBN 978-963-9799-07-3.

DOI 10.4108/gridnets.2007.2288

peri
Typewriter

peri
Typewriter

peri
Typewriter

The GridFTP protocol is a backward-compatible
extension of the legacy RFC959 FTP protocol. It
maintains the same command/response semantics
introduced by RFC959. File transfer requests are done
with the RETR (send) or STOR (receive) command. A
client sends one of these commands to the server across
the control channel. Data then begins to flow between the
client and server over the data channel. Once all of the
data has been transferred, a “226 Transfer Complete”
acknowledgment message is sent from the server to the
client on the control channel. Only when this
acknowledgment is received can the client request another
transfer. During this time the data channel is idle. The
latency between transfers adds to the overall transfer time
and thus detracts from the overall throughput.
Pipelining approaches the LOSF problem by trying to
minimize the amount of time between transfers.
Pipelining allows the client to have many outstanding,
unacknowledged transfer commands at once. Instead of
being forced to wait for the “226 Transfer Successful”
message; the client is free to send transfer commands at
any time. The server processes these requests in the order
they are sent. Acknowledgments are returned to the client
in the same order. As can be seen from Figure 1,
pipelining improves the throughput of lots of small files
transfers significantly.

Figure 1: Comparison of the performance of pipelined
GridFTP transfers with standard (nonpipelined)
GridFTP transfers in a WAN

3. GridFTP over UDT
UDT [2] is an application-level data transport protocol
that uses UDP to transfer bulk data, while implementing
its own reliability and congestion control mechanisms.
UDT achieves good performance on high-bandwidth,
high-delay networks in which TCP has significant
limitations.

GridFTP uses the Globus Extensible Input Output (XIO)
[3] interface to invoke network I/O operations. The
Globus XIO framework presents a single, standard
open/close read/write interface to many different protocol
implementations, including TCP, UDP, HTTP, and file—
and now UDT. The protocol implementations are called
drivers. Once created, a driver can be dynamically loaded
and stacked by any Globus XIO application.
In creating a Globus XIO driver for UDT, we took
advantage of a recent addition to the Globus XIO system,
the wrapblock feature. The standard Globus XIO driver
interface supports an asynchronous interaction model.
While this is more scalable and efficient than a
synchronous model, however, it is also the most difficult
to code against. Further, many protocol implementations
do not have asynchronous APIs, and transforming them
into an asynchronous model can be time consuming. The
wrapblock functionality uses thread pooling and event
callback techniques to transform the asynchronous
interface into a blocking interface. This approach makes
the task of creating a driver from an existing library a
trivial task. For example, the Globus XIO driver for UDT
is less than 700 lines of code.

Table 1: Throughput achieved when transferring 1 GB of
data over two wide-area networks, using various
mechanisms

 Testbed
Transport
Mechanism

Argonne to New
Zealand

Throughput in
Mbit/s

Argonne to Los
Angeles

Throughput in
Mbit/s

Iperf – 1 stream 19.7 74.5
Iperf – 8 streams 40.3 117.0
GridFTP mem
TCP – 1 stream

16.4 63.8

GridFTP mem
TCP – 8 streams

40.2 112.6

GridFTP disk TCP
– 1 stream

16.3 59.6

GridFTP disk TCP
– 8 streams

37.4 102.4

GridFTP mem
UDT

179.3 396.6

GridFTP disk
UDT

178.6 428.3

UDT mem 201.6 432.5
UDT disk 162.5 230.0

Preliminary results show that GridFTP over UDT
significantly outperforms GridFTP over TCP on networks
where throughput is the bottleneck. Table 1 compares the
performance of Iperf, GridFTP over TCP, GridFTP over
UDT, and raw UDT on two different networks—a wide-
area network between Argonne and the University of
Auckland, New Zealand, with a round-trip time of 204
ms; and a second wide-area network between Argonne
and Los Angeles, with a round-trip time of 60 ms.

3. Split DSI
By default, GridFTP employ TCP as the underlying
transport protocol. The observed throughput of GridFTP
transfers in a wide-area environment is often lower than
the achievable throughput, owing to the slow-start and
congestion control mechanisms of TCP. The technique of
dividing a TCP connection into a set of shorter, better
performing connections by splitting it at multiple
intermediate points with the goal of improving the overall
throughput has been widely studied [4], [5], [6], [7]. A
split-TCP connection is expected to perform better than a
single end-to-end TCP connection owing to several
reasons. Firstly, the round-trip time on each intermediate
hop is shorter as compared to the direct end-to-end path.
Therefore, the congestion control mechanism of TCP
would sense the maximum throughput quickly thereby
attaining steady state where in it will give maximal
possible throughput until a congestion event occurs.
Secondly, any packet loss is not propagated all the way
back to the source but only to the previous intermediate
hop. In addition, if the bandwidth on each of the
intermediate hops is higher as compared to the direct path,
the overall throughput is expected to improve.
GridFTP has a Data Storage Interface (DSI), which
interacts with the storage system. The DSI layer accepts
requests like the get, put and stat and performs the
necessary functions based on the underlying storage
system it interfaces with. Rizk et. al. [4] have
implemented a DSI interface to achieve the split –TCP
functionality. Their implementation lets a GridFTP client
specify a multi-hop transfer between a source and a
destination URL through a series of intermediate hosts by
employing split URLs. A split URL is essentially a
concatenation of multiple normal URLs. For example, a
globus-url-copy command issued with a source URL A/B
and the destination URL C/D means that the file will be
transferred from A to D via B and C. We have made a
number of improvements to the aforesaid DSI
implementation. In the previous implementation, a
GridFTP server could either act as an end server or as an
intermediate server, which is very restrictive from the
point of view of production-use GridFTP servers. We
have generalized it by allowing the DSI to perform
different functions based on the input it receives. For

example, the DSI get could either directly contact the
underlying storage or forward the data to another
GridFTP server. In addition, we have also implemented
FTP operations like MLSD, MKDIR, RMDIR etc... for
the intermediate servers. Furthermore, the previous
implementation worked only in the non-secure mode. We
have incorporated the necessary changes to make the
split-TCP work with GSI security mechanisms. We are
working on the algorithm to determine the optimal path.

4. GWFTP
GridFTP has existed for some time and has proven quite
robust and usable. However, there are few available
GridFTP clients. FTP-959, on the other hand, has
innumerable clients. To leverage these clients, we have
created an intermediate program, called GWFTP, to act as
a proxy between existing FTP clients and GridFTP
servers. Users can connect to GWFTP with their favorite
standard FTP client, and GWFTP will then connect to a
GridFTP server on the client’s behalf. To clients, GWFTP
looks much like an FTP proxy server. When wishing to
contact a GridFTP server, FTP clients instead contact
GWTFTP. Clients tell GWFTP their ultimate destination
via the FTP USER <username> command. Instead of
entering their username, client users send the following.

USER <GWTFTP username>::<GridFTP server URL>
This command tells GWTFTP the GridFTP endpoint with
which the client wants to communicate. For example:

USER bresnaha::gsiftp://wiggum.mcs.anl.gov:2811/
An active GSI credential is needed before running
GWFTP. GWFTP uses the GSI credential to authenticate
with the GridFTP server. Two security options are
provided with GWFTP to authenticate its clients. By
using the -pw or --pwfile option one can have standard
password-based authentication with GWFTP. By using -
ah or --authorized-hosts option with a comma-separated
list of authorized IP addresses, one can limit what hosts
can freely connect to one’s GWFTP proxy.

5. Network Provisioning for Data-Intensive
Scientific Computing
Significant advances have been made in the area of
network provisioning. Optical communication links that
can provide extremely high bandwidths over thousands of
miles are becoming increasingly common. Such network
provisioning technologies need to be integrated into a
scalable architecture that can provide on-demand setup of
channels at varying bandwidth resolutions. A number of
projects have been involved in the deployment of optical
networking technology over a wide area. Examples
include National Lambda Rail [8], UKLight [9], and the

DOE Science Ultranet [10]. However, all of these projects
focus exclusively on the wide-area networking
infrastructure. The issue of integrating production-use
computing and storage facilities and advanced wide-area
networks has not been adequately addressed. In other
words, networking services are needed that can mediate
the flow of traffic within a site’s local infrastructure and
selectively forward it onto high-bandwidth advanced
networks. This requirement is termed the “last mile”
problem in the wide-area networking context. Projects
that have focused on this problem include LambdaStation
[11] and Terapaths [12].
To be able to leverage the functionality of a service such
as Terapaths in conjunction with GridFTP, we need to
invoke the Terapaths API from Globus and set up a high-
bandwidth path before invoking GridFTP to perform the
transfer. Since the Terapaths API is accessible via a Web
service over SOAP, we are developing a high-level
service that leverages the Globus C-Web Services core
software to invoke the Terapaths Web Services to reserve
a quality-of-service path before initiating a GridFTP
transfer. Since the end-to-end data movement involves
multiple resources including non-network resources such
as compute and storage resources, GARA [13]
architecture that allows co-reservation of multiple
heterogeneous resources would be of great help. We are
exploring ways to use such an architecture to provide
better end-to-end service.

6. GridFTP over Infiniband
InfiniBand (IB) defines a point-to-point interconnect
architecture that leverages networking principles—
switching and routing—to provide a scalable, high-
performance server I/O fabric. InfiniBand provides
transport services for upper-layer protocols and supports
flow control and quality of service to provide ordered,
guaranteed packet delivery across the fabric. The
InfiniBand Host Channel Adapter (HCA, which provides
an interface to a host device and supports all software
verbs defined by InfiniBand) provides RDMA support,
which offloads data movement, as well as the
multiplexing and demultiplexing of different stream from
the CPU into the HCA. Infiniband has been shown to be
effective for data transport in storage networks (over a
few miles). Recent experiments conducted at Oak Ridge
National Laboratory [14] shows that Infiniband can be
effective over a wide area with specialized hardware.
With the Obsidian longbow Infiniband switch, 7.2 Gbit/s
throughput was achieved on an 8600-mile, 8 Gbit/s loop
with IB over SONET.
GridFTP can use Infiniband through Sockets Direct
Protocol (SDP) [15] with little or no code change to
GridFTP. SDP provides a standard sockets interface for
the Open Fabrics Enterprise Distribution [16], a unified,

open-source software stack for the two major RDMA
fabric technologies: InfiniBand and iWARP (also known
as RDMA over Ethernet). The disadvantage of this
method is that since the entire SDP implementation is in
the kernel, it does not leverage the kernel bypass
capability of the InfiniBand architecture. User-level verbs
allow applications to interface directly with the
InfiniBand hardware. By developing a Globus XIO driver
for the verbs interface, the RDMA capabilities can be
used efficiently. We are working to develop such a driver.

7. Conclusion
We have summarized recent developments in the Globus
GridFTP framework that take advantage of the latest
developments in networking infrastructure and transport
protocols to better serve scientific communities. We have
also introduced functionality that allows clients to use any
FTP client to invoke data transfers with a GridFTP server.

Acknowledgments
This work was supported in part by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of
Energy, under Contract DE-AC02-06CH11357 and in
part by SciDAC-2 CEDPS.

References
[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, and I. Foster, “The Globus striped
GridFTP framework and server,” in SC'05, ACM Press,
2005.
[2] Gu, Y. and Grossman, R. L. 2007. UDT: UDP-based
data transfer for high-speed wide area networks. Comput.
Networks 51, 7 (May. 2007), 1777–1799. DOI=
http://dx.doi.org/10.1016/j.comnet.2006.11.009
[3] Allcock, W., Bresnahan, J., Kettimuthu, R., and Link,
J. 2005. The Globus eXtensible Input/Output System
(XIO): A Protocol Independent IO System for the Grid. In
Proceedings of the 19th IEEE international Parallel and
Distributed Processing Symposium (Ipdps'05) -
Workshop 4 - Volume 05 (April 04 - 08, 2005). IPDPS.
IEEE Computer Society, Washington, DC, 179.1. DOI=
http://dx.doi.org/10.1109/IPDPS.2005.429
[4] A. Bakre and B. R. Badrinath. I-tcp: indirect tcp for
mobile hosts. In ICDCS ’95: Proceedings of the 15th
International Conference on Distributed Computing
Systems, page 136, Washington, DC, USA, 1995. IEEE
Computer Society.
[5] M. Beck, T. Moore, J. S. Plank, and M. Swany.
Logistical networking: Sharing more than the wires. In C.

A. Lee S. Hariri and C. S. Raghavendra, editors, Active
Middleware Services, Norwell, MA, 2000. Kluwer
Academic.
[6] Kevin Brown and Suresh Singh. M-tcp: Tcp for
mobile cellular networks. SIGCOMM Comput. Commun.
Rev., 27(5):19–43, 1997.
[7] C. Kiddle P. Rizk and R. Simmonds. A GridFTP
overlay network service. In In Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing,
Barcelona, Spain, 2007.
[8] http://www.nlr.net/
[9] http://www.uklight.ac.uk/
[10] http://www.csm.ornl.gov/ultranet/topology.html
[11] http://www.lambdastation.org/
[12] http://www.atlasgrid.bnl.gov/terapaths/
[13] I. Foster, M. Fidler, A. Roy, V, Sander, L. Winkler,
“End-to-end quality of service for high-end applications,”
Computer Communications, 27(14):1375–1388, 2004
[14] www.es.net/hypertext/RD-Workshop-
April2007/Rao.ppt
[15] Sockets Direct Protocol.
http://www.infinibandta.com
[16] http://www.openib.org/

\

