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ABSTRACT

Peer to Peer (P2P) networking is a potential disregechnology
that can be used for the development of scalabldly f
decentralized distributed applications. However, réalize its
potential, P2P technology should address the nefeavariety of
applications, other than file-sharing requiring pog for exact-
match queries on the file nhames. Our work complémemd
contributes to existing P2P overlays that suppoditipie-
attributes and range queries, using the distribit&@imensional
(K-D) tree structure for organizing shared inforimat among
participating peers. This guarantees that the tigerled for node
join - leave operations and query times are loarit with
respect to the number of peers. In such systemepan issue is
load balancing of resources among peers, as oaly-talanced
data structures can guarantee that the complegityresolving
multi-attribute and range queries remains logarithnithus
scalable) with respect to the number of particigapeers. In this
paper, we report a novel load balancing algoritbrrdfynamically
keeping the resource load among peers balancedhréve that
the load balancing algorithm is robust and scaladthieving an

O(log’N) complexity, where N is the number of peers. We

illustrate how our algorithm can be used to builscalable Grid
Information Service supporting multi-attribute arahge queries
on available services within the shared Grid irtfragure.
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1. INTRODUCTION

P2P computing has emerged as a significant tecpivaloand

social phenomenon over the last years. It provadssalable and
fully distributed system used for locating sharedources within
a large number of peers, in the order of tens otishnds. P2P
systems have been mainly used for file sharing iegns.

However, there is an increasing need for P2P stifipoa variety

of application classes that require efficient acalable resolution
of complex queries involving multiple different mitutes and
possibly range queries, other than finding the erame of a file
[1,2].

As an example Grid Information Services is a cté#sgpplications
demanding complex P2P queries about shared resouweeh as
CPU load, storage and memory. Grid nodes and ssian
dynamically join and leave the system, introducaglynamic
environment, where still one has to be able to yusvout
available resources. In most Grid environments, ltfiormation
Service system used for locating resources is aiisgd, having
usually one or maybe few central directories. Ttémtralised
approach has the inherent drawback of a singlet pdiffailure.
Further, centralised server(s) can also become géstration
bottleneck in a highly dynamic environment where nyna
resources join, leave, and change characteridtiuss, it does not
scale well within a large number of Grid nodes. P3Btems
exhibit characteristics required to overcome thevakmentioned
problems, improving scalability, performance andtféolerance.

In this paper, we exploit an existing P2P framewthit is able to
resolve multi-attribute and range queries usingkti2imensional
(K-D) [3] distributed tree structure. Whilst someligions that
have been proposed to tackle the problem of rasplwnulti-

attribute and range P2P queries use Distributedh Heables
(DHTs), these approaches suffer from a high ovethéa

maintaining multiple DHTSs. In fact, the complexiiyr updating
routing tables within a network of N peer node©igog’N). In

addition, DHT-based systems do not exhibit locajitpperties,
i.e. resources location are determined by theih hague, not by
their physical location. To overcome the aforenmd
limitations, we use the Distributed K-D tree-basggroach in [3]
for efficient handling rich queries encompassing Itiple

attributes and range searches. The advantage fsttihat rich
queries are supported more efficiently, requiringlo@N))

complexity for inserting and deleting new nodesilevtocality of

data is also preserved.
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Load balancing in K-D based P2P overlays, will easthat the
complexity for resolving multi-attribute and rangeeries remains
logarithmic with respect to the number of partitipg peers. We
apply this algorithm to support rich queries encesging

services within a Grid environment, e.g. range gseron

multiple-attributes of distributed resources.

The rest of the paper is organized as follows. éct®n 2 we
summarise related work. In Section 3 we outline lzo-D tree
is created. In section 4 we present in detail algorithm we
devised for dynamic load balancing of a distributed tree
structure. Details of how our load balanced P2Regyscan be
used for the discovery of Grid services are preskit Section 5.
Finally, the last section concludes the paper aribduces our
future research and implementation plans.

2. RELATED WORK

Several research groups have workedDisiributed Hash Table
(DHT) P2P systems, tackling the problem of scalabilitiyich is
the main drawback of earlier P2P systems, sudfeaza [4] and
Gnutella [5]. Scalability in the context of P2P refers tetissue
of how many messages are required to be forwardddnwhe
network in order to locate a particular resouroethle worst case,
N messages are needed to be sent to find a resoue2P
network of N nodes, i.e. query every participatigle. However,
since the number of nodes is usually large, itds efficient to
deploy and use systems with an O(N) complexitys tleading to
the development of DHT-based systems, providingog\)
complexity. A detailed discussion on DHT-based ayst is
provided in [6].

DHT-based P2P systems provide support for: a)leiatiribute
exact-match queries, e.Ghord [7] and CAN [8] or b) multiple
attribute and range queries, elAAN [9] and Mercury [10].
However, although they naturally support singleHadte exact-
match queries, it is non-trivial to find an effinteway to support
multiple attribute and range queries within a €ngIHT. DHT
based systems, such M&AN andMercury, provide methods for
supporting multi-attribute and range queries, bwquire
maintaining multiple DHTs, one per attribute. THmads to
performance degradation and replication of dataseReehers in
the P2P area consider as a key open issue the rsdppmon-
trivial search predicates like range queries, maitttibute queries
and operators other than equality, usually join smech operators
[6]. To address these issues, they started inastygy how
distributed tree data structures, common in legiatpabases, can
resolve complex queries in a P2P overlay network.

Distributed tree-based P2P systems supporting fattitbute and
range queries include Princeton University&iplndex [11],
Stanford University's MURK [12], Cornell University's
BrushWood [1] and HP’sNodeWiz [2]. These systems partition
the data space using the K-D tree data structuimwener,
although they provide a scalable solution for thiicient
resolution of K-attribute and range queries, thererindex may
need to be rebuilt if the data distribution changemificantly.
For high-volume insertions, and dynamic placeméntew data
points in the data space, the aforementioned sgstéon not
provide any guarantees on the cost of load balgncin

Our algorithm, reported below, obtains load-balagavithin the
K-D tree data-partitioning scheme. Furthermore, eithibits

robustness as it does not change the tree pointels executing,
in contrast with other load balancing approacheh asBATON
Trees[13].

3. CREATION OF K-D TREES

We assume a P2P network with resources describetllada
points” within a multi-dimensional data space. Thesan be
located by querying peer nodes, each holding ornfog’
pointers towards a disjoint subset of resourcespgather
comprising the universal set of shared resourcasexample of a
shared resource is a music file identified bytitgé attributes, i.e.
artist, title and genre. Owners are assigned wiH2® members,
i.e. PCs holding information on locating the musie. Unlike
P2P popular protocols such ldazaa or Gnutella, we assume that
a single data point exists throughout the netwprdinted by a
single “owner” not necessarily coinciding with theer holding it.

Our load balancing algorithm operates in a K-D Ti@&]

structure produced bgkipindex [11] that partitions the multi-
dimensional data point space into disjopeer regions, each
assigned to a unique peer node. K-D structures alao be
constructed usingMURK, BrushWood and NodeWiz. These
approaches are based on flooding for resolvingtimeagueries
among regions, thus exhibiting higher than loganith routing

complexity. We selected, howevegkipindex as it provides
logarithmic complexity by associating a one-dimensi key per
region in order to obtain an absolute orderinghefitegions. This
key captures the hierarchical creation of regioftse keys are
then used to store the leaf regions in a searchadpe Graph

[14], which supports insertion, deletion and lookogsed on a
one dimensional key.

Skiplndex structures were chosen not only for their loganith

complexity, but also because they do not use hgsland

therefore they preserve the logical integrity af #eyspace. This
also enables location of data regions (K-dimendialaéa range
query), extending location services for a singleagmint. A peer
(leaf-region) searching for a target data regioan mavigate
through theSkip Graph, so that the distance to the target region
(measured in terms of the number of hops when fsing
regions), is halved in every region traversal. No&e that for
scalability reasons each peer maintains a parigal of the K-D
tree to aid query processing and to determine itteettbn from a
region towards the destination point.

Figure 1 shows an example of h&kiplndex partitions the data-
space region (Figure 1a) into its corresponding ked2 (Figure
1b). The figure depicts a 2-dimensional tree, rimeathat each
data point has 2 attributesandy. Briefly, as new nodes join the
network, they are assigned a data region by paniitg an
existing region via its “median”, giving the newd®the location
coordinates or “ownership” of “half’ the data paintithin the
data region being partitioned. The other half i kept by its
former “owner” node. Spitting is performed as dolls: As the
first peer node bootstraps the systems, it owndaddl points. The
tree is built up gradually, starting from the roiag, the first node;
as new peers join-irgkiplndex alternates among theandy axes
used to select the splitting planes [15].

The SkipGraph used to navigate between regions is also
constructed bykiplndex and is presented in Figure 1c.
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Figure 1. Partitioning of the data space and its corresponding
Skip Graph

It consists of a number o linked lists, call®dp Lists [16]. Each
element in &kip List participates in several levels of linked lists.
The lowest level list consists of all elements oedeby their keys.
Each key that appears in the listLawel i, would also appear in
the list atLevel i+1 with some probability p. This waygkip
Graphs extendSkip Lists for distributed environments by adding
redundant connectivity and multiple handles inte $kip Graph
data structure, thus improving resilience. At eselel, a peer
node stores pointers to its left and right neigebdro locate a

key, Skiplndex searches the highest level which might have just a

few keys, dropping down to the more densely-popdidbwer
levels, if needed, i.e. if we have not reachedtdinget region. On
average, there are O(logN) levels in the systenaning that a
search will traverse O(logN) nodes until it reachsgestination
region.

As mentioned earlieSkiplndex solves the scalability problem for
resolving a P2P query by performing tree traversal distributed
manner, without requiring any node to maintain twenplete
view of the index structure. This would result im &(N)
complexity when a new node enters the system, duall tN-1
nodes updating their connections to the new nodstead, the
innovation of this approach is that each node raaista partial
view of the whole K-D tree. The partial tree view local tree
view of a node comprises of the split historiesteflocal region
and that of the regions maintained bySksp Graph peers, where
each split history provides information about thethpfrom the
tree root to a leaf region. Figure 2 illustrates partial views of

three index nodes. Note that in this figure, oy bottom-level
ip List is given. Of course, each node maintains addititimes
to other regions, according to the pointers inhigher levelSkip
Lists of theSkip Graph (see Figure 1c)
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Figure 2. Partial views of trees among Skiplndex peers

The tree traversal for routing a query in the toggl shown in
Figure 2 does not descend the tree sequentially, rather
“jlumps” into sub-trees. The maximum number of htpseach a
leaf region that belongs to the target area, do¢siepend on the
number of peers, which would result in an O(N) ctexipy.
Instead, the routing complexity is O(logN), as thaeting process
forwards the message using links in kep Graph, and at each
step, the distance to the set of nodes represetiintarget region
is halved, resulting in the O(logN) complexity. Rember that
this is also exhibited by th&hord DHT routing protocol which,
however, does not handle multi-dimensional and eaqngeries.

In the following section, we describe how our altlon achieves
load-balancing (leaf regions with equal number afadpoints)
within a Skiplndex created K-D tree.

4. ANEW ALGORITHM FOR DYNAMIC
LOAD-BALANCING OF K-D TREES

Our framework improves a number of existing K-Dettzased
P2P systems with a new algorithm for dynamic loaticing the
distributed K-D data structure used to organize RR® overlay.
Load balancing is necessary, since O(logN) routimgplexity is
achieved only when the tree remains load-balane&d, upon a
new node joining the network an existing data regis
partitioned in two sub-regions, each containing shme number
of data points.



As discussed in the previous section of the paywerwill use
Siplndex as an example of a K-D tree based P2P systerwand
will show how our algorithm can help maintaininge tresources
(data points) load-balanced among the participatiodes. Note
that our algorithm is not specifically implementddr the
Siplndex framework. Rather, it provides a general idea tzat
be implemented and instantiated within differenPR¥stems that
use any distributed K-D structure, other than the ased within
the Skiplndex framework.

Within a K-D enabled P2P system, to achieve loddrming
during system’s operation, it is necessary to chahg ownership
of a data set to another node or a set of nodes. i$hequired
when the set of data points, i.e. the shared ressuwor total load
of the system can dynamically change, placing nata goints in
the K-dimensional data space or removing data poiRor this
purpose, our algorithm redistributes data pointsaimecursive
manner, reacting to changes. UsiBgplndex as an example, to
decide which region or region set should be regagsl a load, we
have extended thé&kip Graph that Skipindex uses with an
additional key, which maintains information abote tload of
other nodes (number of data points), based onglitehéstory of
that node. This is analogous to the procedure ath by
Skiplndex to maintain the split history, as described irtisec2 of
the paper.

The following figure presents an example of how thead”
history is kept within the leaf nodes (i.e. the nseef the P2P
overlay) of the K-D tree, according to their spiistory. The key
representing the load history of a node is a veotoiog(N)
values, N being the total number of peers in thevokk (regions
in the K-D data space). The first value of the némkd vector
represents the number of data points kept by tlie.ndote here
that upon construction of the K-D tree, this valkui¢he “ideal” or
“expected” value of the load of the node. This ecduse the
algorithm to construct the K-D tree [17], assigasadpoints to the
participating peers so that the load among peereqgigally
distributed. The remaining load vector values rsené the load of
the parent node when splitting occurred when iivsgthe current
node within the K-D data space.

{30,60,120,240}

load =

|
1

load = {30,60,120,240}
D 1oad = {60,120,240}
C oaa = {60,120,240}
E 1oad = {30,60,120,240}
F 1oad = {30,60,120,240}

Figure 3. Keeping the load history of peers

In Figure 3, we show the load history of all nodes3, C, D, E
and F within the K-D tree of Figure 1. NodA with key 000,
holds a vector consisting of

[Tog , (N )]l + 1 = Tlog , 61 + 1 = 4

elements. The first item of the vector hold's local load, 30
points in this example, while other items hold had history of
the parents o, at the time when splitting occurred. Note that th

value of 30 points is the ideal or expected loaldevaf nodeA;
this was achieved bgkiplndex while constructing the K-D tree,
assigning peer nodes (i.e. the leaf nodes of the) tan equal
number of data points to keep locally.

The pseudo-code shown in Figure 4 describes oupoged
algorithm LOAD_BALANCE executed when a load chanDg&.y
is observed within an individual nodeX, The algorithm is
triggered when a relative load change exceed$BESHOLD
parameter, set by the administrator. The relateel Ichange is the
percentage of the actual load change by the ideakjpected, as
we discussed above, load of the node. It is giwethe following
formula:

NODE.D 0
NODE.Expected, .,

relative_load change=

The above formula is used to decide whether adbatige can be
tolerated by a node, without requiring load redisttion in order

to preserve the load balancing property of the Krd2. In other

words, when the load chan@,. is relatively small against the
expected load of the node, new data points aredatidthe node

without violating the requirement for an overallatbbalanced

tree.

LOAD_BALANCE(X, Dlog, THRESHOLD)
1. if Dlpag/X.LOAD <= THRESHOLD
2. then return

3. else

4. N_pr=FIND_LOAD_SPLIT_NODE(X,Dloa,
THRESHOLD)

5. LOAD_BALANCE(X,Dlyaq/2, THRESHOLD)

6. Y = FlND_KEY(NPUT,X)

7. LOAD_BALANCE(Y Dlgyaq/2, THRESHLOD)

Figure 4. Load balancing algorithm LOAD_BALANCE

Unlike other reported work on load balancing [1d]r algorithm
(LOAD_BALANCE) does not treat the load chanBé,,y as a
whole set of data points that must be assignedovhar leaf of
the K-D tree. Rather, in case when the current ned®t able to
tolerate the load change by itself, half of thedlozhange is
recursively being assigned to another leaf nodbetree, nod®
in Line 6 of the pseudo-code in Figure 4. The othalf of the
load change is handled recursively by the curreaten The way
to determine the remote nodéis given with the procedures
FIND_SPLIT_NODE and FIND_KEY within LOAD_BALANCE.
We will explain now how these two methods opergiging their
pseudo-code in Figure 5.

! The LOAD_BALANCE algorithm must be followed by ntiple
nodes upon changes. There may be cases with twa&snod
executing the algorithm resulting into oscillatiohis stability
issue is not addressed in this paper.



FIND_SPLIT_NODE(X,Dlysq, THRESHOLD)
1. I =1; N = X.load_history_vector(l);
MAX = X.load_history_size;

2. while (D},q/N.LOAD <= THRESHOLDAND I<MAX)
3. do I = 1+1; N = X.load_history_vector(l);
4. return N;

FIND_KEY(Nsp X )

1. if X.key < Nsp 7 .key //'Y is located to the right of X. Check
the Skip Graph to find the most right node of thbteee with root
NspLir

2. then

return TRAVERSE_SKIP_GRAPH_TO_KEY @\ 1 .key +1)

3. else/l'Y is located to the left of X. Chehe Skip Graph to
find the most left node of the subtree with rogbN:-

return TRAVERSE_SKIP_GRAPH_TO_KEY @ 1 .key -1)

Figure5. Methods FIND_SPLIT_NODE and FIND_KEY
used to discover remote node Y in LOAD_BALANCE

FIND_SPLIT_NODE reads the load history vector of current node
X to find out which parent is able to tolerate thad change. The
complexity of this method is O(logN), where logNtie size of
the load history vector, as discussed earlier. WthemodeNg pt

in Line 4 in the pseudo-code in Figure 4 is disceueby
FIND_SPLIT_NODE (i.e. the intermediate tree node that is able
to tolerate the load chand®,,), then we must locate the leaf
nodeY, which is a leaf of the subtree with ro®g p1 . This is
accomplished by the methdeiIND_KEY that checks the Skip
Graph to find the nod& based onY's Skip Graph key. Like
FIND_SPLIT_NODE, the complexity ofFIND_KEY is O(logN),

as this is the routing complexity to find a partézukey within the
Skip Graph. The Lemma (at the end of the papenygwthat the
overall complexity of our load balancing algoritisrO(logN), in

a network of N leaf nodes (i.e. N peers) in the Kdda space.

We will now describe with an example how the remars
algorithm operates when instantiated with the Kr&@tshown in
Figure 6.
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Figure 6. Operation of the LOAD_BALANCE algorithm

Initially, node A holds 30 data points (each circle in the diagram
represents a small region of 10 data points wit)inThis is the
ideal or expected load that noAeshould have so that the whole

tree is kept load balanced. Assume now that dusystem’s
operation the load ok changes, by assigning more data points to
his region. In a P2P context, this is analogousdding more
resources within a node to share within the P2PlayeThere are
several choices that can be made whAeatetects the load change
Dloag; this choice depends on the valueTéfRESHOLD, in this
example chosen to be 20%. Our algorithm deterntineschoice
that should be made as follows:

Case1: Dlgyq/A.LOAD < THRESHOLD

There is no need to re-adjust load to other regémsthe K-

D tree still remains load-balanced. Note here Wmatdo not
change the expected load value of the current nedm if
the load in the node changes upon a new load dffer¢he
node; node in our example will keep the value of 30. Thus
THRESHOLD will be eventually violated, even when the
load in a region (i.e. the load of a node) increaslewly
over time.

When, after several small changes, the thresholiblated,
our algorithm will send a portion of the load chartg other
region(s), so that the whole tree remains loadnuaid.

As we discussed before, in Figure 3, the numbeishvive
use to calculate the relative load change, referthe
"expected load value" per every node, i.e. 30 ésetkpected
load value ofA. This means that & adds 5 and then another
5 points, in the first case, the relative load geis 5/30 =
16.6% <THRESHOLD (20%). This means that node is
able to keep for himself the five (5) new data pinBut,
next, when we try to add té another 5 points, then the
relative load change (5+5)/30 = 32.3% exceeds D% 2
THRESHOLD; the resulting redistribution of the load is
described below in Case 2.

Case2: Dlgyg/A.LOAD > THRESHOLD

The change of load demands redistribution of thadlo
change to another region or set of regions. To rote
which region(s) should be given the load change,wile
consult the “load” history of the node using thegadure
FIND_LOAD_SPLIT_NODE to find out which is the root
(parent of the current node A) of the subtree thatble to
hold the load change.

In our example, assume thatis given 10 more data points.
Since the parent oA (as found by the load history) has a
total load of 60 points, the parent load change6@Pis
below the threshold of 20%. This means tAdtnows that
the load splitting node is his parent nddg, 1 with key 00,
thus half of the load change (5 points) must bégaed to
nodeB, which is the most left node of the subtree wibtr
A’s parent noddNg, ;. The other 5 points will be added to
A's region, resulting in a parent’s load of 70 psirBothA
and B are able to handle the 5 points load change (5/30
20%) so their recursion will terminate in the firsall of
LOAD_BALANCE shown in Lines 5 and 7 in the pseudo-
code in Figure 4.

In another instance of the aforementioned netwblly has
a value of 20. In this case, the load splitting enod
discovered byA and is the nodéNg 1, in Figure 6. To
distribute the load changeéd will request that the load



change is divided in two equal parts (each of & siz10
points), one given to the most left child of the node
NspLiT2, While the other will be re-examined b4 Thus, the
same procedure will be executed recursively by riodeith
input Dl g Of 10 points. AD is a leaf nodeD will keep all
10 points for himselfas 10/D.LOAD (10/60) is below the
threshold of 20% for nodB. As discussed earlier, the other
10 points will be split betweerA and B, A executing
recursively the proceduteDAD_BALANCE with an input of
10 points of load change.

expected value) and also, the current values opdrisnts are 65,
125 and 245 respectively. Again, the expected waloBA’s
parents will retain their values {60,120,240}. Higawhen the K-
D tree becomes perfectly load balanced, the loatbifyi vector
holding the expected values will be updated acoogi

We add here that all insert (join) and remove @aperations of
peers within the P2P network are not handled byabdgmrithm,
which is used solely to maintain the K-D tree stmoe load-
balanced. The algorithm to handle join/leave openatof peers
(not data within peers) is th&iplndex K-D tree algorithm [11],

Note that in the example discussed above, the only which deals with inserting and removing nodes withO(logN)

information thatA needs in order to distribute half of the
load change is the location of noDei.e. the node that must
take over half of the load change for further dsttion. As
nodeA does not have a full view of the whole K-D trete, i
must dynamically discover the location of node This is
accomplished by the procedurE$ND_SPLIT_NODE and
FIND_KEY that will locate the splitting node and the leaf
node D respectively. Sincé knows from his load history
that the root of the tree that can hold the loaghge is node

N2 in Figure 6, this means that the node that can be

assigned the half of load change is the most ledtenof the
right sub-tree with rooNgy1.. TO find out this node, the
only thing thatA must do is to find the node with key with a
minimum value of 01Ny 2. key + 1)which is the key of
the leaf nodd®. Should the threshold f@ be exceeded, the
latter would executeOAD_BALANCE recursively.

If the load change can not be tolerated even byabeof the tree,
the procedure will be executed a humber of times sequential
manner: We split the load change in smaller pieeash with a
value of THRESHOLD* ROOT.LOAD, whereROOT.LOAD is the
current load of the root, thus each piece can begimelly
accommodated. Otherwise, it could be possible tb ifdo
oscillations, with the left sub-tree of the wholeCKtree assigning
data points to the right sub-tree and vice versa.

In summary, each time the load change to be handed
THRESHOLD*ROOT.LOAD, incrementally adding points to the
whole tree, until all pointDl,y are finally distributed. The
number of time$ OAD_BALANCE will be executed is given by:

ROOT.LOAD +D o0
ROOT.LOAD

The complexity of the.OAD_BALANCE algorithm is O(IogN)
(see the Lemma) for a P2P network of N peer nod#snner
operations of the algorithm, finding the load gplg node,
finding the most left of the right subtree and thest right of the
left subtree nodes, require an O(logN) number epstto query
the load history vector and tiskip Graph respectively.

|7|Ogl+TH RESHOLD

Note that in all cases above, when node(s) recgivequest to
adjust their load, they must follow, along with ith®(logN) Skip
Graph peers, a procedure to update accordingly thed-lastory
vectors. This is done in order to maintain an ugddbad history
within the overall K-D tree. Furthermore, apartnfrahe load
history vectors that reflect the ideal load disitibn of the
network, peers maintain additional information dre tcurrent
value of their load. For example, if node adds 5 points to
himself, although his load history vector will rietahe value of
30, nodeA will know that his current load is 35 (30 is his

complexity.

Last, note that a query is still successfully exeduwhile the
load balancing algorithm redistributes load chandes fact,
unlike other load balancing approaches, 84TON Tree [13],
that move or merge leaves, our algorithm is robustwe do not
reconstruct the tree when re-distributing the lo@dn requests
for load changes. We keep exactly the same tredtamminters
so the query will return all the correct resulteaD(logN*logN),
the time used by our algorithm to re-distribute tbad. In-
between, the system will return the "old" set cfoerces, but still
will not fail to execute, which is the case of aPP8ystem
handling dynamically new resources.

5. CASE STUDY: IMPLEMENTING A
DISTRIBUTED GRID INFORMATION
SERVICE

In a Grid environment, Information Lookup Servicee needed
to resolve multi-attribute and range queries, mn@mplex than
finding a service based on a given name. For iestaa user
would like to find out which services exhibit céna
characteristics, such as availability, price, &te propose a load
balanced K-D based P2P platform to enhance existnig
middleware to enable scalable, decentralized desgosf shared
Grid resources. This proposal is an alternativecéntralized
services, such as the Universal Description, Disppvand
Integration protocol - UDDI [17], exhibiting fauiblerance due to
its fully distributed nature. In this section, wéllvillustrate our
ideas on a P2P-based Grid Information Service,peddent of
any underlying Grid platform implementation usingsttactions
of Grid shared resources, rather than actual impfeation
information models and protocols.

To support an implementation independent Grid imfation
Service, we must first determine how entities tallseovered can
be formally represented, i.e. what are their fuorai and non
functional abstractions on which their selection be based. To
that end, we specified a suitable information mpdektessary to
define and know a-priori the type of attributes,walmich queries
for Grid resources/services are based. In sim@es;asuch as the
case of file-sharing, this may not be necessarythas only
resource shared among nodes are data files, aliified by their
names. Instead in a Grid environment, models ofptershared
resources & services are required. Figure 7 presdm UML
model of shared Grid resources/services within raulti-service
agent-assisted Grid framework [18].



Grid Service

-name
-location
-availability
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Computation Service

-CPU load
-CPU capacity

Storage Service

-Storage space
-Storage throughput

Figure 7. Example Grid Services Information M odel

In the above information model, a Grid Servicedisntified by its
name, its location and its availability, thus bye#hn attributes.
Computation and Storage services inherit thesebatés and
include additional attributes for their descriptiddote here that in
this Information Model, we tried to keep the caddity of

attributes as small as possible, taking into acttium fact that it
the complexity to implement and maintain any P2Rtem

increases as the number of resource attribute®ases. It is
important to note at this point that the informatimodel we
introduced is used at the architectural layer oé tR2P
middleware. Higher layers, such Grid service lay@n use more
complex structures for representing informationghsas WSDL
[18]. However, when higher level components needige the
P2P Grid Information Service for discovery, theitgzg to be
discovered must conform to the information modedenstood by
the P2P middleware. Upper layers need to includeham@sms to
translate their information model to the low-levabdel shown in
Figure 7.

Based on the information model we have designed,wile

construct analogous K-D data structures, accordimguser

requirements for locating Grid resources. In thepdést case, we
will only deploy a single K-D tree with 3 dimens®r(K=3),

namely the name, the location and the availabitifya Grid

Service. These three attributes will be used tindeP2P queries
on Grid services as 3-attribute and range quei®s.use the the
Siplndex [11] framework to partition the 3-D tree data spata

number of regions, discussed in section 2. The loaldncing
property will be maintained dynamically by usingr aigorithm

LOAD_BALANCE for redistributing the load of the 3-D tree, i.e.
the number of shared Grid services. In a more cexphse, we
can construct two 5-D trees representing the Coatiout and
Storage  Services respectively. In  both  trees,

balanced. This way in a network of N peer Gridssife2P queries
involving 5-attribute range queries on Computatéord Storage
services are resolved with an O(logN) routing cajpy, while
the complexity to keep the trees load-balanced(isgfN).

6. CONCLUSIONSAND FUTURE WORK

This paper presented a novel algorithm for dynanaad-
balancing the distributed K-D tree structure useddrganising
the shared information within a P2P network. Loatabcing is

the
LOAD_BALANCE algorithm will be operated to keep them load-

very important to achieve, as this ensures thattmplexity for
resolving multi-attribute and range queries reméaggrithmic in
respect to the number of participating peers. Wesgmted in
detail how the load-balancing algorithm operategl&ation of
its performance within a simulation environmentwghin our
current activities. We are implementing a simulatassess our
P2P system in comparison to other multi-attributel aange
queries supporting systems, suchvddRK, MAAN andMercury.
Our experiments focus on dynamic environments, wihad
varying at run-time within participating nodes, ‘oini
continuously join and/or leave the network.

We illustrated how our P2P framework can be usedotate

resources within a GRID environment. We plan tovjate a full

integration implementation between our P2P fram&wamd a

Grid platform, such aglLite [19] or GRIA [20], as a means to
implement a fully distributed P2P-based Grid Infation

Service. This implementation will be tested withnamber of

applications over a shared Grid infrastructure.Wkeve that this
work will support a class of Grid applications, ®ifing the

efficiency of a P2P system for locating in a sckdadnd robust
way distributed resources/services in a dynamicl|tifservice

Grid environment.
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LEMMA
The complexity of the LOAD_BALANCE algorithm is
O(log?N).

Let us denote T(H) the complexity of the load balag algorithm

when the height of the K-D tree is H, equaHmgNy . Upon each
recursive call of the procedure, we will find adcsplitting node a
level down each time the recursion occurs, e.dhéf first call

finds the root of the tree (level 0 node) as thalsplitting node,
then the second call will find (in the worst cas®) level 1 node
as the splitting node and so on. Then

T(H) < T(H-1) + O(H) = O(H), thus T(N) is O(lo§N)





