
A Novel Load Balancing Mechanism for P2P Networking

Leonidas Lymberopoulos
National Technical University of

Athens
9 Iroon Polytechneiou

15780, Athens,Greece
+30 210 772 1448

leonidas@netmode.ntua.gr

Symeon Papavassiliou
National Technical University of

Athens
9 Iroon Polytechneiou

15780, Athens,Greece
+30 210 772 2550

papavass@mail.ntua.gr

Vasilis Maglaris
National Technical University of

Athens
9 Iroon Polytechneiou

15780, Athens,Greece
+30 210 772 2503

maglaris@netmode.ntua.gr

ABSTRACT
Peer to Peer (P2P) networking is a potential disruptive technology
that can be used for the development of scalable, fully
decentralized distributed applications. However, to realize its
potential, P2P technology should address the needs of a variety of
applications, other than file-sharing requiring support for exact-
match queries on the file names. Our work complements and
contributes to existing P2P overlays that support multiple-
attributes and range queries, using the distributed K-Dimensional
(K-D) tree structure for organizing shared information among
participating peers. This guarantees that the time needed for node
join - leave operations and query times are logarithmic with
respect to the number of peers. In such systems, an open issue is
load balancing of resources among peers, as only load-balanced
data structures can guarantee that the complexity for resolving
multi-attribute and range queries remains logarithmic (thus
scalable) with respect to the number of participating peers. In this
paper, we report a novel load balancing algorithm for dynamically
keeping the resource load among peers balanced. We prove that
the load balancing algorithm is robust and scalable, achieving an
O(log2N) complexity, where N is the number of peers. We
illustrate how our algorithm can be used to build a scalable Grid
Information Service supporting multi-attribute and range queries
on available services within the shared Grid infrastructure.

Categories and Subject Descriptors
D.2.1 [Computer-Communication Networks]: Network
Architecture and Design– Distributed Networks

General Terms
Algorithms, Performance

Keywords
P2P load balancing, Distributed K-D tree, P2P Grid Information
Service

1. INTRODUCTION
P2P computing has emerged as a significant technological and
social phenomenon over the last years. It provides a scalable and
fully distributed system used for locating shared resources within
a large number of peers, in the order of tens of thousands. P2P
systems have been mainly used for file sharing applications.
However, there is an increasing need for P2P support for a variety
of application classes that require efficient and scalable resolution
of complex queries involving multiple different attributes and
possibly range queries, other than finding the exact name of a file
[1,2].

As an example Grid Information Services is a class of applications
demanding complex P2P queries about shared resources, such as
CPU load, storage and memory. Grid nodes and services can
dynamically join and leave the system, introducing a dynamic
environment, where still one has to be able to query about
available resources. In most Grid environments, the Information
Service system used for locating resources is centralised, having
usually one or maybe few central directories. This centralised
approach has the inherent drawback of a single point of failure.
Further, centralised server(s) can also become a registration
bottleneck in a highly dynamic environment where many
resources join, leave, and change characteristics. Thus, it does not
scale well within a large number of Grid nodes. P2P systems
exhibit characteristics required to overcome the above-mentioned
problems, improving scalability, performance and fault-tolerance.

In this paper, we exploit an existing P2P framework that is able to
resolve multi-attribute and range queries using the K-Dimensional
(K-D) [3] distributed tree structure. Whilst some solutions that
have been proposed to tackle the problem of resolving multi-
attribute and range P2P queries use Distributed Hash Tables
(DHTs), these approaches suffer from a high overhead for
maintaining multiple DHTs. In fact, the complexity for updating
routing tables within a network of N peer nodes is O(log2N). In
addition, DHT-based systems do not exhibit locality properties,
i.e. resources location are determined by their hash value, not by
their physical location. To overcome the aforementioned
limitations, we use the Distributed K-D tree-based approach in [3]
for efficient handling rich queries encompassing multiple
attributes and range searches. The advantage of this is that rich
queries are supported more efficiently, requiring O(log(N))
complexity for inserting and deleting new nodes, while locality of
data is also preserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GridNets 2007, October 17-19, 2007, Lyon, France
Copyright 2007 ICST 978-963-9799-07-3

peri
Typewriter
DOI 10.4108/gridnets.2007.2254

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter

Load balancing in K-D based P2P overlays, will ensure that the
complexity for resolving multi-attribute and range queries remains
logarithmic with respect to the number of participating peers. We
apply this algorithm to support rich queries encompassing
services within a Grid environment, e.g. range queries on
multiple-attributes of distributed resources.

The rest of the paper is organized as follows. In Section 2 we
summarise related work. In Section 3 we outline how a K-D tree
is created. In section 4 we present in detail the algorithm we
devised for dynamic load balancing of a distributed K-D tree
structure. Details of how our load balanced P2P system can be
used for the discovery of Grid services are presented in Section 5.
Finally, the last section concludes the paper and introduces our
future research and implementation plans.

2. RELATED WORK
Several research groups have worked on Distributed Hash Table
(DHT) P2P systems, tackling the problem of scalability, which is
the main drawback of earlier P2P systems, such as Kazaa [4] and
Gnutella [5]. Scalability in the context of P2P refers to the issue
of how many messages are required to be forwarded within the
network in order to locate a particular resource. In the worst case,
N messages are needed to be sent to find a resource in a P2P
network of N nodes, i.e. query every participating node. However,
since the number of nodes is usually large, it is not efficient to
deploy and use systems with an O(N) complexity, thus leading to
the development of DHT-based systems, providing O(logN)
complexity. A detailed discussion on DHT-based systems is
provided in [6].

DHT-based P2P systems provide support for: a) single attribute
exact-match queries, e.g. Chord [7] and CAN [8] or b) multiple
attribute and range queries, e.g. MAAN [9] and Mercury [10].
However, although they naturally support single-attribute exact-
match queries, it is non-trivial to find an efficient way to support
multiple attribute and range queries within a single DHT. DHT
based systems, such as MAAN and Mercury, provide methods for
supporting multi-attribute and range queries, but require
maintaining multiple DHTs, one per attribute. This leads to
performance degradation and replication of data. Researchers in
the P2P area consider as a key open issue the support for non-
trivial search predicates like range queries, multi-attribute queries
and operators other than equality, usually join and sum operators
[6]. To address these issues, they started investigating how
distributed tree data structures, common in legacy databases, can
resolve complex queries in a P2P overlay network.

Distributed tree-based P2P systems supporting multi-attribute and
range queries include Princeton University’s SkipIndex [11],
Stanford University’s MURK [12], Cornell University’s
BrushWood [1] and HP’s NodeWiz [2]. These systems partition
the data space using the K-D tree data structure. However,
although they provide a scalable solution for the efficient
resolution of K-attribute and range queries, the entire index may
need to be rebuilt if the data distribution changes significantly.
For high-volume insertions, and dynamic placement of new data
points in the data space, the aforementioned systems do not
provide any guarantees on the cost of load balancing.

Our algorithm, reported below, obtains load-balancing within the
K-D tree data-partitioning scheme. Furthermore, it exhibits

robustness as it does not change the tree pointers while executing,
in contrast with other load balancing approaches such as BATON
Trees [13].

3. CREATION OF K-D TREES
We assume a P2P network with resources described as “data
points” within a multi-dimensional data space. These can be
located by querying peer nodes, each holding or “owning”
pointers towards a disjoint subset of resources, altogether
comprising the universal set of shared resources. An example of a
shared resource is a music file identified by its three attributes, i.e.
artist, title and genre. Owners are assigned within P2P members,
i.e. PCs holding information on locating the music file. Unlike
P2P popular protocols such as Kazaa or Gnutella, we assume that
a single data point exists throughout the network, pointed by a
single “owner” not necessarily coinciding with the peer holding it.

Our load balancing algorithm operates in a K-D Tree [15]
structure produced by SkipIndex [11] that partitions the multi-
dimensional data point space into disjoint peer regions, each
assigned to a unique peer node. K-D structures can also be
constructed using MURK, BrushWood and NodeWiz. These
approaches are based on flooding for resolving location queries
among regions, thus exhibiting higher than logarithmic routing
complexity. We selected, however, SkipIndex as it provides
logarithmic complexity by associating a one-dimensional key per
region in order to obtain an absolute ordering of the regions. This
key captures the hierarchical creation of regions. The keys are
then used to store the leaf regions in a searchable Skip Graph
[14], which supports insertion, deletion and lookup based on a
one dimensional key.

SkipIndex structures were chosen not only for their logarithmic
complexity, but also because they do not use hashing and
therefore they preserve the logical integrity of the keyspace. This
also enables location of data regions (K-dimensional data range
query), extending location services for a single data point. A peer
(leaf-region) searching for a target data region, can navigate
through the Skip Graph, so that the distance to the target region
(measured in terms of the number of hops when traversing
regions), is halved in every region traversal. Note here that for
scalability reasons each peer maintains a partial view of the K-D
tree to aid query processing and to determine the direction from a
region towards the destination point.

Figure 1 shows an example of how SkipIndex partitions the data-
space region (Figure 1a) into its corresponding K-D tree (Figure
1b). The figure depicts a 2-dimensional tree, meaning that each
data point has 2 attributes, x and y. Briefly, as new nodes join the
network, they are assigned a data region by partitioning an
existing region via its “median”, giving the new node the location
coordinates or “ownership” of “half” the data points within the
data region being partitioned. The other half is still kept by its
former “owner” node. Spitting is performed as follows: As the
first peer node bootstraps the systems, it owns all data points. The
tree is built up gradually, starting from the root, i.e. the first node;
as new peers join-in, SkipIndex alternates among the x and y axes
used to select the splitting planes [15].

The SkipGraph used to navigate between regions is also
constructed by SkipIndex and is presented in Figure 1c.

Figure 1. Partitioning of the data space and its corresponding
Skip Graph

It consists of a number o linked lists, called Skip Lists [16]. Each
element in a Skip List participates in several levels of linked lists.
The lowest level list consists of all elements ordered by their keys.
Each key that appears in the list at Level i, would also appear in
the list at Level i+1 with some probability p. This way, Skip
Graphs extend Skip Lists for distributed environments by adding
redundant connectivity and multiple handles into the Skip Graph
data structure, thus improving resilience. At each level, a peer
node stores pointers to its left and right neighbors. To locate a
key, SkipIndex searches the highest level which might have just a
few keys, dropping down to the more densely-populated lower
levels, if needed, i.e. if we have not reached the target region. On
average, there are O(logN) levels in the system, meaning that a
search will traverse O(logN) nodes until it reaches its destination
region.

As mentioned earlier, SkipIndex solves the scalability problem for
resolving a P2P query by performing tree traversal in a distributed
manner, without requiring any node to maintain the complete
view of the index structure. This would result in an O(N)
complexity when a new node enters the system, due to all N-1
nodes updating their connections to the new node. Instead, the
innovation of this approach is that each node maintains a partial
view of the whole K-D tree. The partial tree view or local tree
view of a node comprises of the split histories of its local region
and that of the regions maintained by its Skip Graph peers, where
each split history provides information about the path from the
tree root to a leaf region. Figure 2 illustrates the partial views of

three index nodes. Note that in this figure, only the bottom-level
Skip List is given. Of course, each node maintains additional links
to other regions, according to the pointers in the higher level Skip
Lists of the Skip Graph (see Figure 1c)

D

A B

0

10

10

1

001000

01

(b)

1

D

0

10

1

01

(c) 111110

00

C

10

0 1

E

0

000

B

D

0

10

1

(d)

11

C

10

0 1

0 1

001

Region of a peer node

Non-peer remote region

Region of the local node

CA B

E

D F

A B D EC F

000 1111101001001

(a)

 Figure 2. Partial views of trees among SkipIndex peers

The tree traversal for routing a query in the topology shown in
Figure 2 does not descend the tree sequentially, but rather
“jumps” into sub-trees. The maximum number of hops to reach a
leaf region that belongs to the target area, does not depend on the
number of peers, which would result in an O(N) complexity.
Instead, the routing complexity is O(logN), as the routing process
forwards the message using links in the Skip Graph, and at each
step, the distance to the set of nodes representing the target region
is halved, resulting in the O(logN) complexity. Remember that
this is also exhibited by the Chord DHT routing protocol which,
however, does not handle multi-dimensional and range queries.

In the following section, we describe how our algorithm achieves
load-balancing (leaf regions with equal number of data points)
within a SkipIndex created K-D tree.

4. A NEW ALGORITHM FOR DYNAMIC
LOAD-BALANCING OF K-D TREES
Our framework improves a number of existing K-D tree-based
P2P systems with a new algorithm for dynamic load-balancing the
distributed K-D data structure used to organize the P2P overlay.
Load balancing is necessary, since O(logN) routing complexity is
achieved only when the tree remains load-balanced, e.g. upon a
new node joining the network an existing data region is
partitioned in two sub-regions, each containing the same number
of data points.

As discussed in the previous section of the paper, we will use
SkipIndex as an example of a K-D tree based P2P system and we
will show how our algorithm can help maintaining the resources
(data points) load-balanced among the participating nodes. Note
that our algorithm is not specifically implemented for the
SkipIndex framework. Rather, it provides a general idea that can
be implemented and instantiated within different P2P systems that
use any distributed K-D structure, other than the one used within
the SkipIndex framework.

Within a K-D enabled P2P system, to achieve load-balancing
during system’s operation, it is necessary to change the ownership
of a data set to another node or a set of nodes. This is required
when the set of data points, i.e. the shared resources or total load
of the system can dynamically change, placing new data points in
the K-dimensional data space or removing data points. For this
purpose, our algorithm redistributes data points in a recursive
manner, reacting to changes. Using SkipIndex as an example, to
decide which region or region set should be re-assigned a load, we
have extended the Skip Graph that SkipIndex uses with an
additional key, which maintains information about the load of
other nodes (number of data points), based on the split history of
that node. This is analogous to the procedure followed by
SkipIndex to maintain the split history, as described in section 2 of
the paper.

The following figure presents an example of how the “load”
history is kept within the leaf nodes (i.e. the peers of the P2P
overlay) of the K-D tree, according to their split history. The key
representing the load history of a node is a vector of log(N)
values, N being the total number of peers in the network (regions
in the K-D data space). The first value of the node load vector
represents the number of data points kept by the node. Note here
that upon construction of the K-D tree, this value is the “ideal” or
“expected” value of the load of the node. This is because the
algorithm to construct the K-D tree [17], assigns data points to the
participating peers so that the load among peers is equally
distributed. The remaining load vector values represent the load of
the parent node when splitting occurred when inserting the current
node within the K-D data space.

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

{ 6 0 , 1 2 0 , 2 4 0 }

{ 6 0 , 1 2 0 , 2 4 0 }

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

l o a d

l o a d

l o a d

l o a d

l o a d

l o a d

A

B

D

C

E

F

=

=

=

=

=

=

ur

ur

u r

u r

u r

u r

Figure 3. Keeping the load history of peers

In Figure 3, we show the load history of all nodes A, B, C, D, E
and F within the K-D tree of Figure 1. Node A with key 000,
holds a vector consisting of

2 2l o g (N) l o g 6  + 1 =   + 1 = 4

elements. The first item of the vector holds A’s local load, 30
points in this example, while other items hold the load history of
the parents of A, at the time when splitting occurred. Note that the

value of 30 points is the ideal or expected load value of node A;
this was achieved by SkipIndex while constructing the K-D tree,
assigning peer nodes (i.e. the leaf nodes of the tree) an equal
number of data points to keep locally.

The pseudo-code shown in Figure 4 describes our proposed
algorithm LOAD_BALANCE executed when a load change Dload
is observed within an individual node1 X, The algorithm is
triggered when a relative load change exceeds a THRESHOLD
parameter, set by the administrator. The relative load change is the
percentage of the actual load change by the ideal or expected, as
we discussed above, load of the node. It is given by the following
formula:

.
_ _

.
LOAD

LOAD

NODE D
relative load change

NODE Expected
=

The above formula is used to decide whether a load change can be
tolerated by a node, without requiring load redistribution in order
to preserve the load balancing property of the K-D tree. In other
words, when the load change Dload is relatively small against the
expected load of the node, new data points are added to the node
without violating the requirement for an overall load-balanced
tree.

LOAD_BALANCE(X, Dload ,THRESHOLD)
1. if Dload /X.LOAD <= THRESHOLD
2. then return
3. else
4. NSLPIT=FIND_LOAD_SPLIT_NODE(X, Dload ,
 THRESHOLD)

5. LOAD_BALANCE(X, Dload /2,THRESHOLD)
6. Y = FIND_KEY(NSPLIT,X)
7. LOAD_BALANCE(Y, Dload /2,THRESHLOD)

Figure 4. Load balancing algorithm LOAD_BALANCE

Unlike other reported work on load balancing [16], our algorithm
(LOAD_BALANCE) does not treat the load change Dload as a
whole set of data points that must be assigned to another leaf of
the K-D tree. Rather, in case when the current node is not able to
tolerate the load change by itself, half of the load change is
recursively being assigned to another leaf node of the tree, node Y
in Line 6 of the pseudo-code in Figure 4. The other half of the
load change is handled recursively by the current node. The way
to determine the remote node Y is given with the procedures
FIND_SPLIT_NODE and FIND_KEY within LOAD_BALANCE.
We will explain now how these two methods operate, giving their
pseudo-code in Figure 5.

1 The LOAD_BALANCE algorithm must be followed by multiple
nodes upon changes. There may be cases with two nodes
executing the algorithm resulting into oscillations. This stability
issue is not addressed in this paper.

FIND_SPLIT_NODE(X, Dload ,THRESHOLD)
1. I =1; N = X.load_history_vector(I);
 MAX = X.load_history_size;

2. while (Dload /N.LOAD <= THRESHOLD AND I<MAX)
3. do I = I+1; N = X.load_history_vector(I);
4. return N;

FIND_KEY(NSPLIT,X)
1. if X.key < NSPLIT .key // Y is located to the right of X. Check
the Skip Graph to find the most right node of the subtree with root
NSPLIT
2. then
return TRAVERSE_SKIP_GRAPH_TO_KEY (NSPLIT .key +1)
3. else // Y is located to the left of X. Check the Skip Graph to
find the most left node of the subtree with root NSPLIT
 return TRAVERSE_SKIP_GRAPH_TO_KEY (NSPLIT .key -1)

Figure 5. Methods FIND_SPLIT_NODE and FIND_KEY
used to discover remote node Y in LOAD_BALANCE

FIND_SPLIT_NODE reads the load history vector of current node
X to find out which parent is able to tolerate the load change. The
complexity of this method is O(logN), where logN is the size of
the load history vector, as discussed earlier. When the node NSLPIT
in Line 4 in the pseudo-code in Figure 4 is discovered by
FIND_SPLIT_NODE (i.e. the intermediate tree node that is able
to tolerate the load change Dload), then we must locate the leaf
node Y, which is a leaf of the subtree with root NSLPIT . This is
accomplished by the method FIND_KEY that checks the Skip
Graph to find the node Y based on Y’s Skip Graph key. Like
FIND_SPLIT_NODE, the complexity of FIND_KEY is O(logN),
as this is the routing complexity to find a particular key within the
Skip Graph. The Lemma (at the end of the paper) proves that the
overall complexity of our load balancing algorithm is O(log2N), in
a network of N leaf nodes (i.e. N peers) in the K-D data space.

We will now describe with an example how the recursive
algorithm operates when instantiated with the K-D tree shown in
Figure 6.

Figure 6. Operation of the LOAD_BALANCE algorithm

Initially, node A holds 30 data points (each circle in the diagram
represents a small region of 10 data points within it). This is the
ideal or expected load that node A should have so that the whole

tree is kept load balanced. Assume now that during system’s
operation the load of A changes, by assigning more data points to
his region. In a P2P context, this is analogous of adding more
resources within a node to share within the P2P overlay. There are
several choices that can be made when A detects the load change
Dload; this choice depends on the value of THRESHOLD, in this
example chosen to be 20%. Our algorithm determines the choice
that should be made as follows:

Case 1: Dload /A.LOAD ≤ THRESHOLD

There is no need to re-adjust load to other regions and the K-
D tree still remains load-balanced. Note here that we do not
change the expected load value of the current node, even if
the load in the node changes upon a new load offered to the
node; node A in our example will keep the value of 30. Thus
THRESHOLD will be eventually violated, even when the
load in a region (i.e. the load of a node) increases slowly
over time.

When, after several small changes, the threshold is violated,
our algorithm will send a portion of the load change to other
region(s), so that the whole tree remains load balanced.

As we discussed before, in Figure 3, the numbers which we
use to calculate the relative load change, refer to the
"expected load value" per every node, i.e. 30 is the expected
load value of A. This means that if A adds 5 and then another
5 points, in the first case, the relative load change is 5/30 =
16.6% < THRESHOLD (20%). This means that node A is
able to keep for himself the five (5) new data points. But,
next, when we try to add to A another 5 points, then the
relative load change (5+5)/30 = 32.3% exceeds the 20%
THRESHOLD; the resulting redistribution of the load is
described below in Case 2.

Case 2: Dload /A.LOAD > THRESHOLD

The change of load demands redistribution of the load
change to another region or set of regions. To determine
which region(s) should be given the load change, we will
consult the “load” history of the node using the procedure
FIND_LOAD_SPLIT_NODE to find out which is the root
(parent of the current node A) of the subtree that is able to
hold the load change.

In our example, assume that A is given 10 more data points.
Since the parent of A (as found by the load history) has a
total load of 60 points, the parent load change (10/60) is
below the threshold of 20%. This means that A knows that
the load splitting node is his parent node NSPLIT1 with key 00,
thus half of the load change (5 points) must be assigned to
node B, which is the most left node of the subtree with root
A’s parent node NSPLIT1. The other 5 points will be added to
A’s region, resulting in a parent’s load of 70 points. Both A
and B are able to handle the 5 points load change (5/30 <
20%) so their recursion will terminate in the first call of
LOAD_BALANCE shown in Lines 5 and 7 in the pseudo-
code in Figure 4.

In another instance of the aforementioned network, Dload has
a value of 20. In this case, the load splitting node is
discovered by A and is the node NSPLIT2 in Figure 6. To
distribute the load change, A will request that the load

change is divided in two equal parts (each of a size of 10
points), one given to the most left child D of the node
NSPLIT2, while the other will be re-examined by A. Thus, the
same procedure will be executed recursively by node D, with
input Dload of 10 points. As D is a leaf node, D will keep all
10 points for himself, as 10/D.LOAD (10/60) is below the
threshold of 20% for node D. As discussed earlier, the other
10 points will be split between A and B, A executing
recursively the procedure LOAD_BALANCE with an input of
10 points of load change.

Note that in the example discussed above, the only
information that A needs in order to distribute half of the
load change is the location of node D, i.e. the node that must
take over half of the load change for further distribution. As
node A does not have a full view of the whole K-D tree, it
must dynamically discover the location of node D. This is
accomplished by the procedures FIND_SPLIT_NODE and
FIND_KEY that will locate the splitting node and the leaf
node D respectively. Since A knows from his load history
that the root of the tree that can hold the load change is node
NSPLIT2 in Figure 6, this means that the node that can be
assigned the half of load change is the most left node of the
right sub-tree with root NSPLIT2. To find out this node, the
only thing that A must do is to find the node with key with a
minimum value of 01 (NSPLIT2..key + 1) which is the key of
the leaf node D. Should the threshold for D be exceeded, the
latter would execute LOAD_BALANCE recursively.

If the load change can not be tolerated even by the root of the tree,
the procedure will be executed a number of times, in a sequential
manner: We split the load change in smaller pieces, each with a
value of THRESHOLD*ROOT.LOAD, where ROOT.LOAD is the
current load of the root, thus each piece can be marginally
accommodated. Otherwise, it could be possible to fall into
oscillations, with the left sub-tree of the whole K-D tree assigning
data points to the right sub-tree and vice versa.

In summary, each time the load change to be handled is
THRESHOLD*ROOT.LOAD, incrementally adding points to the
whole tree, until all points Dload are finally distributed. The
number of times LOAD_BALANCE will be executed is given by:

1

.
log

.
LOAD

THRESHOLD

ROOT LOAD D

ROOT LOAD+
+

 

The complexity of the LOAD_BALANCE algorithm is O(log2N)
(see the Lemma) for a P2P network of N peer nodes. All inner
operations of the algorithm, finding the load splitting node,
finding the most left of the right subtree and the most right of the
left subtree nodes, require an O(logN) number of steps to query
the load history vector and the Skip Graph respectively.

Note that in all cases above, when node(s) receive a request to
adjust their load, they must follow, along with their O(logN) Skip
Graph peers, a procedure to update accordingly their load-history
vectors. This is done in order to maintain an updated load history
within the overall K-D tree. Furthermore, apart from the load
history vectors that reflect the ideal load distribution of the
network, peers maintain additional information on the current
value of their load. For example, if node A adds 5 points to
himself, although his load history vector will retain the value of
30, node A will know that his current load is 35 (30 is his

expected value) and also, the current values of his parents are 65,
125 and 245 respectively. Again, the expected values of A’s
parents will retain their values {60,120,240}. Finally, when the K-
D tree becomes perfectly load balanced, the load history vector
holding the expected values will be updated accordingly.

We add here that all insert (join) and remove (leave) operations of
peers within the P2P network are not handled by our algorithm,
which is used solely to maintain the K-D tree structure load-
balanced. The algorithm to handle join/leave operations of peers
(not data within peers) is the SkipIndex K-D tree algorithm [11],
which deals with inserting and removing nodes with an O(logN)
complexity.

Last, note that a query is still successfully executed, while the
load balancing algorithm redistributes load changes. In fact,
unlike other load balancing approaches, e.g. BATON Tree [13],
that move or merge leaves, our algorithm is robust, i.e. we do not
reconstruct the tree when re-distributing the load upon requests
for load changes. We keep exactly the same tree and its pointers
so the query will return all the correct results after O(logN*logN),
the time used by our algorithm to re-distribute the load. In-
between, the system will return the "old" set of resources, but still
will not fail to execute, which is the case of a P2P system
handling dynamically new resources.

5. CASE STUDY: IMPLEMENTING A
DISTRIBUTED GRID INFORMATION
SERVICE
In a Grid environment, Information Lookup Services are needed
to resolve multi-attribute and range queries, more complex than
finding a service based on a given name. For instance, a user
would like to find out which services exhibit certain
characteristics, such as availability, price, etc. We propose a load
balanced K-D based P2P platform to enhance existing Grid
middleware to enable scalable, decentralized discovery of shared
Grid resources. This proposal is an alternative to centralized
services, such as the Universal Description, Discovery and
Integration protocol - UDDI [17], exhibiting fault tolerance due to
its fully distributed nature. In this section, we will illustrate our
ideas on a P2P-based Grid Information Service, independent of
any underlying Grid platform implementation using abstractions
of Grid shared resources, rather than actual implementation
information models and protocols.

To support an implementation independent Grid Information
Service, we must first determine how entities to be discovered can
be formally represented, i.e. what are their functional and non
functional abstractions on which their selection can be based. To
that end, we specified a suitable information model, necessary to
define and know a-priori the type of attributes, on which queries
for Grid resources/services are based. In simple cases, such as the
case of file-sharing, this may not be necessary, as the only
resource shared among nodes are data files, all identified by their
names. Instead in a Grid environment, models of complex shared
resources & services are required. Figure 7 presents the UML
model of shared Grid resources/services within our multi-service
agent-assisted Grid framework [18].

Figure 7. Example Grid Services Information Model

In the above information model, a Grid Service is identified by its
name, its location and its availability, thus by three attributes.
Computation and Storage services inherit these attributes and
include additional attributes for their description. Note here that in
this Information Model, we tried to keep the cardinality of
attributes as small as possible, taking into account the fact that it
the complexity to implement and maintain any P2P system
increases as the number of resource attributes increases. It is
important to note at this point that the information model we
introduced is used at the architectural layer of the P2P
middleware. Higher layers, such Grid service layer can use more
complex structures for representing information, such as WSDL
[18]. However, when higher level components need to use the
P2P Grid Information Service for discovery, the entities to be
discovered must conform to the information model understood by
the P2P middleware. Upper layers need to include mechanisms to
translate their information model to the low-level model shown in
Figure 7.

Based on the information model we have designed, we will
construct analogous K-D data structures, according to user
requirements for locating Grid resources. In the simplest case, we
will only deploy a single K-D tree with 3 dimensions (K=3),
namely the name, the location and the availability of a Grid
Service. These three attributes will be used to define P2P queries
on Grid services as 3-attribute and range queries. We use the the
SkipIndex [11] framework to partition the 3-D tree data space in a
number of regions, discussed in section 2. The load balancing
property will be maintained dynamically by using our algorithm
LOAD_BALANCE for redistributing the load of the 3-D tree, i.e.
the number of shared Grid services. In a more complex case, we
can construct two 5-D trees representing the Computation and
Storage Services respectively. In both trees, the
LOAD_BALANCE algorithm will be operated to keep them load-
balanced. This way in a network of N peer Grid sites, P2P queries
involving 5-attribute range queries on Computation and Storage
services are resolved with an O(logN) routing complexity, while
the complexity to keep the trees load-balanced is O(log2N).

6. CONCLUSIONS AND FUTURE WORK
This paper presented a novel algorithm for dynamic load-
balancing the distributed K-D tree structure used for organising
the shared information within a P2P network. Load balancing is

very important to achieve, as this ensures that the complexity for
resolving multi-attribute and range queries remains logarithmic in
respect to the number of participating peers. We presented in
detail how the load-balancing algorithm operates. Evaluation of
its performance within a simulation environment is within our
current activities. We are implementing a simulator to assess our
P2P system in comparison to other multi-attribute and range
queries supporting systems, such as MURK, MAAN and Mercury.
Our experiments focus on dynamic environments, with load
varying at run-time within participating nodes, which
continuously join and/or leave the network.

We illustrated how our P2P framework can be used to locate
resources within a GRID environment. We plan to provide a full
integration implementation between our P2P framework and a
Grid platform, such as gLite [19] or GRIA [20], as a means to
implement a fully distributed P2P-based Grid Information
Service. This implementation will be tested with a number of
applications over a shared Grid infrastructure. We believe that this
work will support a class of Grid applications, exploiting the
efficiency of a P2P system for locating in a scalable and robust
way distributed resources/services in a dynamic, multi-service
Grid environment.

7. ACKNOWLEDGMENTS
The work presented in this paper was partially supported by the
EC project ARGUGRID-IST-035200.

8. REFERENCES

[1] S. Basu, S. Banerjee, P. Sharma, S.J Lee: NodeWiz: Peer-to-
peer Resource Discovery for Grids, in Proc. of the IEEE
International Symposium on Cluster Computing and the
Grid, (CCGrid 2005), pp213-220, May 2005.

[2] Chi Zhang Arvind Krishnamurthy Randolph Y. Wang.
Βrushwood: Distributed Trees in Peer-to-Peer Systems. In
Proc. 4th International Workshop of Peer to Peer Systems,
Ithaca, NY, Feb. 2000.

[3] J. L. Bentley: Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9), 1975.

[4] Kazaa. Available from http://www.kazaa.com

[5] Gnutella. Available from http://www.gnutella.com

[6] Risson, J. and Moors, T. Survey of research towards robust
peer-to-peer networks: Search methods. In Computer
Networks, Volume 50, Issue 17, 5 December 2006

[7] Stoica I., Morris R., Karger D., Frans Kaashoek M.,
Balakrishnan H.: Chord: A scal-able peer-to-peer lookup
service for Internet applications, In Proc. ACM SIGCOM,
San Diego, 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp S.
Shenker: A Scalable Content-Addressable Network, in Proc.
ACM SIGCOMM 2001 Conf. on Applications, Tech-

nologies, Architectures, and Protocols for Computer
Communication, pp. 161-172, 2001.

[9] M. Cai, M. Frank, J. Chen, P. Szekely: MAAN: A multi-
attribute addressable network for grid information services,
In the 4th Inernational Workshop on Grid Computing, 2003.

[10] A.R. Bharambe, M. Agrawal S. Seshan: Mercury: Supporting
Scalable Multi-Attribute Range Queries, in Proc. ACM
SIGCOMM 2004 Conference on Applica-tions,
Technologies, Architectures, and Protocols for Computer
Communication, pp. 353-366, 2004.

[11] C. Zhang, A. Krishnamurthy, R. Y. Wang: SkipIndex:
Towards a scalable peer to-peer index service for high
dimensional data. Technical Report TR-703-04, Prince-ton
Univ. CS, 2004.

[12] P. Ganesan, B. Yang H. Garcia-Molina: One Torus to Rule
them All: Multidimen-sional Queries in P2P Systems. In
Proceedings of the 7th International Workshop on the Web
and Databases (WebDB ’04).

[13] Jagadish, H. V., Ooi, B. C., and Vu, Q. H. 2005. BATON: a
balanced tree structure for peer-to-peer networks. In
Proceedings of the 31st international Conference on Very
Large Data Bases, Trondheim, Norway, August 30 -
September 02, 2005.

[14] J. Aspnes, G. Shah: Skip Graphs. In Proceedings of
Symposium on Discrete Algorithms, 2003.

[15] Friedman, J.H., Bentley, J.L., and Finkel, R.A.. An algorithm
for finding best matches in logarithmic expected time.
ACMTransactions on Mathematical Software, 3(3):209–226,
1977.

[16] Pugh, William. Skip Lists: A Probabilistic Alternative to
Balanced Trees. In Proceedings of Workshop on Algorithms
and Data Structures, pp. 437-449", 1989.

[17] The Universal Description, Discovery and Integration
(UDDI) protocol. Available from http://www.uddi.org

[18] Web Services Description Language (WSDL). Available
from http://www.w3.org/TR/wsdl

[19] gLite. Available from http://glite.web.cern.ch/glite/

[20] GRIA. Available from http://www.gria.org

LEMMA
The complexity of the LOAD_BALANCE algorithm is
O(log2N).

Let us denote T(H) the complexity of the load balancing algorithm
when the height of the K-D tree is H, equal to┌logN┐. Upon each
recursive call of the procedure, we will find a load splitting node a
level down each time the recursion occurs, e.g. if the first call
finds the root of the tree (level 0 node) as the load splitting node,
then the second call will find (in the worst case) the level 1 node
as the splitting node and so on. Then

 T(H) ≤ T(H-1) + O(H) = O(H2), thus T(N) is O(log2N)

