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ABSTRACT 
Peer to Peer (P2P) networking is a potential disruptive technology 
that can be used for the development of scalable, fully 
decentralized distributed applications. However, to realize its 
potential, P2P technology should address the needs of a variety of 
applications, other than file-sharing requiring support for exact-
match queries on the file names. Our work complements and 
contributes to existing P2P overlays that support multiple-
attributes and range queries, using the distributed K-Dimensional 
(K-D) tree structure for organizing shared information among 
participating peers. This guarantees that the time needed for node 
join - leave operations and query times are logarithmic with 
respect to the number of peers. In such systems, an open issue is 
load balancing of resources among peers, as only load-balanced 
data structures can guarantee that the complexity for resolving 
multi-attribute and range queries remains logarithmic (thus 
scalable) with respect to the number of participating peers. In this 
paper, we report a novel load balancing algorithm for dynamically 
keeping the resource load among peers balanced. We prove that 
the load balancing algorithm is robust and scalable, achieving an 
O(log2N) complexity, where N is the number of peers. We 
illustrate how our algorithm can be used to build a scalable Grid 
Information Service supporting multi-attribute and range queries 
on available services within the shared Grid infrastructure. 

Categories and Subject Descriptors 
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Architecture and Design– Distributed Networks 
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Algorithms, Performance 

Keywords 
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1. INTRODUCTION 
P2P computing has emerged as a significant technological and 
social phenomenon over the last years. It provides a scalable and 
fully distributed system used for locating shared resources within 
a large number of peers, in the order of tens of thousands. P2P 
systems have been mainly used for file sharing applications. 
However, there is an increasing need for P2P support for a variety 
of application classes that require efficient and scalable resolution 
of complex queries involving multiple different attributes and 
possibly range queries, other than finding the exact name of a file 
[1,2].  

As an example Grid Information Services is a class of applications 
demanding complex P2P queries about shared resources, such as 
CPU load, storage and memory. Grid nodes and services can 
dynamically join and leave the system, introducing a dynamic 
environment, where still one has to be able to query about 
available resources.  In most Grid environments, the Information 
Service system used for locating resources is centralised, having 
usually one or maybe few central directories. This centralised 
approach has the inherent drawback of a single point of failure. 
Further, centralised server(s) can also become a registration 
bottleneck in a highly dynamic environment where many 
resources join, leave, and change characteristics. Thus, it does not 
scale well within a large number of Grid nodes. P2P systems 
exhibit characteristics required to overcome the above-mentioned 
problems, improving scalability, performance and fault-tolerance.  

In this paper, we exploit an existing P2P framework that is able to 
resolve multi-attribute and range queries using the K-Dimensional 
(K-D) [3] distributed tree structure. Whilst some solutions that 
have been proposed to tackle the problem of resolving multi-
attribute and range P2P queries use Distributed Hash Tables 
(DHTs), these approaches suffer from a high overhead for 
maintaining multiple DHTs. In fact, the complexity for updating 
routing tables within a network of N peer nodes is O(log2N). In 
addition, DHT-based systems do not exhibit locality properties, 
i.e. resources location are determined by their hash value, not by 
their physical location. To overcome the aforementioned 
limitations, we use the Distributed K-D tree-based approach in [3] 
for efficient handling rich queries encompassing multiple 
attributes and range searches. The advantage of this is that rich 
queries are supported more efficiently, requiring O(log(N)) 
complexity for inserting and deleting new nodes, while locality of 
data is also preserved.  
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Load balancing in K-D based P2P overlays, will ensure that the 
complexity for resolving multi-attribute and range queries remains 
logarithmic with respect to the number of participating peers. We 
apply this algorithm to support rich queries encompassing 
services within a Grid environment, e.g. range queries on 
multiple-attributes of distributed resources.  

The rest of the paper is organized as follows. In Section 2 we 
summarise related work. In Section 3 we outline how a K-D tree 
is created.  In section 4 we present in detail the algorithm we 
devised for dynamic load balancing of a distributed K-D tree 
structure. Details of how our load balanced P2P system can be 
used for the discovery of Grid services are presented in Section 5. 
Finally, the last section concludes the paper and introduces our 
future research and implementation plans. 

2. RELATED WORK 
Several research groups have worked on Distributed Hash Table 
(DHT) P2P systems, tackling the problem of scalability, which is 
the main drawback of earlier P2P systems, such as Kazaa [4] and 
Gnutella [5]. Scalability in the context of P2P refers to the issue 
of how many messages are required to be forwarded within the 
network in order to locate a particular resource. In the worst case, 
N messages are needed to be sent to find a resource in a P2P 
network of N nodes, i.e. query every participating node. However, 
since the number of nodes is usually large, it is not efficient to 
deploy and use systems with an O(N) complexity, thus leading to 
the development of DHT-based systems, providing O(logN) 
complexity. A detailed discussion on DHT-based systems is 
provided in [6].  

DHT-based P2P systems provide support for:  a) single attribute 
exact-match queries, e.g. Chord [7] and CAN [8] or b) multiple 
attribute and range queries, e.g. MAAN [9] and Mercury [10]. 
However, although they naturally support single-attribute exact-
match queries, it is non-trivial to find an efficient way to support 
multiple attribute and range queries within a single DHT. DHT 
based systems, such as MAAN and Mercury, provide methods for 
supporting multi-attribute and range queries, but require 
maintaining multiple DHTs, one per attribute. This leads to 
performance degradation and replication of data. Researchers in 
the P2P area consider as a key open issue the support for non-
trivial search predicates like range queries, multi-attribute queries 
and operators other than equality, usually join and sum operators 
[6]. To address these issues, they started investigating how 
distributed tree data structures, common in legacy databases, can 
resolve complex queries in a P2P overlay network. 

Distributed tree-based P2P systems supporting multi-attribute and 
range queries include Princeton University’s SkipIndex [11], 
Stanford University’s MURK [12], Cornell University’s 
BrushWood [1] and HP’s NodeWiz [2].  These systems partition 
the data space using the K-D tree data structure. However, 
although they provide a scalable solution for the efficient 
resolution of K-attribute and range queries, the entire index may 
need to be rebuilt if the data distribution changes significantly. 
For high-volume insertions, and dynamic placement of new data 
points in the data space, the aforementioned systems do not 
provide any guarantees on the cost of load balancing.  

Our algorithm, reported below, obtains load-balancing within the 
K-D tree data-partitioning scheme. Furthermore, it exhibits 

robustness as it does not change the tree pointers while executing, 
in contrast with other load balancing approaches such as BATON 
Trees [13]. 

3. CREATION OF K-D TREES 
We assume a P2P network with resources described as “data 
points” within a multi-dimensional data space. These can be 
located by querying peer nodes, each holding or “owning” 
pointers towards a disjoint subset of resources, altogether 
comprising the universal set of shared resources. An example of a 
shared resource is a music file identified by its three attributes, i.e. 
artist, title and genre. Owners are assigned within P2P members, 
i.e. PCs holding information on locating the music file. Unlike 
P2P popular protocols such as Kazaa or Gnutella, we assume that 
a single data point exists throughout the network, pointed by a 
single “owner” not necessarily coinciding with the peer holding it. 

Our load balancing algorithm operates in a K-D Tree [15] 
structure produced by SkipIndex [11] that partitions the multi-
dimensional data point space into disjoint peer regions, each 
assigned to a unique peer node. K-D structures can also be 
constructed using MURK, BrushWood and NodeWiz.  These 
approaches are based on flooding for resolving location queries 
among regions, thus exhibiting higher than logarithmic routing 
complexity. We selected, however, SkipIndex as it provides 
logarithmic complexity by associating a one-dimensional key per 
region in order to obtain an absolute ordering of the regions. This 
key captures the hierarchical creation of regions. The keys are 
then used to store the leaf regions in a searchable Skip Graph 
[14], which supports insertion, deletion and lookup based on a 
one dimensional key.  

SkipIndex structures were chosen not only for their logarithmic 
complexity, but also because they do not use hashing and 
therefore they preserve the logical integrity of the keyspace.  This 
also enables location of data regions (K-dimensional data range 
query), extending location services for a single data point. A peer 
(leaf-region) searching for a target data region, can navigate 
through the Skip Graph, so that the distance to the target region 
(measured in terms of the number of hops when traversing 
regions), is halved in every region traversal. Note here that for 
scalability reasons each peer maintains a partial view of the K-D 
tree to aid query processing and to determine the direction from a 
region towards the destination point.  

Figure 1 shows an example of how SkipIndex partitions the data-
space region (Figure 1a) into its corresponding K-D tree (Figure 
1b).  The figure depicts a 2-dimensional tree, meaning that each 
data point has 2 attributes, x and y.  Briefly, as new nodes join the 
network, they are assigned a data region by partitioning an 
existing region via its “median”, giving the new node the location 
coordinates or “ownership” of “half” the data points within the 
data region being partitioned. The other half is still kept by its 
former “owner” node.  Spitting is performed as follows: As the 
first peer node bootstraps the systems, it owns all data points. The 
tree is built up gradually, starting from the root, i.e. the first node; 
as new peers join-in, SkipIndex alternates among the x and y axes 
used to select the splitting planes [15].  

The SkipGraph used to navigate between regions is also 
constructed by SkipIndex and is presented in Figure 1c.  



 

 

Figure 1. Partitioning of the data space and its corresponding 
Skip Graph 

It consists of a number o linked lists, called Skip Lists [16]. Each 
element in a Skip List participates in several levels of linked lists. 
The lowest level list consists of all elements ordered by their keys. 
Each key that appears in the list at Level i, would also appear in 
the list at Level i+1 with some probability p. This way, Skip 
Graphs extend Skip Lists for distributed environments by adding 
redundant connectivity and multiple handles into the Skip Graph 
data structure, thus improving resilience. At each level, a peer 
node stores pointers to its left and right neighbors. To locate a 
key, SkipIndex searches the highest level which might have just a 
few keys, dropping down to the more densely-populated lower 
levels, if needed, i.e. if we have not reached the target region. On 
average, there are O(logN) levels in the system, meaning that a 
search will traverse O(logN) nodes until it reaches its destination 
region.  

As mentioned earlier, SkipIndex solves the scalability problem for 
resolving a P2P query by performing tree traversal in a distributed 
manner, without requiring any node to maintain the complete 
view of the index structure. This would result in an O(N) 
complexity when a new node enters the system, due to all N-1 
nodes updating their connections to the new node. Instead, the 
innovation of this approach is that each node maintains a partial 
view of the whole K-D tree. The partial tree view or local tree 
view of a node comprises of the split histories of its local region 
and that of the regions maintained by its Skip Graph peers, where 
each split history provides information about the path from the 
tree root to a leaf region. Figure 2 illustrates the partial views of 

three index nodes. Note that in this figure, only the bottom-level 
Skip List is given. Of course, each node maintains additional links 
to other regions, according to the pointers in the higher level Skip 
Lists of the Skip Graph (see Figure 1c) 
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 Figure 2. Partial views of trees among SkipIndex peers 

The tree traversal for routing a query in the topology shown in 
Figure 2 does not descend the tree sequentially, but rather 
“jumps” into sub-trees. The maximum number of hops to reach a 
leaf region that belongs to the target area, does not depend on the 
number of peers, which would result in an O(N) complexity. 
Instead, the routing complexity is O(logN), as the routing process 
forwards the message using links in the Skip Graph, and at each 
step, the distance to the set of nodes representing the target region 
is halved, resulting in the O(logN) complexity. Remember that 
this is also exhibited by the Chord DHT routing protocol which, 
however, does not handle multi-dimensional and range queries. 

In the following section, we describe how our algorithm achieves 
load-balancing (leaf regions with equal number of data points) 
within a SkipIndex created K-D tree. 

4. A NEW ALGORITHM FOR DYNAMIC 
LOAD-BALANCING OF K-D TREES 
Our framework improves a number of existing K-D tree-based 
P2P systems with a new algorithm for dynamic load-balancing the 
distributed K-D data structure used to organize the P2P overlay. 
Load balancing is necessary, since O(logN) routing complexity is 
achieved only when the tree remains load-balanced, e.g. upon a 
new node joining the network an existing data region is 
partitioned in two sub-regions, each containing the same number 
of data points.  



As discussed in the previous section of the paper, we will use 
SkipIndex  as an example of a K-D tree based P2P system and we 
will show how our algorithm can help maintaining the resources 
(data points) load-balanced among the participating nodes. Note 
that our algorithm is not specifically implemented for the 
SkipIndex framework. Rather, it provides a general idea that can 
be implemented and instantiated within different P2P systems that 
use any distributed K-D structure, other than the one used within 
the SkipIndex framework. 

Within a K-D enabled P2P system, to achieve load-balancing 
during system’s operation, it is necessary to change the ownership 
of a data set to another node or a set of nodes. This is required 
when the set of data points, i.e. the shared resources or total load 
of the system can dynamically change, placing new data points in 
the K-dimensional data space or removing data points. For this 
purpose, our algorithm redistributes data points in a recursive 
manner, reacting to changes. Using SkipIndex as an example, to 
decide which region or region set should be re-assigned a load, we 
have extended the Skip Graph that SkipIndex uses with an 
additional key, which maintains information about the load of 
other nodes (number of data points), based on the split history of 
that node. This is analogous to the procedure followed by 
SkipIndex to maintain the split history, as described in section 2 of 
the paper.  

The following figure presents an example of how the “load” 
history is kept within the leaf nodes (i.e. the peers of the P2P 
overlay) of the K-D tree, according to their split history. The key 
representing the load history of a node is a vector of log(N) 
values, N being the total number of peers in the network (regions 
in the K-D data space). The first value of the node load vector 
represents the number of data points kept by the node. Note here 
that upon construction of the K-D tree, this value is the “ideal” or 
“expected” value of the load of the node. This is because the 
algorithm to construct the K-D tree [17], assigns data points to the 
participating peers so that the load among peers is equally 
distributed. The remaining load vector values represent the load of 
the parent node when splitting occurred when inserting the current 
node within the K-D data space.  

 

  

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

{ 6 0 , 1 2 0 , 2 4 0 }

{ 6 0 , 1 2 0 , 2 4 0 }

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

{ 3 0 , 6 0 , 1 2 0 , 2 4 0 }

l o a d

l o a d

l o a d

l o a d

l o a d

l o a d

A

B

D

C

E

F

=

=

=

=

=

=

ur

ur

u r

u r

u r

u r

 

Figure 3. Keeping the load history of peers   

In Figure 3, we show the load history of all nodes A, B, C, D, E 
and F within the K-D tree of Figure 1. Node A with key 000,  
holds a vector consisting of 

2 2l o g ( N ) l o g  6   + 1 =     + 1 =  4

elements. The first item of the vector holds A’s local load, 30 
points in this example, while other items hold the load history of 
the parents of A, at the time when splitting occurred. Note that the 

value of 30 points is the ideal or expected load value of node A; 
this was achieved by SkipIndex while constructing the K-D tree, 
assigning peer nodes (i.e. the leaf nodes of the tree) an equal 
number of data points to keep locally.  

The pseudo-code shown in Figure 4 describes our proposed 
algorithm LOAD_BALANCE executed when a load change Dload 
is observed within an individual node1 X, The algorithm is 
triggered when a relative load change exceeds a THRESHOLD 
parameter, set by the administrator. The relative load change is the  
percentage of the actual load change by the ideal or expected, as 
we discussed above, load of the node. It is given by the following 
formula: 

.
_ _

.
LOAD

LOAD

NODE D
relative load change

NODE Expected
=  

 

The above formula is used to decide whether a load change can be 
tolerated by a node, without requiring load redistribution in order 
to preserve the load balancing property of the K-D tree. In other 
words, when the load change Dload is relatively small against the 
expected load of the node, new data points are added to the node 
without violating the requirement for an overall load-balanced 
tree. 

  

LOAD_BALANCE(X,  Dload ,THRESHOLD)  
1.   if Dload /X.LOAD  <= THRESHOLD  
2.      then return 
3.      else  
4.            NSLPIT=FIND_LOAD_SPLIT_NODE(X, Dload ,  
                                                                                 THRESHOLD) 

5.            LOAD_BALANCE(X, Dload /2,THRESHOLD)  
6.            Y = FIND_KEY(NSPLIT,X)  
7.            LOAD_BALANCE(Y, Dload /2,THRESHLOD) 

 

Figure 4. Load balancing algorithm LOAD_BALANCE 

Unlike other reported work on load balancing [16], our algorithm 
(LOAD_BALANCE) does not treat the load change Dload as a 
whole set of data points that must be assigned to another leaf of 
the K-D tree. Rather, in case when the current node is not able to 
tolerate the load change by itself, half of the load change is 
recursively being assigned to another leaf node of the tree, node Y 
in Line 6 of the pseudo-code in Figure 4. The other half of the 
load change is handled recursively by the current node. The way 
to determine the remote node Y is given with the procedures 
FIND_SPLIT_NODE and FIND_KEY within LOAD_BALANCE. 
We will explain now how these two methods operate, giving their 
pseudo-code in Figure 5.  

                                                                 
1 The LOAD_BALANCE algorithm must be followed by multiple 
nodes upon changes. There may be cases with two nodes 
executing the algorithm resulting into oscillations. This stability 
issue is not addressed in this paper.  

 



FIND_SPLIT_NODE(X, Dload ,THRESHOLD)  
1.  I =1; N = X.load_history_vector(I);  
     MAX =   X.load_history_size; 

2.   while (Dload /N.LOAD  <= THRESHOLD AND I<MAX)  
3. do I = I+1; N = X.load_history_vector(I);  
4.   return N;  
 

FIND_KEY(NSPLIT,X )  
1.   if X.key < NSPLIT .key  // Y is located to the right of X. Check 
the Skip Graph to find the most right node of the subtree with root 
NSPLIT  
2.      then  
return TRAVERSE_SKIP_GRAPH_TO_KEY (NSPLIT .key +1) 
3.      else // Y is located to the left of X. Check the Skip Graph to 
find the most left node of the subtree with root NSPLIT 
 return TRAVERSE_SKIP_GRAPH_TO_KEY (NSPLIT .key -1) 
  
 

Figure 5. Methods FIND_SPLIT_NODE and FIND_KEY 
used to discover remote node Y in LOAD_BALANCE 

FIND_SPLIT_NODE reads the load history vector of current node 
X to find out which parent is able to tolerate the load change. The 
complexity of this method is O(logN), where logN is the size of 
the load history vector, as discussed earlier. When the node NSLPIT 
in Line 4 in the pseudo-code in Figure 4 is discovered by 
FIND_SPLIT_NODE  (i.e. the intermediate tree node that is able 
to tolerate the load change Dload), then we must locate the leaf 
node Y, which is a leaf of the subtree with root  NSLPIT . This is 
accomplished by the method FIND_KEY that checks the Skip 
Graph to find the node Y based on Y’s Skip Graph key. Like 
FIND_SPLIT_NODE, the complexity of FIND_KEY is O(logN), 
as this is the routing complexity to find a particular key within the 
Skip Graph. The Lemma (at the end of the paper) proves that the 
overall complexity of our load balancing algorithm is O(log2N), in 
a network of N leaf nodes (i.e. N peers) in the K-D data space.   

We will now describe with an example how the recursive 
algorithm operates when instantiated with the K-D tree shown in 
Figure 6. 

 

  

Figure 6. Operation of the LOAD_BALANCE algorithm 

Initially, node A holds 30 data points (each circle in the diagram 
represents a small region of 10 data points within it). This is the 
ideal or expected load that node A should have so that the whole 

tree is kept load balanced. Assume now that during system’s 
operation the load of A changes, by assigning more data points to 
his region. In a P2P context, this is analogous of adding more 
resources within a node to share within the P2P overlay. There are 
several choices that can be made when A detects the load change 
Dload; this choice depends on the value of THRESHOLD, in this 
example chosen to be 20%. Our algorithm determines the choice 
that should be made as follows: 

Case 1:  Dload /A.LOAD  ≤ THRESHOLD 

There is no need to re-adjust load to other regions and the K-
D tree still remains load-balanced. Note here that we do not 
change the expected load value of the current node, even if 
the load in the node changes upon a new load offered to the 
node; node A in our example will keep the value of 30. Thus 
THRESHOLD will be eventually violated, even when the 
load in a region (i.e. the load of a node) increases slowly 
over time. 

When, after several small changes, the threshold is violated, 
our algorithm will send a portion of the load change to other 
region(s), so that the whole tree remains load balanced. 

As we discussed before, in Figure 3, the numbers which we 
use to calculate the relative load change, refer to the 
"expected load value" per every node, i.e. 30 is the expected 
load value of A. This means that if A adds 5 and then another 
5 points, in the first case, the relative load change is 5/30 = 
16.6% < THRESHOLD (20%). This means that node A is 
able to keep for himself the five (5) new data points.  But, 
next, when we try to add to A another 5 points, then the 
relative load change (5+5)/30 = 32.3% exceeds the 20% 
THRESHOLD; the resulting redistribution of the load is 
described below in Case 2. 

Case 2:  Dload /A.LOAD  > THRESHOLD 

The change of load demands redistribution of the load 
change to another region or set of regions. To determine 
which region(s) should be given the load change, we will 
consult the “load” history of the node using the procedure 
FIND_LOAD_SPLIT_NODE to find out which is the root 
(parent of the current node A) of the subtree that is able to 
hold the load change.    

In our example, assume that A is given 10 more data points. 
Since the parent of A (as found by the load history) has a 
total load of 60 points, the parent load change (10/60) is 
below the threshold of 20%. This means that A knows that 
the load splitting node is his parent node NSPLIT1 with key 00, 
thus half of the load change (5 points) must be assigned to 
node B, which is the most left node of the subtree with root 
A’s parent node NSPLIT1. The other 5 points will be added to 
A’s region, resulting in a parent’s load of 70 points. Both A 
and B are able to handle the 5 points load change (5/30 < 
20%) so their recursion will terminate in the first call of 
LOAD_BALANCE shown in Lines 5 and 7 in the pseudo-
code in Figure 4.  

In another instance of the aforementioned network, Dload has 
a value of 20. In this case, the load splitting node is 
discovered by A and is the node NSPLIT2 in Figure 6. To 
distribute the load change, A will request that the load 



change is divided in two equal parts (each of a size of 10 
points), one given to the most left child D of the node 
NSPLIT2, while the other will be re-examined by  A. Thus, the 
same procedure will be executed recursively by node D, with 
input Dload of 10 points. As D is a leaf node, D will keep all 
10 points for himself, as 10/D.LOAD (10/60) is below the 
threshold of 20% for node D. As discussed earlier, the other 
10 points will be split between A and B, A executing 
recursively the procedure LOAD_BALANCE with an input of 
10 points of load change. 

Note that in the example discussed above, the only 
information that A needs in order to distribute half of the 
load change is the location of node D, i.e. the node that must 
take over half of the load change for further distribution. As 
node A does not have a full view of the whole K-D tree, it 
must dynamically discover the location of node D. This is 
accomplished by the procedures FIND_SPLIT_NODE and 
FIND_KEY that will locate the splitting node and the leaf 
node D respectively. Since A knows from his load history 
that the root of the tree that can hold the load change is node 
NSPLIT2 in Figure 6, this means that the node that can be 
assigned the half of load change is the most left node of the 
right sub-tree with root NSPLIT2. To find out this node, the 
only thing that A must do is to find the node with key with a 
minimum value of 01 (NSPLIT2..key  + 1) which is the key of 
the leaf node D. Should the threshold for D be exceeded, the 
latter would execute LOAD_BALANCE recursively.  

If the load change can not be tolerated even by the root of the tree, 
the procedure will be executed a number of times, in a sequential 
manner: We split the load change in smaller pieces, each with a 
value of THRESHOLD*ROOT.LOAD, where ROOT.LOAD is the 
current load of the root, thus each piece can be marginally 
accommodated. Otherwise, it could be possible to fall into 
oscillations, with the left sub-tree of the whole K-D tree assigning 
data points to the right sub-tree and vice versa.  

In summary, each time the load change to be handled is 
THRESHOLD*ROOT.LOAD, incrementally adding points to the 
whole tree, until all points Dload are finally distributed. The 
number of times LOAD_BALANCE will be executed is given by: 

1

.
log

.
LOAD

THRESHOLD

ROOT LOAD D

ROOT LOAD+
+

   

The complexity of the LOAD_BALANCE algorithm is O(log2N) 
(see the Lemma) for a P2P network of N peer nodes. All inner 
operations of the algorithm, finding the load splitting node, 
finding the most left of the right subtree and the most right of the 
left subtree nodes, require an O(logN) number of steps to query 
the load history vector and the Skip Graph respectively.  

Note that in all cases above, when node(s) receive a request to 
adjust their load, they must follow, along with their O(logN) Skip 
Graph peers, a procedure to update accordingly their load-history 
vectors. This is done in order to maintain an updated load history 
within the overall K-D tree. Furthermore, apart from the load 
history vectors that reflect the ideal load distribution of the 
network, peers maintain additional information on the current 
value of their load. For example, if node A adds 5 points to 
himself, although his load history vector will retain the value of 
30, node A will know that his current load is 35 (30 is his 

expected value) and also, the current values of his parents are 65, 
125 and 245 respectively. Again, the expected values of A’s 
parents will retain their values {60,120,240}. Finally, when the K-
D tree becomes perfectly load balanced, the load history vector 
holding the expected values will be updated accordingly.   

We add here that all insert (join) and remove (leave) operations of 
peers within the P2P network are not handled by our algorithm, 
which is used solely to maintain the K-D tree structure load- 
balanced. The algorithm to handle join/leave operations of peers 
(not data within peers) is the SkipIndex K-D tree algorithm [11], 
which deals with inserting and removing nodes with an O(logN) 
complexity. 

Last, note that a query is still successfully executed, while the 
load balancing algorithm redistributes load changes. In fact, 
unlike other load balancing approaches, e.g. BATON Tree [13], 
that move or merge leaves, our algorithm is robust, i.e. we do not 
reconstruct the tree when re-distributing the load upon requests 
for load changes. We keep exactly the same tree and its pointers 
so the query will return all the correct results after O(logN*logN), 
the time used by our algorithm to re-distribute the load. In-
between, the system will return the "old" set of resources, but still 
will not fail to execute, which is the case of a P2P system 
handling dynamically new resources. 

5. CASE STUDY: IMPLEMENTING A 
DISTRIBUTED GRID INFORMATION 
SERVICE  
In a Grid environment, Information Lookup Services are needed 
to resolve multi-attribute and range queries, more complex than 
finding a service based on a given name. For instance, a user 
would like to find out which services exhibit certain 
characteristics, such as availability, price, etc. We propose a load 
balanced K-D based P2P platform to enhance existing Grid 
middleware to enable scalable, decentralized discovery of shared 
Grid resources. This proposal is an alternative to centralized 
services, such as the Universal Description, Discovery and 
Integration protocol - UDDI [17], exhibiting fault tolerance due to 
its fully distributed nature. In this section, we will illustrate our 
ideas on a P2P-based Grid Information Service, independent of 
any underlying Grid platform implementation using abstractions 
of Grid shared resources, rather than actual implementation 
information models and protocols.  

To support an implementation independent Grid Information 
Service, we must first determine how entities to be discovered can 
be formally represented, i.e. what are their functional and non 
functional abstractions on which their selection can be based.  To 
that end, we specified a suitable information model, necessary to 
define and know a-priori the type of attributes, on which queries 
for Grid resources/services are based. In simple cases, such as the 
case of file-sharing, this may not be necessary, as the only 
resource shared among nodes are data files, all identified by their 
names. Instead in a Grid environment, models of complex shared 
resources & services are required. Figure 7 presents the UML 
model of shared Grid resources/services within our multi-service 
agent-assisted Grid framework [18]. 

 



 
 

Figure 7. Example Grid Services Information Model 

In the above information model, a Grid Service is identified by its 
name, its location and its availability, thus by three attributes. 
Computation and Storage services inherit these attributes and 
include additional attributes for their description. Note here that in 
this Information Model, we tried to keep the cardinality of 
attributes as small as possible, taking into account the fact that it 
the complexity to implement and maintain any P2P system 
increases as the number of resource attributes increases. It is 
important to note at this point that the information model we 
introduced is used at the architectural layer of the P2P 
middleware. Higher layers, such Grid service layer can use more 
complex structures for representing information, such as WSDL 
[18]. However, when higher level components need to use the 
P2P Grid Information Service for discovery, the entities to be 
discovered must conform to the information model understood by 
the P2P middleware. Upper layers need to include mechanisms to 
translate their information model to the low-level model shown in 
Figure 7. 

Based on the information model we have designed, we will 
construct analogous K-D data structures, according to user 
requirements for locating Grid resources. In the simplest case, we 
will only deploy a single K-D tree with 3 dimensions (K=3), 
namely the name, the location and the availability of a Grid 
Service. These three attributes will be used to define P2P queries 
on Grid services as 3-attribute and range queries.  We use the  the 
SkipIndex [11] framework to partition the 3-D tree data space in a 
number of regions, discussed in section 2. The load balancing 
property will be maintained dynamically by using our algorithm 
LOAD_BALANCE for redistributing the load of the 3-D tree, i.e. 
the number of shared Grid services. In a more complex case, we 
can construct two 5-D trees representing the Computation and 
Storage Services respectively. In both trees, the 
LOAD_BALANCE algorithm will be operated to keep them load- 
balanced. This way in a network of N peer Grid sites, P2P queries 
involving 5-attribute range queries on Computation and Storage 
services are resolved with an O(logN) routing complexity, while 
the complexity to keep the trees load-balanced is O(log2N). 

6.  CONCLUSIONS AND FUTURE WORK 
This paper presented a novel algorithm for dynamic load-
balancing the distributed K-D tree structure used for organising 
the shared information within a P2P network. Load balancing is 

very important to achieve, as this ensures that the complexity for 
resolving multi-attribute and range queries remains logarithmic in 
respect to the number of participating peers. We presented in 
detail how the load-balancing algorithm operates. Evaluation of 
its performance within a simulation environment is within our 
current activities. We are implementing a simulator to assess our 
P2P system in comparison to other multi-attribute and range 
queries supporting systems, such as MURK, MAAN and Mercury. 
Our experiments focus on dynamic environments, with load 
varying at run-time within participating nodes, which 
continuously join and/or leave the network.  

We illustrated how our P2P framework can be used to locate 
resources within a GRID environment. We plan to provide a full 
integration implementation between our P2P framework and a 
Grid platform, such as gLite [19] or GRIA [20], as a means to 
implement a fully distributed P2P-based Grid Information 
Service. This implementation will be tested with a number of 
applications over a shared Grid infrastructure. We believe that this 
work will support a class of Grid applications, exploiting the 
efficiency of a P2P system for locating in a scalable and robust 
way distributed resources/services in a dynamic, multi-service 
Grid environment.  

7. ACKNOWLEDGMENTS 
The work presented in this paper was partially supported by the 
EC project ARGUGRID-IST-035200.  
 

8. REFERENCES 
 

[1] S. Basu, S. Banerjee, P. Sharma, S.J Lee: NodeWiz: Peer-to-
peer Resource Discovery for Grids, in Proc. of the IEEE 
International Symposium on Cluster Computing and the 
Grid, (CCGrid 2005), pp213-220, May 2005.  

[2] Chi Zhang  Arvind Krishnamurthy  Randolph Y. Wang. 
Βrushwood: Distributed Trees in Peer-to-Peer Systems. In 
Proc. 4th International Workshop of Peer to Peer Systems, 
Ithaca, NY,  Feb. 2000. 

[3] J. L. Bentley: Multidimensional binary search trees used for 
associative searching. Commun. ACM, 18(9), 1975. 

[4] Kazaa. Available from  http://www.kazaa.com 

[5] Gnutella. Available from http://www.gnutella.com 

[6] Risson, J. and Moors, T. Survey of research towards robust 
peer-to-peer networks: Search methods. In Computer 
Networks, Volume 50, Issue 17, 5 December 2006 

[7] Stoica I., Morris R., Karger D., Frans Kaashoek M., 
Balakrishnan H.: Chord: A scal-able peer-to-peer lookup 
service for Internet applications, In Proc. ACM SIGCOM, 
San Diego, 2001. 

[8] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp S. 
Shenker: A Scalable Content-Addressable Network, in Proc. 
ACM SIGCOMM 2001 Conf. on Applications, Tech-



nologies, Architectures, and Protocols for Computer 
Communication, pp. 161-172, 2001. 

[9] M. Cai, M. Frank, J. Chen, P. Szekely: MAAN: A multi-
attribute addressable network for grid information services, 
In the 4th Inernational Workshop on Grid Computing, 2003. 

[10] A.R. Bharambe, M. Agrawal S. Seshan: Mercury: Supporting 
Scalable Multi-Attribute Range Queries, in Proc. ACM 
SIGCOMM 2004 Conference on Applica-tions, 
Technologies, Architectures, and Protocols for Computer 
Communication, pp. 353-366, 2004. 

[11] C. Zhang, A. Krishnamurthy, R. Y. Wang: SkipIndex: 
Towards a scalable peer to-peer index service for high 
dimensional data. Technical Report TR-703-04, Prince-ton 
Univ. CS, 2004. 

[12] P. Ganesan, B. Yang H. Garcia-Molina: One Torus to Rule 
them All: Multidimen-sional Queries in P2P Systems. In 
Proceedings of the 7th International Workshop on the Web 
and Databases (WebDB ’04). 

[13] Jagadish, H. V., Ooi, B. C., and Vu, Q. H. 2005. BATON: a 
balanced tree structure for peer-to-peer networks. In 
Proceedings of the 31st international Conference on Very 
Large Data Bases, Trondheim, Norway, August 30 - 
September 02, 2005. 

[14] J. Aspnes, G. Shah: Skip Graphs. In Proceedings of 
Symposium on Discrete Algorithms, 2003. 

[15] Friedman, J.H., Bentley, J.L., and Finkel, R.A.. An algorithm 
for finding best matches in logarithmic expected time. 
ACMTransactions on Mathematical Software, 3(3):209–226, 
1977. 

[16] Pugh, William. Skip Lists: A Probabilistic Alternative to 
Balanced Trees. In Proceedings of Workshop on Algorithms 
and Data Structures, pp. 437-449", 1989. 

[17] The Universal Description, Discovery and Integration 
(UDDI) protocol. Available from http://www.uddi.org 

[18] Web Services Description Language (WSDL). Available 
from http://www.w3.org/TR/wsdl 

[19] gLite. Available from http://glite.web.cern.ch/glite/ 

[20] GRIA. Available from http://www.gria.org 

 

 

 

 

 

 

LEMMA 
The complexity of the LOAD_BALANCE algorithm is 
O(log2N). 

Let us denote T(H) the complexity of the load balancing algorithm 
when the height of the K-D tree is H, equal to┌logN┐. Upon each 
recursive call of the procedure, we will find a load splitting node a 
level down each time the recursion occurs, e.g. if the first call 
finds the root of the tree (level 0 node) as the load splitting node, 
then the second call will find (in the worst case) the level 1 node 
as the splitting node and so on. Then 

 T(H) ≤ T(H-1) + O(H) = O(H2), thus T(N) is O(log2N) 




