
Toward an Experiment Engine for Lightweight Grids

Brice Videau, Corinne Touati and Olivier Richard
Laboratoire d’Informatique de Grenoble (LIG) - INRIA, MESCAL Project

ZIRST 51, av. J. Kuntzmann, 38330 Montbonnot St Martin
{brice.videau, corinne.touati, olivier.richard}@imag.fr

ABSTRACT
This paper presents a case study conducted on the Grid’5000
platform, a lightweight grid. The goal was to make a rather
simple experiment, and study how difficult it was to carry
out correctly. This means it had to be correct, reproducible
and efficient.

The paper shows that despite the precautions taken, many
parameters that could have an effect on the result were at
first overlooked. It also shows that benchmarking plays a
key role on making an experiment correct and reproducible.
The process is in the end extremely tedious, and stresses the
need for new tools to help users.

The contribution of this work is to present a methodology to
get correct results on grid architecture, to identify relevant
problems and to propose an infrastructure that answers part
of the problems encountered during experiments. Addition-
ally, pieces of this infrastructure have been built and are also
presented.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Experiment methodology, experiment framework, lightweight
grid, performance study

1. INTRODUCTION
Needs in computing power steadily increase and grow faster
than the power of single machines. Hence New computer
clusters and grids are built every year, and their computing
power has increased a thousandfold in ten years. Nowadays,
a cluster of several hundred nodes is common, and grids of
several thousand nodes have been built, while others are on
the making. For instance the CERN is building one for the
large hadron collider and TeraGrid of the National Science

Foundation is another large scale grid. Other references can
be found in the top 500 list [1], gathering the 500 more power
powerful computers.

To successfully harness this computing power, software in-
frastructures have been developed. Experiments have to be
conducted in order to understand these distributed archi-
tectures [21]. The Grid’5000 project, a network of clusters
distributed among France, was created to study these large
systems [10]. Running experiments on such a large and dis-
tributed machine is a challenge. The number of nodes, the
different hardware and software configurations, and the dif-
ferent network topologies are as many parameters that can
impact the results of a measurement. These parameters add
to those of the software tested. In the end the number of
variables becomes too large, and cannot all be taken into
account.

To identify the problems an experimenter can encounter, a
case study was conducted. The methodology followed tried
to guarantee the correctness and reproducibility of the re-
sults. The case study chosen is the performance evaluation
of a file broadcasting tool. It was chosen because it is a well
known program whose behavior can be almost predicted,
and that would help spotting abnormal results. This exper-
iment proved rather difficult, as many problems appeared.

At first, the Grid’5000 platform will be introduced, followed
by a more precise description of the problematic and by
an overview of related works. The case study will then be
detailed as well as its results. The solution proposed to solve
the problems encountered will be presented, as well as the
first software modules created.

2. THE GRID’5000 PLATFORM
Grid’5000 is a large scale experimental platform, with deep
reconfiguration capability, a controlled level of heterogene-
ity and a strong control and monitoring infrastructure. It
can be presented as a lightweight grid. A lightweight grid
can be seen as a simplified version of a grid. It is highly ho-
mogeneous in its administration process and software. For
instance, accounts are managed with LDAP for the whole
platform and users have a single account. Each cluster has
its own NFS sever, but mount points are unique for a user.
A lightweight grid is like a cluster of clusters but on a larger
scale, and involves many different sites and organizations.

Grid’5000 aims to reach 5000 processors distributed among

peri
Typewriter
GridNets 2007 October 17-19, 2007, Lyon, France.
Copyright 2007 ICST ISBN 978-963-9799-07-3.
DOI 10.4108/gridnets.2007.2245

500

500

500

500

500

500

500

500

1000

Figure 1: An overview of Grid’5000, showing the
number of processors in each site

France (cf figure 1). Sites are interconnected by a 10 Gib/s
link. Every node of a cluster is using a 1Gib/s Ethernet
network. Other networks like Infiniband, or Myrinet can be
provided on a per cluster basis.

Grid’5000 seeks to cover nearly all aspects of software in-
volved in Grid computing : networking protocols, operating
systems, middlewares and applications.

Experimenters studying these different aspects may have
very different needs. For instance, some will need Linux,
others Solaris or FreeBSD, or Windows. Grid’5000 provides
a reconfiguration mechanism allowing researchers to deploy,
install, boot and run their software image. Default envi-
ronments are provided and users can use them as a base
for their own. Typically users reserve some nodes (that can
be distributed among several clusters), deploy their images,
conduct their experiment, collect results and release the re-
sources. The deployment tool currently used in Grid’5000 is
kadeploy [14].

In order to protect Grid’5000 from outside attacks and to
protect the outside from attacks launched using Grid’5000,
the grid is isolated from the Internet. Inside Grid’5000 pack-
ets can freely move from on site to the other thanks to the
dedicated network provided by Renater, the french academic
network. This network can only be accessed from gateways
located in each participating laboratory.

As homogeneity greatly simplifies studies, many nodes of
Grid’5000 are identical. These nodes are dual CPU 1U racks
equipped with 2 AMD Opteron running at 2 Ghz, 2 GiB of
memory and two 1Gib/s Ethernet adapter. But to allow
studies of heterogeneity influence, 1/3 of the nodes are het-
erogeneous.

Reservation of resources is done via the OAR batch sched-
uler [9], which works at the cluster level. It can enforce
admission rules, interface with the reconfiguration tool and
allow precise resource description. A higher level tool called
OARGRID allows users to make reservations among differ-

ent clusters simultaneously.

Other large scale experimental platforms exist: The most
well known are Emulab [22] and PlanetLab [8]. Emulab is a
network testbed built with emulation in mind. PlanetLab is
a distributed system connecting real machines by the Inter-
net, at the planet scale. PlanetLab is used for network stud-
ies as well as for distributed systems research. Grid’5000 is
more homogeneous than PlanetLab whereas it is more het-
erogeneous and distributed than Emulab that has a more
cluster approach. It has its own dedicated network while
PlanetLab is connected via Internet. Let us finally mention
DAS2, [2] a cluster of clusters with a dedicated network but
which lacks deployment facilities.

3. PROBLEMATIC
Many aspects of Grid experimentation can prove difficult to
achieve correctly:

• A lot of parameters exists, some that users are not
aware of, and they can be overlooked. So experiment
designs have to account for this diversity, while remain-
ing efficient.

• The status of the platform can of course be very dif-
ficult to grasp because the status of a single node can
have a tremendous effect on the results. But inter-
actions from other users via the network can also be
disastrous.

• The experimenter can easily do some things automat-
ically or without thorough checking, so experiments
become very difficult to reproduce.

• Last but not least, running and supervising an exper-
iment distributed among several clusters is a difficult
task.

3.1 Efficient Experimental Design
As the platform is very complex, an experimental design has
to be able to study many parameters simultaneously. But
the cost in time of this tedious process can be very high. On
a platform like Grid’5000 which is extensively used, reserv-
ing many nodes for an extended period of time is limited by
admission rules. An experiment design has thus to be effi-
cient and easily split apart in independent measurements.

Breaking the studies in several parts can also prove inter-
esting. First, a design studying the rough influence of many
parameters can be used, then a second design studying more
carefully the parameters having the most influence can be
elaborated.

3.2 Platform Status
The state of the machine running the experiment strongly
impacts the results. Two kind of states can be distinguished:
the global state of the platform and the state of each node.

The global state is affected mainly by the network load due
to other experiments, or by problems of the network infras-
tructure. If the experiments are not completely separated,
by running on different switches and not using the same in-
tercluster links for instance, results cannot be guaranteed

accurate. Hence evaluating the impact of the load on an ex-
periment is a problem by itself, and seems hard to achieve.
So, either the confinement of experiments can be asserted or
they have to be ran when no one else is using the resources,
by making a reservation for one (or several) whole cluster(s)
at the same time.

The state of a single node can also affect the outcome of an
experiment. When measuring the performance of an algo-
rithm, everything must be set as close as possible to the ideal
case. Otherwise unexpected parameters might interfere with
the experiment and skew the results, and the experimenter
will draw erroneous conclusions. For instance, let us imag-
ine a distributed tool which performance can be limited by
the hard drive of each node. If a node has a slow disk, be-
cause of a failure or a model difference, the measurements
using this nodes will show poor performance. Part or all
the measurements will be skewed by this node. In this ex-
ample an unknown variable has been introduced, while not
being taken into account by the experimental design. This
scenario can accur with many different kinds of resources.
Those slow nodes have to be identified beforehands and re-
moved from the experiment. During the experiment, nodes
have to be monitored to prevent slow nodes from appearing.

3.3 Experiment Supervision
The supervision of a running experiment is tedious. Since
one has to work at night to obtain a large share of resources,
people are reluctant to make experiments. Hence, every-
thing that can be used to automate the process will be ap-
preciated by experimenters.

Yet, a truly automated process must account for the prob-
lems seen in the previous section, namely managing ma-
chines, and identifying measurement failures in order to re-
produce them after fixing the problems and killing locked
measurements. Many users code ad hoc scripts to manage
their experiments, but usually a failure during the experi-
ment provokes its abortion.

Providing users with a framework to run and automate ex-
periments could be the way to go. It could allow them to
run only short parts of an experiment, enabling their exe-
cution during the day. It could also automatically test the
nodes and platform status.

3.4 Experiment Reproducibility
The reproducibility of an experiment is tied with the prob-
lematics mentioned above. In order to reproduce an ex-
periment, every bit of information is capital. Indeed, the
results of an experiment are meaningless if the software and
hardware configurations are unknown, or if there are hid-
den variables like slow nodes. Unfortunately experimenter
do not always log everything they do during an experiment,
and can forget important steps they took.

To be able to reproduce an experiment, all these informa-
tion have to be made available. But logging the output of
every command and managing the files produced is hard to
achieve. The experiment supervision framework mentioned
above could help the experimenters with this aspect of ex-
perimentation also.

4. RELATED WORKS
This section presents the experimental designs used for the
case study, and the benchmarking tools required to monitor
the platform, and ends with a review of experiment super-
vision tools.

4.1 Experimental Designs
The case study objective was to use an experimental design
studying a lot of parameters simultaneously, without being
too costly. Designs that correspond to this objective are
full and fractional factorial designs, which are used in many
science fields. Their application to computer science is de-
scribed in [17], chapters 16-23. Fractional factorial designs
study the influence of many parameters but not their inter-
actions. Full factorial designs study the influence of fewer
parameters (usually three or four), but take into account the
interactions between them.

Experiments based on these designs are found in [15] and
[16]. These designs offer lots of information in a minimum
number of measurements, and enable experimenters to dis-
tinguish between parameters that have a high impact, and
those that are negligible. They can save experimenters a lot
of time, and can easily be broken in independent measure-
ments.

4.2 Monitoring and Benchmarking
To determine if the results of an experiment are valid, the
state of the platform it is ran on must be known. Yet, the
global state of a cluster or a grid is hard to grasp because of
the number of parameters. Software like Network Weather
Service [23] have been developed to reach this goal, but they
are intrusive and can skew the measurements. They also
require infrastructures to be set up on the grid.

The state of a single node can be obtained using benchmark-
ing tools. The result of the benchmarks are compared to ref-
erence values before a measurement. If nodes present a sig-
nificant performance difference they are discarded. Bench-
marks exist for all kind of resource, like SpecINT and SpecFP
[3] for processors, IOzone [4] for disks or netperf [5] for net-
work interfaces.

4.3 Experiment Supervision
Experiment supervision has seen a strong development along
with grid architecture. Indeed, doing experiments on a plat-
form as complex and volatile without human intervention
is difficult, but doing it by hand is becoming too complex.
That is why each category of grid, aimed at production or
experimentation, has its own automated experimentation
project. For instance, Emulab platform [22] has DART [11],
PlanetLab [8] has PluSH [7] and Globus [13] has ZENTU-
RIO [20]. But it is too early to tell if these managers are fit
for the lightweight grid model of Grid’5000.

ZENTURIO is very complex, with dozens of modules and
would be hard to install on the numerous software environ-
ments of Grid’5000. In order to use it we would also have to
install Globus. Nevertheless ZENTURIO offers a complete
infrastructure and a language to describe complex experi-
ments.

D D
0 1 2 n

 Physical Network

Figure 2: The mput pipeline: computers are inter-
connected by a high speed network, the root node
(number 0) reads files on the disk and sends them
to the next node which writes to the disk and sends
them to the next node, and so on.

DART is a bit special because its aim is to run non regres-
sion tests on distributed softwares. For now, DART is only
implemented on Emulab, which renders it hard to evaluate
its use on other platforms. It is also dedicated to clusters.
A new experiment workbench for the Emulab platform is
presented in [12], but it is still strongly tied to Emulab and
networking research.

PluSH seems to be the most promising. Unfortunately it is
still strongly tied to PlanetLab’s architecture. Nevertheless
the recent developments of PluSH in experiment description
languages, their deployment management and their porta-
bility objectives are promising. It is still too early to know
if their language will fit Grid’5000 needs.

Lightweight grids can be used to study grids, clusters, mid-
dlewares, network, applications, etc... In order to adapt to
the many faces of lightweight grids, a more generic toolkit
could prove necessary.

5. CASE STUDY
So as to be representative of an experiment on the Grid’5000
platform, the case study had to be carefully selected. The
criteria it had to fulfill were: it had to be distributed over
enough nodes, it had to very intensive on various parts of
the platform and it was a plus if it was used on Grid’5000.
The mput program was found to be a perfect candidate.

5.1 The mput Program
This program is a high performance file broadcaster. It uses
a chain of TCP connections to broadcast the files, that are
at first present only on the source node [18]. At initiation
it creates an instance of itself on each node using an inte-
grated parallel launcher [19]. The launcher can use a tree
of fixed or dynamic arity. The dynamic arity is created by
a work stealing algorithm. Once every nodes are launched
they chain each other in the order of their network addresses.
The program can then be seen as a pipeline having the depth
of the number of nodes minus the emitter (cf Figure 2). The
pipeline is fed at one end (the emitter) with the files, while
every other nodes write the files to the disk. The program
is a multithreaded application written in the C++ language
and is about 2000 lines long.

As can be seen, this program is very sensitive, as a slow
element will affect the whole pipeline. At first we can iden-
tify two possible bottlenecks: the throughput of the disks

Experimental

Design

Preparation

Node

Analysis

Results

Measurements Calibration

Conclusion

Figure 3: The experimental process followed is a
5 steps iterative process. When new problems are
identified, a new benchmark is created and added to
the pool and the platform is calibrated again.

on each machine and the bandwidth of the network. But we
cannot rule out other parameters like machine load, or the
size of the file to be transferred.

5.2 Methodology
The methodology we used is represented on Figure 3. The
first thing to do is obtain reference performance values of
the different kinds of machines available on the grid (cali-
bration). This benchmarking phase will help determine if a
machine is in a standard state or needs to be fixed, and thus
has to be removed from an experiment. An experiment de-
sign is then selected, according to the available resources and
platform architecture. A larger pool of machines than the
one needed is then selected, in which every node is checked
for defects, and non conforming ones are eliminated. The
experimental design is then executed on this pool and the
results are analyzed a first time to see if everything went
well. If they are not satisfactory, it might be for two reasons.
First, the experimental design might not be good enough,
and does not show anything interesting, but the data is still
meaningful and another plan is designed. Second, if some-
thing was forgotten during the calibration phase some nodes
may not be in a correct state: culprits need to be identified.
Toward that end a new benchmark is created that identifies
such failures and added to the benchmark suite. All or part
of the results obtained are invalid.

The first thing to notice is that at the present time a tool
to monitor accurately the global state of Grid’5000 is not
available. Because of this, all the experiments of the present
work were made at night when alone on the cluster, so as to
avoid network interferences with other users. An advantage
of Grid’5000 is that 2/3 of the nodes are homogeneous and,
as the impact of hardware was not to be investigated, only
nodes with the same configuration were selected. Those were
IBM eServer 325, with the same hardware setup, running
the same Linux distribution, the same kernel version and
the same compiler version (gcc). Two clusters were used for
the experiment, 400 km apart, one at the Orsay site (216
nodes at the time), the other at the Lyon site (56 nodes at
the time), interconnected by a Gigabit link (Renater 3 at
the time). Inside the clusters nodes were connected by a
Gigabit Ethernet network.

Before each measurement, nodes were tested using two sim-
ple benchmarks. The first stressed the disk by writing a 1
GiB file. The second stressed the CPU by computing the

1

2

3

4

5

6

7

8

B C D E F GAI

+1

−1

+1

+1

+1

+1

+1

+1

+1

−1

−1

−1

+1

+1

+1

+1

+1

+1

−1

−1

+1

+1

−1

−1

+1

+1

+1

+1

−1

−1

−1

−1

+1

−1

−1

+1

+1

−1

−1

+1

+1

+1

−1

−1

−1

−1

+1

+1

+1 +1

−1

+1

−1

−1

+1

−1

+1

−1

−1

+1

−1

+1

+1

−1

Figure 4: Fractional factorial design used, measure-
ments (1..8) and parameters (A..G) levels (-1,+1).

Ackermann function for parameters 4 and 1. The time to
complete each benchmark was used to remove slow nodes
from the valid pool of machines. Computers were later in-
vestigated in order to know why they were slow. This pro-
cess can drastically reduce the number of available nodes
for the experiment: in the case study more than 50% of the
nodes were deemed unsuitable.

5.3 Experimental Design
So as to make a non trivial experiment, with multiple pa-
rameters, a factorial fractional design with two levels for
each parameter has been used. The design used is repre-
sented on Figure 4. Each line of the table corresponds to a
measurement that was repeated eight times. Detailed anal-
ysis of fractional factorial designs with replications can be
found in [17], chapter 18. For each measurement, parame-
ters are set according to the levels in the table. Parameters
and their possible values (with the corresponding levels in
parenthesis) are:

• A: size of the file to broadcast, 10MiB (-1) or 1GiB
(+1),

• B: number of nodes, 4 (-1) or 32 (+1),

• C: number of clusters, 1 (-1) or 2 (+1),

• D: number of processors used by node, 1 (-1) or 2 (+1),

• E: arity of the deployment tree, fixed (-1) or dynamic
(+1),

• F: load of the nodes, no load (-1) or loaded (+1),

• G: pause time between measurements, 0s (-1) or 60s
(+1).

I is not a parameter, it is the average response of the system
studied. Machine load (parameter E) is created by a load-
ing program (an infinite loop) that just takes some processor
time. A node that is loaded is running 1 loop on each avail-
able processor. Let y be the system response, the influence

Mean
Response

Cluster
Number

File Size Node Load Node
Number

Deployment
Method

Processor
Number

Pause Time
6.00

4.00

2.00

0.00

2.00

4.00

6.00

8.00

10.00

Broadcast Speed (MB/s)

Effects when parameter change from level 1 to +1

Figure 5: Case study results: effects sorted in order
of their influence on the broadcast speed in MiB/s.

of the parameters can be modeled as follow:

y = q0 + qAxA + qBxB + qCxC + qDxD+

qExE + qF xF + qGxG + e,

where e is the error, q0 is the average response of the system,
qi is the influence of the parameter i when the level changes
from -1 to +1. The xi’s are the levels of the parameters, -1
or +1. The qi’s are obtained by solving a system of linear
equations given by the different measurements.

5.4 Results
Results of the case study are presented on Figure 5. Three
main effects can be identified: the number of clusters (C),
the size of the file (A) and the load of the nodes (F). In
the best case, transferring a 1 GiB file on a single cluster
with no load, the throughput measured reaches 20 MiB/s
whereas the model predicts 21MiB/s = 9 (Mean response)
+ 5.5 (xC = −1) + 3.5 (xA = +1) + 3 (xF = −1). In the
worst case, transferring a 10 MiB file on two clusters with
loaded nodes, the throughput falls to 3 MiB/s whereas the
model predicts -2MiB/s. The differences measured between
the values and the model predictions are due to the fact
that the later does not account for the interactions between
parameters. The impact of the file size is easy to explain:
with a 10 MiB file most of the time is spent deploying the
application. The impact of the load shows that the program
needs some computing power to manage the 60 MiB/s flow of
data that goes through a node: 20 MiB in, 20 MiB out, and
20 MiB to write on the disk. It was not at first an expected
limiting factor, so it is good it was not ruled out. The impact
of the number of clusters is not as easy to understand, and
will be explained in Section 5.4.3. In fact the objective of
the study was not the results but to point out the problems
encountered during the experiment.

5.4.1 Experimental Problems
First of all, measurements proved difficult to realize without
human intervention. The parallel launcher used at the time
was not mature enough and sometimes deadlocked. The
experimenter had to be in front of the screen to kill those
locked tasks. Sometimes the performance was very low, due

to hardware failures and misconfiguration of nodes. The
culprits had to be identified and the measurements redone.

This process could not be made automatic. In order to
achieve this, one must be able to interpret the results of
measurements in real-time, and to determine if a measure-
ment failed or was skewed. Then, node performance has to
be evaluated again and a new pool of working nodes created.
The script has to be able to run and analyze benchmarks.

5.4.2 Heterogeneity Problems
During the benchmark phase many problems were encoun-
tered. The first problem found was that the nodes could
be divided in two groups regarding their disk performance.
Some nodes presented abnormally low performance, and ap-
parently in a random fashion. The benchmark could run well
three times in a row and the fourth it would take twice as
long to run. A careful study of the hardware revealed two
different brands of disks. Some disks of the second brand
sometimes had low performance. So half of the nodes had
to be ruled out of the experiment. A short while after the
manufacturer changed the disks of the second brand for ones
of the first.

The opposite problem was also found, namely a node had
better disk performance than the others. The partition table
was different, and the benchmark was writing on a more
performant part of the disk. This node was reinstalled.

During measurements, performance was sometimes lower
than those expected when many nodes were used. At boot
some nodes (5%) were randomly configuring their network
interface at 100 Mib/s instead of the expected 1 Gib/s.
Those nodes were of course slowing down the whole pipeline.
A new firmware for network cards solved the problem, but
it was not out when measurements were done. Hence nodes
had to be checked at each reboot, and our benchmark suite
gained a network test.

5.4.3 Low Performance Using Two Clusters
As shown on Figure 5 column ”Cluster Number”, when two
clusters are used performance collapses. This was surpris-
ing at first because usually the tool is disk limited and not
network limited. In fact bandwidth was limited by the TCP
windowing. As the clusters used were 400 km apart latency
wass important and TCP windows had to be enlarged ac-
cordingly. To complete the study, measurements would have
to be redone. Figure 4 column C shows that only half of
them (1,2,3 and 4) concern 2 clusters (+1 level), so only
these have to be redone.

6. TOWARD AN EXPERIMENT ENGINE
The problems encountered when running a rather small ex-
periment (only 32 nodes on two clusters), will get worst
as the size of experiments grow. To address these prob-
lems, tools need to be developed. They have to be able
to run an experiment without human interaction, manage
resources, check the platform status and take care of the
logs generated. The following subsection presents the model
of automatic experiment we designed. The next subsection
introduces the execution engine developed to process exper-
iments. And in the last subsection the remaining work is
summarized.

Configuration Experimental plan

execution

Experimental control

Platform status control

Observations synthesis :

− Experimental platform

− Subject measurements

Experimental plan

Measurement tool setup

Architecture configuration

Description :

 − Architecture

 − Protocols

 − Metrics

 − Corect behavior

 − Softwares

Analysis

Storage

Conclusion

Synthesis

Grid5000 Architecture :

− Configurable

− Distributed

Configuration

Observation

Problem definition

QuestionSubject

E
x

p
er

im
en

t
en

g
in

e
In

te
rf

ac
e

U
se

r
Figure 6: Experiment controlled by an engine.

6.1 Engine Controlled Experiments
A Grid’5000 experiment that is ran on an engine can be
modeled as shown on Figure 6.

At first, the experimenter defines his problem, namely spec-
ify his study subject, and the question asked.

Then he has to formulate his experiment in a language de-
scribing several aspects of the experimental process. For
instance what files are produced by which command, the
expected return values of commands, timeouts, the envi-
ronment required by the user. The descrition includes the
flow of commands, and depending on commands results, the
path to be taken in the flow. This program constitutes the
experimental plan that will be ran in the experiment engine.

At this time the engine takes care of the configuration of the
platform and tests its good behavior. If enough resources are
found to meet the experiment requirements the engine pro-
cesses the plan. It constantly checks that the commands
behave as specified by the experimenter, and logs outputs.
It can periodically check the status of the platform to en-
sure the best experimental results can be expected. If an
error happens, it either tries to run the command again, ex-
its or proceeds with the next commands, according to the
experimenter specifications.

Finally the engine returns the platform to its default state,
and backs up every file generated and every output logged.
Some analysis on the data can be performed.

6.2 Execution Engine
The execution engine (Figure 7) is the part of the experi-
ment engine that runs the commands and logs the results. It
processes every command, from configuration ones to result
analysis. The execution module can be separated in three

command

command

 Command generator

outputs, errors

outputs, errors

Execution module

Supervision moduleAnalysis module

Command instance

Standardised results, logged info, generated files

results, files

Experimental plan

feedback

Figure 7: Overview of an execution engine and its
key components.

components. The command generator that is responsible for
translation of the experimental plan into commands. De-
pending on outputs and errors of previous commands and
on feedback from the analysis module, different commands
can be issued. The supervision module has to execute the
commands at the right time and at the right place. It also
has to log the outputs and errors of the commands for later
archival. The analysis module can do run-time analysis of
results from commands, in order to influence the unfolding
of the experimental plan. At the end the results and the
logs are archived.

This part of the engine is already functional, and has ran
experiments on several clusters. It issued reservation com-
mands, ran benchmarks, eliminated failing nodes and exe-
cuted the commands. Every command outputs and status
are logged and the files produced are saved. Outputs, status,
start and end dates, process identifier and host node can be
saved in YAML [6] or XML format for an easy post mortem
study. This execution engine is based on a client/server
model. It is written in Ruby, an object oriented script
language. Communications between clients and servers are
based on the SOAP protocol. As a high level language has
not yet been developed the client is used via a Ruby script.
The engine is recursive as the server can also act as a client
to another server. This way, load can be distributed and the
grid can be logically divided. The engine makes an exten-
sive use of Taktuk [19], a parallel command launcher that
can use SSH to connect to nodes.

To test the execution engine, a token ring (cf Figure 8)
has been deployed on Grid’5000. The execution engine was
launched on a login machine. At first, 300 nodes located on
5 clusters were reserved by the engine. Using Taktuk, each
node was issued the date UNIX command. Nodes which
were not accepting connections or failed to run the command
were removed. Taktuk was then used to launch the token
ring on valid nodes. Each instance of the program generated

Resource reservation

Token ring

Resource checking Resource release

Log archival

Result retrieval

Figure 8: The different steps of the token ring ex-
periment.

an output file on its node. Those files were gathered when
the token ring stoped its execution. At this point resources
were released, this was the last command issued. Logs of
each command and reservation details were then archived.

6.3 Future Work
The execution engine is a first step in the making of an
experiment engine. Many parts are still missing, as detailed
in this section.

6.3.1 Experimentation Language
Now that the execution engine is almost functional, it needs
a language to interface smoothly with the experimenters.
But before designing or choosing a language that matches
lightweight grid experiments, its specificity have to be taken
into account. Nevertheless, it will have some similarities
with other workflow languages: resource naming and cou-
pling with the batch scheduler or other resource allocator,
precise command description with data flows, outputs, er-
rors and return status, loop and conditional structures with
exception support, timeout managements, etc.

Lightweight grid homogeneity and ease of configuration will
certainly have an impact on the language chosen. It is
too early to draw conclusions, and the problem needs to
be studied further. Anyway some specific needs that have
to be addressed are: resource set manipulation (iteration,
union, split...), special error management (fail-stop, retry,
ignore...), time measurements and explicit data placement.

The language developed will certainly be an extension of an
existing one. A list of the main workflow languages for grid
is presented with their characteristics in [24].

6.3.2 Platform Benchmarks
As shown, finding failing nodes is a difficult task. Test suites
must cover every available resources and be fast enough to
be frequently used during the experimental process. Devel-
oping synthetic tests that detect abnormal behaviors among
a group of nodes is necessary. Without them, correctness of
experiments and accuracy of the results cannot be asserted.

The token ring evoked in Section 6.2 is an example of tools to
monitor the network performance of nodes, and the network

status of the grids. Other tools already exist like proces-
sor and disk benchmarks, and must be incorporated in the
experimental process.

7. CONCLUSIONS
This paper tried to demonstrate the extreme caution needed
when making experiments on a large distributed lightweight
grid. Grid’5000 is a perfect example of a grid of almost ho-
mogeneous clusters, that can give the experimenter a feeling
of security. It appears in fact that many parameters can be
overlooked, skewing experimental results.

To ensure that an experiment can be reproduced at different
times, or conducted during different time slots on the grid,
many precautions have to be taken. The platform has to be
thoroughly benchmarked to ensure it is in a similar state.
Testing every involved node is also necessary to account for
machine failures.

We believe that the case study presented shows that it is a
difficult task to achieve by hand. Instead of forcing users to
follow this tedious methodology, giving them tools to help
them in this task must be a better way to go. Logging tools
are already functional, and the first benchmarking modules
have been developed. Assembling these modules, and link-
ing them with the experiment still needs a bit of coding on
the user part. The future objectives are to provide them
with a higher level interface to assemble these blocks.

Our contribution is the identification of the problems en-
countered by the experimenter working on a lightweight grid,
a methodology to help him/her in his/her work and the first
blocks of tool to help him/her achieve correctness and re-
producibility of his/her experiments.

8. ACKNOWLEDGMENTS
This work has been done within the LIG laboratory jointly
supported by CNRS, INPG, INRIA, and UJF. Computer
resources are provided by the Grid5000 platform (further
information at http://www.grid5000.fr/).

9. REFERENCES
[1] http://www.top500.org.

[2] http://www.cs.vu.nl/das2/.

[3] http://www.spec.org.

[4] http://www.iozone.org.

[5] http://www.netperf.org.

[6] http://www.yaml.org.

[7] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat.
Planetlab application management using plush.
SIGOPS Oper. Syst. Rev., 40(1):33–40, 2006.

[8] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and
M. Wawrzoniak. Operating system support for
planetary-scale network services. In First Symposium
on Networked Systems Design and Implementation
(MSDI), pages 253–266, Mar. 2004.

[9] N. Capit, G. D. Costa, Y. Georgiou, G. Huard,
C. Martin, G. Mounié, P. Neyron, and O. Richard. A
batch scheduler with high level components. In Cluster
computing and Grid 2005 (CCGrid05), 2005.

[10] F. Cappello, F. Desprez, M. Dayde, E. Jeannot,
Y. Jegou, S. Lanteri, N. Melab, R. Namyst, P. Primet,
O. Richard, E. Caron, J. Leduc, and G. Mornet.
Grid’5000: A large scale, reconfigurable, controlable
and monitorable grid platform. In Grid2005 6th
IEEE/ACM International Workshop on Grid
Computing, 2005.

[11] Chun. DART: Distributed automated regression
testing for large-scale network applications. In
International Conference on Principles of Distributed
Systems (OPODIS), LNCS, volume 8, 2004.

[12] E. Eide, L. Stoller, and J. Lepreau. An
experimentation workbench for replayable networking
research. Technical Report FTN–2006–03, University
of Utah, Dec. 2006.

[13] I. Foster and C. Kesselman. Globus: A
metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications and High
Performance Computing, 11(2):115–128, 1997.
ftp://ftp.globus.org/pub/globus/papers/globus.pdf.

[14] Y. Georgiou, J. Leduc, B. Videau, J. Peyrard, and
O. Richard. A tool for environment deployment in
clusters and light grids. In Second Workshop on
System Management Tools for Large-Scale Parallel
Systems (SMTPS’06), Rhodes Island, Greece, April
2006.

[15] C. Jacqmot. Load Management in Distributed
Computing Systems: Toward Adaptative Strategies.
PhD thesis, Université catholique de Louvain, Jan.
1996.

[16] C. Jacqmot and E. Milgrom. Évaluation empirique des
performances d’un système informatique : application
à l’équilibrage de charge. In Placement dynamique et
répartition de charge: application aux systèmes
répartis et parallèles, pages 231–250, Dec. 1996.

[17] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc, 1991.

[18] C. Martin and O. Richard. Parallel launcher for
clusters of PC, parallel compting. In Parco’01
(Parallel Computing), Naples, 2001.

[19] C. Martin, O. Richard, and G. Huard. Déploiement
adaptatif d’applications parallèles. Technique et
Science Informatiques (TSI), 2005.

[20] R. Prodan and T. Fahringer. Zenturio: An experiment
management system for cluster and grid computing.
In Proceedings of the 4th International Conference on
Cluster Computing (CLUSTER 2002), Sept. 2002.

[21] W. F. Tichy. Should computer scientists experiment
more? COMPUTER: IEEE Computer, 31:32–40, 1998.

[22] B. White, S. Guruprasad, M. Newbold, J. Lepreau,
L. Stoller, R. Ricci, C. Barb, M. Hibler, and
A. Joglekar. Netbed: an integrated experimental
environment. Computer Communication Review,
32(3):27, 2002.

[23] R. Wolski, N. T. Spring, and J. Hayes. The network
weather service: a distributed resource performance
forecasting service for metacomputing. Future
Generation Computer Systems, 15(5–6):757–768, 1999.

[24] J. Yu and R. Buyya. A taxonomy of workflow
management systems for grid computing. Journal of
Grid Computing, 3(3-4):171–200, September 2005.

