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ABSTRACT
Job arrivals can be described as point processes and it is
shown that correlations and fractal behavior can be reli-
ably revealed using the count/rate representation. Using
real workload data from production Grids, we show that the
second order properties such as the autocorrelation func-
tion (ACF) and the scaling behavior can be well recon-
structed by a Multifractal Wavelet Model (MWM). A so-
called controlled-variability integrate-and-fire (CV-InF) al-
gorithm is applied to transform rates into interarrivals so
that a full description of the arrival process can be obtained.
The additive nature of rates makes it possible to model dif-
ferent patterns separately and aggregate them back to form
a unified process. We further quantify the performance im-
pacts of autocorrelated job arrivals in Grid scheduling using
model-driven simulation. It is shown that autocorrelations
in the arrival processes can cause performance degradation
both at the local and the Grid level.

Keywords
Point Processes, Long Range Dependence, Performance Eval-
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1. INTRODUCTION
Performance evaluation of scheduling studies requires rep-

resentative workloads to produce dependable results. Real
traces on production Grids are being collected and have not
yet become widely available1. Models for generating syn-
thetic Grid workloads, on the other hand, are still emerging
and subject to further research. Consequently a large num-
ber of literature on Grid scheduling studies either use traces

∗Part of the research is carried out by the author as a vis-
iting researcher in the GRIDS lab, the University of Mel-
bourne, which is funded by Leiden University Fonds under
grant no. 6145/13-11-06/MvT, LIACS, and the University
of Melbourne via ARC/DEST grants.
1Grid Workload Archive. http://gwa.ewi.tudelft.nl/.
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available from parallel supercomputers2 [11], or make sim-
plified assumptions on workload characteristics (Poisson ar-
rivals [13], fixed-interval arrivals [4], or constant background
loads [16]). However, it is shown that workload characteris-
tics on data-intensive Grids are significantly different than
those on conventional parallel supercomputers. As has been
studied in [6], pseudo-periodicity, long range dependence,
and the “bag-of-tasks” behavior with strong temporal local-
ity are the main properties that characterize data-intensive
workloads. Therefore, it is important that representative
models be developed to capture the salient properties of
Grid workloads. In [7] a matching pursuit approach is pro-
posed to model pseudo-periodic job arrival patterns. In this
paper we focus on long range dependence and fractal be-
havior in job arrival processes, and how different patterns
can be aggregated and transformed. By using the developed
model we conduct model-driven simulation of Grid schedul-
ing strategies and quantify the performance differences of
various correlation structures in job arrivals.

The contribution of this work is three-fold. Firstly the
Multifractal Wavelet Model (MWM) [12], introduced in the
context of network traffic, is applied successfully to model
the long range dependent and fractal job arrivals in Grids.
Secondly, we adopt a controlled-variability integrate-and-fire
algorithm to convert a rate process to an interarrival pro-
cess, through which a full description of the arrival process
can be obtained. The additive nature of rates can be uti-
lized to facilitate model composition and aggregation, which
makes our approach a coherent solution for modeling Grid
job arrivals at different levels. Thirdly, initial results on the
performance implications of autocorrelated job arrivals in
Grid scheduling are presented.

The rest of the paper is organized as follows. Section 2
introduces the point process and its several representations,
namely, the interarrival process and the count/rate process.
Section 3 defines several important notions such as scaling,
long range dependence (LRD), and (multi)fractals. Sec-
tion 4 discusses the Multifractal Wavelet Model and explains
its recursive structure. A deep understanding is obtained
by laying out the relationship among cascading, wavelets,
and scaling. Section 5 presents the controlled-variability
integrate-and-fire algorithm for transforming a rate function
to an interarrival process. Section 6 discusses the additive
nature of rates and the advantages gained thereby from a
modeling perspective. Section 7 introduces the methodol-

2Parallel Workload Archive. http://www.cs.huji.ac.il/
labs/parallel/workload/.
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ogy and experimental design for simulation of Grid schedul-
ing algorithms using synthetic traces. Section 8 presents the
model fitting results using real workload data from the LCG
production Grid and several representative data-intensive
clusters. Simulation results for the scheduling strategies are
presented and analyzed as well. Conclusions and future work
is discussed in Section 9.

2. POINT PROCESSES
Job arrivals can be described as a (stochastic) point pro-

cess, which is defined as a mathematical construct that rep-
resents individual events as random points at times {tn}.
There are different representations of a point process. An in-
terarrival time process {In} is a real-valued random sequence
with In = tn − tn−1 and it completely describes the point
process. The sequence of counts or the count process, on the
other hand, is formed by dividing the time axis into equally
spaced contiguous intervals of T to produce a sequence of
counts {Ck(T )}, where Ck(T ) = N((k + 1)T ) −N(kT ) de-
notes the number of events in the kth interval. The nor-
malized version of the sequence of counts is called the rate
process Rk(T ), where Rk(T ) = Ck(T )/T .

In general, forming the sequence of counts loses informa-
tion because the inter-event times within interval T are not
preserved. Nevertheless, this representation is of primary
importance because it preserves the correspondence between
the discrete time axis of the count process {Ck(T )} and the
absolute “real” time axis of the underlying point process.
We can readily associate correlations in the process {Ck(T )}
with correlations in the point process. The interarrival time
process, on the other hand, eliminates the direct correspon-
dence between absolute time and the index number therefore
it only allows rough comparisons of correlations [9]. As is
shown in [6], measures based on interarrivals are not able
to reliably reveal the correlation structures of the underly-
ing job arrival processes and count based measures should be
trusted instead. Figure 2 illustrates such a case that the rate
process is LRD while the interarrival process is short range
dependent with quickly vanishing autocorrelation lags.

3. SCALING, LRD, AND FRACTALS
Physical processes can be observed at a large range of

scales. For instance, one can represent the network traffic
as the number of bytes at the level of milliseconds, seconds,
up to minutes. On clusters and Grids the number of job
arrivals can be aggregated and averaged every second, ev-
ery minute or even every hour. Scaling, or scale invariance,
means the lack of any special characteristic scale (all scales
have equal importance). The power law relationship is in-
trinsic in understanding the scaling behavior and it occurs in
many of the following presentations, such as the first-order
statistics (marginal distribution), the second-order statistics
(slow decaying variance, ACF), and nonlinear transforma-
tions (spectrum, wavelet coefficients). The scaling compo-
nent can be estimated via some of these transformations,
showing as a slope in the log-log plot [1].

Exact self-similar and long range dependent (LRD) pro-
cesses are the two most important classes of the general
scaling processes. A process X(t) is said to be long range de-
pendent (LRD) if either its autocorrelation function (ACF)
or power spectrum satisfies the following conditions:

R(k) ∼ crk
α−1, k →∞, or S(f) ∼ cff

−α, f → 0. (1)

The autocorrelation function R(k) decays so slowly thatP∞
k=−∞R(k) = ∞ and S(0) = ∞. Frequency-domain char-

acterization of LRD leads to a class of so-called 1/f-like
processes or 1/f noise [18].

Scaling with one single component is referred as monofrac-
tal. If multiple scaling components are found within one
process, or the scaling is time-depedent, the process is called
multifractal. As an example the count process can exhibit
biscaling [1]. The scaling concentrated at lower scales indi-
cates the fractal nature of the sample path. The alignment
at higher scales, on the other hand, resembles that of a sta-
tionary short range dependent (SRD) process. Such a pro-
cess is illustrated in Section 8 and models that can capture
its behavior are discussed in the following section.

4. WAVELET ANALYSIS AND SYNTHESIS
Multiplicative cascades [5] form a very important paradigm

for generating multifractal processes. Our discussion in this
section starts with the simplest multiplicative process called
binomial cascade. Binomial cascades based models have
been proposed to capture the LRD and multifractal na-
ture of a variety of processes, including disk and network
traffic [12, 17]. We choose the multifractal wavelet model
(MWM) introduced by Riedi et al. [12] because it provides
a coherent wavelet framework for analysis and synthesis of
the scaling behavior. Moreover, with the wavelet energy de-
cay estimated from the original process, MWM can poten-
tially model the scaling behavior with multiple exponents
(e.g. biscaling). We discuss the discrete wavelet transform
(DWT) in the framework of filter banks (introduced by S.
Mallat [10]), based on which the structure of the multifractal
wavelet model (MWM) is well explained.

Due to its inherent multiresolution properties, wavelets
provide a natural framework for analyzing the scaling be-
havior. Like the Fourier transform that decomposes signals
with sinusoidal functions, the wavelet transform projects
the signal onto the so-called wavelets [10, 14]. A wavelet
function ψ(t) is a function that can be scaled and shifted:

ψj,k(t) = 2j/2ψ(2jt−k). There also exists a scaling function
φ(t), which can be scaled and shifted as well. As a result the
signal is decomposed into a sum of weighted scaling func-
tions and wavelets:

X(t) =
X

k

cj0,kφj0,k +
X
j≤j0

X
k

dj,kψj,k(t), (2)

where c(j0, k) and d(j, k) are referred as scaling coefficients
(or approximations) and wavelet coefficients (or details), re-
spectively.

A discrete wavelet transform (DWT) of a signal can be
calculated by passing the signal recursively through a set of
lowpass and bandpass filters [14]. The scaling function φ(t)
mentioned above corresponds to a lowpass filter while the
wavelet function involves a highpass (or bandpass) filter. In
the Haar case the dilation equation for the scaling function
can be defined as φ(t) = φ(2t)+φ(2t−1). This occurs when
φ(t) is the box function, namely φ(t) = 1 for 0 ≤ t < 1
and φ(t) = 0 otherwise. The wavelet equation, on the other
hand, can be written as ψ(t) = φ(2t)−φ(2t−1). Explicitly,
there is ψ(t) = 1 for 0 ≤ t < 1

2
and ψ(t) = −1 for 1

2
≤ t < 1,

which is called the Haar wavelet. Given the dilation and
the wavelet equation the scaling and wavelet coefficients in



Equation 2 have the following recursive structure:

cj,k =
1√
2
(cj+1,2k + cj+1,2k+1), (3)

dj,k =
1√
2
(cj+1,2k − cj+1,2k+1). (4)

An attractive feature of wavelet-based analysis lies in the
fact that the long range dependent, non-stationary process
turns into stationary, nearly uncorrelated or short range de-
pendent wavelet coefficients d(j, k) [2, 1]. In the case of scal-
ing the energy of these coefficients is power law dependent
on the scale j, denoted by

1

nj

njX
k=1

|dj,k|2 ∝ 2jα. (5)

This property leads to a wavelet-based scaling exponent es-
timation tool called the Logscale Diagram [1], which is used
extensively in our experimental studies.

The multifractal wavelet model (MWM) is capable of gen-
erating stationary, positive, and multifractal processes with
non-homogeneous scaling. The MWM synthesis procedure
resembles the recursive structure of computing the scaling
and wavelet coefficients. By arranging Equation 3 and 4 to

cj+1,2k =
1√
2
(cj,k + dj,k), (6)

cj+1,2k+1 =
1√
2
(cj,k − dj,k), (7)

one constraint can guarantee the positivity of the process:

|dj,k| ≤ cj,k. (8)

A multiplicative model can be built that automatically sat-
isfies constraint (8) by defining dj,k = Aj,k×cj,k with Aj,k ∈
[−1, 1]. The recursive structure can be applied to generate
data samples: the finest-scale scaling coefficients form the
output MWM process.

A key characteristics of MWM is that the correlations and
fractal behavior of the output process can be controlled by
the wavelet energy decay of the data. This property is essen-
tial to reproduce the scaling behavior of the original process.
A simple way to control energy decay is to fix the energy at
the coarsest scale (j = 0) and set the ratios of energy for

other scales with Rj =
var(dj−1,k)

var(dj,k)
. For a stationary LRD

1/f process, we can see from Equation 5 that Rj = 2α is a
constant. For the real world data it is shown in [12] that

Rj ∝
var(A(j−1))

var(A(j))(1 + var(A(j−1)))
, (9)

and this recurrence can be solved recursively. We can see
that the wavelet energy decay can be controlled by the mul-
tipliers A(j), to be exact, the probability densities for A(j).
For details about the choices of A(j), the data fitting proce-
dure, and the multifractal analysis of MWM we refer to [12].
In our experimental studies we use a symmetric beta (β)
distribution for A(j). The model is therefore called β multi-

fractal wavelet model (βMWM)3.

3The Matlab codes for MWM can be obtained from Digital
Signal Processing group at Rice University, which is avail-
able at http://www-dsp.rice.edu/software/mwm.shtml.

5. CONVERSION FROM RATES TO INTER-
ARRIVALS

Although correlations and the scaling behavior can only
be reliably revealed using the count/rate process, it is nec-
essary to generate a point process in the form of interarrival
times so that a full description can be obtained for modeling
purposes. A simple method of transforming a rate function
into interarrivals is the integrate-and-fire (InF) algorithm.
The InF algorithm generates an event each time the inte-
gral of the rate µ(t) reaches a value of unity. It then resets
the integrated value to zero whereupon the process begins
anew, so the (k + 1)st event can be obtained fromZ tk+1

tk

µ(t)dt = 1. (10)

This is a direct conversion from a rate process to a point pro-
cess therefore the stochastic and fractal nature is completely
determined by the rate process.

A more sophisticated method derived from above is the so-
called controlled-variability integrate-and-fire (CV-InF) al-
gorithm [15]. After generating the event tk+1 according to
Equation 10, the (k + 1)st interarrival time (tk+1 − tk) is
multiplied by a Gaussian random variable with zero mean
and variance σ2. Therefore tk+1 is now replaced by

tk+1 + σ(tk+1 − tk)N (0, 1). (11)

CV-InF introduces a second source of randomness that can
be specified and controlled via σ, which is independent from
the rate process. Within the limit σ → 0 CV-InF turns into
the standard integrate-and-fire (InF) algorithm. Within the
limit σ →∞, on the other hand, it leads to a homogeneous
Poisson process and none of the stochastic nature of the rate
process will be preserved. As σ increases from zero, the frac-
tal characteristics of the rate process is progressively lost. A
small σ value (compared to the average interarrival time) is
desirable if one want to preserve the fractal behavior of the
rate process at the same time introduce certain randomness
in the interarrival process.

6. THE ADDITIVE NATURE OF RATES
Given the same count interval T , the rate processes can be

added together to create an aggregated rate process. This
additive nature of rates is very attractive from a modeling
perspective. It suggests that the whole arrival process can be
divided into rate processes by Virtual Organizations (VOs),
users, or patterns, being modeled individually, and aggre-
gated back to form a whole unified process. The VO or user
names can be included in the synthetic traces, which is valu-
able for scheduling studies that take VO/user policies into
account [4]. Distinctive patterns, such as pseudo-periodicity
and long range dependence, have been identified for VOs
both at the cluster and Grid level [6]. This indicates that
VO is an appropriate level for modeling different patterns.
The rate representation not only preserves the correlation
structures of the underlying arrival process but also enables
aggregation, which is not possible with interarrivals. Sec-
tion 8 uses an example of VO aggregation to illustrate the
additive nature of rates.

7. MODEL-DRIVEN SIMULATION
We simulate the Grid resources using GridSim [3], which is

a discrete event simulator based on simjava. The first setup



Trace Location Architecture Scheduler #CPUs Period VOs #Jobs
LCG1 Grid wide clusters Grid Broker ∼30k Nov 20-30, 2005 cms, atlas 188,041
LCG2 Grid wide clusters Grid Broker ∼30k Dec 19-30, 2005 cms, atlas 239,034
NIK05 NIKHEF, NL PC cluster PBS/Maui 288 Sep - Dec, 2005 atlas 63,449
LPC05 LPC, FR PC cluster PBS/Maui 140 Feb - Apr, 2005 biomed 71,271
RAL05 RAL, UK PC cluster PBS/Maui 1000 Oct - Nov, 2005 hep1, atlas 332,662

Table 1: Summary of workload traces used in the experimental study.

is a single space-shared cluster with one queue and multi-
ple computer nodes. The scheduling algorithm is first-come
first-served (FCFS). The second setup consists of multiple
FCFS-based clusters and a single Grid resource broker. The
algorithm used by the broker is called Minimum Comple-
tion Time (MCT). MCT assigns each incoming job to the
cluster with the minimum expected completion time for that
job. The clusters are assumed not empty and have their own
local background workloads.

The Grid-level as well as background workloads are gen-
erated by models. We consider that a job is an independent
computationally-intensive task requiring one single CPU.
Since our goal is to investigate the performance implications
of correlations in the arrival process, we model the job run
time as an exponentially distributed random variable. Job
arrivals, on the other hand, require three different models to
produce the desired correlation structures. The first model
is a Poisson process, which has no dependency (NoD) in the
time series. The second model is a 2-state Markov moder-
ated Poisson process (MMPP2) and it is considered short
range dependent (SRD). The third model is the one pre-
sented in this paper for modeling long range dependence
(LRD). Firstly the rate process is generated using the mul-
tifractal wavelet model, then it is being transformed into
interarrivals via the CV-InF algorithm. The performance
metrics used are slowdown and utilization. Slowdown is de-
fined as the average job response time (run time plus queue
wait time) divided by the average job run time. Utilization
means the mean system utilization and it is calculated as
the proportion of system’s resources which are busy. Anal-
ysis of the simulation results are presented in the following
section.

8. EMPIRICAL EVALUATION
In this section we present experimental studies using real

workload data which exhibit long range dependent and mul-
tifractal arrival patterns. Table 1 presents a summary of
workload traces under study. LCG1 and LCG2 are two
traces from the LHC Computing Grid. The LCG produc-
tion Grid currently has approximately 180 active sites with
around 30,000 CPUs and 3 petabytes storage, which is pri-
marily used for high energy physics (HEP) data processing.
There are also biomedical applications running on the Grid.
Almost all the jobs are computationally-intensive tasks, re-
quiring one CPU to process a certain amount of data. The
workloads are obtained via the LCG Real Time Monitor4

for two periods: LCG1 consists of jobs of eleven consecutive
days from November 20th to 30th in 2005, while LCG2 is

4The Real Time Monitor is developed by Imperial College
London and it monitors jobs from most of the major Re-
source Brokers in LCG, therefore the data it collects is rep-
resentative at the Grid level. http://gridportal.hep.ph.
ic.ac.uk/rtm/.

from December 19th to 30th in the same year. cms and atlas,
two HEP experiments running on LCG, are the two main
VOs whose arrival processes exhibit long range dependence.
At the cluster level we use traces from three data-intensive
clusters, namely, NIK05 and LPC05, and RAL05. They are
located at the HEP institutes in the Netherlands, France,
and UK, respectively. All of these sites participate in LCG,
however, it should be noted that these clusters are involved
in multiple different collaborations and have their own local
user activities. Arrival processes of atlas on NIK05, RAL05
and biomed on LPC05 are long range dependent, while hep1
on RAL05 shows multifractal (biscaling) behavior. Since
no single statistic is able to completely characterize a point
process, we assess the goodness of fit based on a range of
statistical measures reflecting the first order and the second
order properties.

8.1 Model Fitting
As an representative example for LRD, the fitting re-

sults for cms on LCG1 are shown. Plotting the data se-
ries will give a good visual indication of the fitting. As
is shown in Figure 1, for the rate process we can see that
the fitted MWM model visually resembles the trace data.
The interarrival process obtained by the CV-InF algorithm
(σ = 0.1), on the other hand, is visually similar to the real
data as well in terms of amplitude burstiness. By exam-
ining the complementary cumulative distribution function
(CCDF) in Figure 2, we can see that the model is able to
approximate the distributions of real data for both rates
and interarrivals. Figure 2 also shows the autocorrelation
function (ACF) and the Logscale Diagram. The autocorre-
lations in the rate process are excellently reconstructed by
the MWM model. It is clearly observed that the interarrival
process is weakly-correlated, which empirically proves that
the correlation structures can only be reliably revealed by
the count/rate process. The synthetic interarrival process
is indeed short range dependent, matching the correlations
of the original process very well. As to the second-order
scaling exponents calculated by the Logscale Diagram, we
can see that the scaling behavior (long range dependence)
is almost perfectly reproduced by the MWM model with a
scaling exponent α ≈ 1.1. More fitting results for long range
dependent processes such as atlas on LCG1 and biomed on
LPC05 are not shown here due to space limits. Generally
speaking the autocorrelations and the scaling behavior can
be well reconstructed by MWM modeling and the marginal
distribution of interarrivals can be approximated by the syn-
thetic process converted by the CV-InF algorithm.

Figure 3 shows the fitting results for hep1 on RAL05 with
a multifractal (biscaling) arrival behavior. At scale5= 6 the
rate process is short range dependent with quickly vanishing

5A dyadic scale is used so scale j means T = 2j seconds in
the count/rate based measures.
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Figure 1: Plotting the rate and the interarrival processes of the original data and the synthetic traces,
respectively (σ = 0.1 in the CV-InF algorithm).
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Figure 2: βMWM fitting results for cms on LCG1 (σ = 0.1 in the CV-InF algorithm).
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Figure 3: βMWM fitting results for hep1 on RAL05 (σ = 0.1 in the CV-InF algorithm).

autocorrelation lags. It becomes interesting when we look at
the scaling behavior in the Logscale Diagram. There are two
alignment regions: in the smaller scale region (scale < 7) it
indicates the fractal nature of the sampling path. In the
larger scale region (scale > 7), on the other hand, the close-
to-horizon alignment suggests weak autocorrelations [15]. It
is clearly observed that the biscaling behavior can be well
reconstructed by the MWM model. The success of MWM
lies in its inherent structure of controlling the wavelet energy
decay. If we recall the Equation 9 in Section 4, the energy
decay ratios of wavelet coefficients are approximated from
the data scale by scale. By this way it is possible for the
MWM to reproduce a range of scaling behavior, including
exact self-similarity, long range dependence, and multifrac-
tals.

8.2 VO Aggregation of Rates
Figure 4 shows an example of VO aggregation to illus-

trate the additive nature of rates. The job arrival process
of lhcb on LCG1 is pseudo-periodic, which shows a sequence
of equally-spaced peaks in the rate ACF plot. The job ar-
rival process of cms on LCG1 is long range dependent with
a slowly decaying ACF lags. The addition of these two rate
processes is shown as the solid line in the right part of Fig-
ure 4. This aggregated process embodies properties of both
contributing processes: a slow-decaying rate ACF lags with
equally-spaced peaks. We model the pseudo-periodic pro-
cess using a matching pursuit approach [7] and the long
range dependent process using the MWM model described
above. The aggregation of synthetic data from the two mod-
els, showing as a dotted line in the right part of Figure 4,
matches well with the aggregation of the original data. The
additive nature of rates is very attractive in modeling the
arrival processes. Different patterns can be modeled sepa-
rately and added back to a whole unified process, in which
desired attributes such as VOs and users can be included.

For a full model the CV-InF algorithm can be applied to
convert a rate process to an interarrival process.

8.3 Performance Analysis of Correlations

Model Parameters
Poisson µ = 10
MMPP2 σ1 = 0.04, σ2 = 0.01, λ1 = 8.0, λ2 = 1.0
MWM p = [3.3, 5.3, 6.6, 7.5, 6.7, 7.1, 4.8, 3.0, 2.2, 1.4],

µc = 0.28, σc = 0.33

Table 2: Model parameters used in experiments.
MWM parameters are fitted using biomed, LPC05.

Following the experimental setup described in Section 7,
we drive the simulation of scheduling using the synthetic
traces generated by models. The model parameters are pro-
vided in Table 2. From the ACF plots of the rate processes
shown in Figure 5 (left) we can see that the selected mod-
els generate the desirable correlation structures in job ar-
rivals, namely, NoD (Poisson), SRD (MMPP2), and LRD
(MWM). All the interarrival processes are scaled to main-
tain the same mean and CV for the comparison studies. The
run time process is drawn from an exponential distribution
with an average run time equal to 5,000 seconds. In the
single cluster case we set the number of processors to 100.
Performance is measured by the average job slowdown as
a function of system utilization, which is shown in Figure 5
(middle). We can see that the impacts of autocorrelations is
very large: the bigger the ACF, the worse the performance.
Similar results have been reported in a clustered web server
environment [19]. The cause of such performance degrada-
tion can be the high degree of temporal burstiness in a LRD
process. Bursty arrivals, which is the opposite of smooth-
ness (e.g. Poisson), result in a long queue of waiting jobs.
Consequently it leads to much longer queueing delays (big-



0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

Lag

A
C

F

 

 

lhcb, LCG1 (scale=6)
cms, LCG1 (scale=6)

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

Lag

A
C

F

VO aggregation

 

 

Real data (lhcb + cms)
Fitted model

Figure 4: VO aggregation of long range dependent and pseudo-periodic rate processes.
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ger slowdown for jobs) and overall lower system utilization.
In the single broker case the performance is measured by
the average job slowdown as a function of the run time scal-
ing ratio on resources. The run time scaling ratio is the job
MIPS rating versus resource MIPS rating and a higher ra-
tio indicates a larger average run time. By varying the run
time scaling ratio we get the curves as shown in Figure 5
(right). Although not as big as in the single cluster case,
performance degradation is observed for large autocorrela-
tions in the lower range of the scaling ratios. As the average
run time increases the average slowdowns of all workloads
converge. We can conclude that autocorrelations in the ar-
rival processes results in worse system performance, both at
the local and the Grid level.

9. CONCLUSIONS AND FUTURE WORK
In this paper we apply the Multifractal Wavelet Model

(MWM) in modeling long range dependent and multifractal
job arrival processes. These patterns are identified in data-
intensive clusters and Grids by using the count/rate repre-
sentation of the original processes. The second order prop-
erties such as the autocorrelation function and the scaling
behavior can be well reconstructed by MWM modeling. A
controlled-variability integrate-and-fire (CV-InF) algorithm
is used to convert a rate process into an interarrival process
so that the arrival process can be fully generated. Together

with the doubly stochastic models for middle to short range
dependence [8] and the matching pursuit model for pseudo-
periodicity [7], we are able to characterize and model the
main patterns that are identified for the Grid job arrival
processes. The additive nature of rates makes it flexible in
model composition and aggregation. We further conduct
simulation studies to quantify the performance impacts of
correlated job arrivals in Grid scheduling and it is shown
that autocorrelations can cause large performance degrada-
tions.

The effects of autocorrelations in system performance have
important implications in the performance evaluation stud-
ies of Grid scheduling algorithms. Most of the previous work
either use supercomputer traces, or make simplified assump-
tions on workloads (Poisson arrivals, fixed-interval arrivals,
or constant background loads). We show that real work-
loads on production Grids exhibit long range dependence
and have a high degree of temporal burstiness. Under such
workload conditions the performance evaluation results can
be highly different and it has been quantified in this paper.
We argue that more realistic workloads should be taken into
account in future Grid scheduling studies, and the model-
ing approach proposed in this paper provides one way of
generating synthetic traces.

Future work includes a comprehensive study of perfor-
mance impacts of workload correlations in Grid scheduling,



including both job arrivals and run times. How to improve
scheduling under LRD and temporal burstiness is also a very
interesting research direction. For a broader influence and
adoption, especially in the Grid scheduling community, we
are preparing to release tools and software developed for
Grid workload modeling6.
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