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ABSTRACT 
A variety of file replication and replacement algorithms were 
proposed for the Data Grids in the literature. On the other hand, 
real-time Grid applications are emerging in many disciplines of 
science and engineering. Thus, it is natural to ask about the real-
time performance of these file replication and replacement 
algorithms. Based on this motivation, in this study, the 
performance of three replication algorithms, namely fast spread, 
cascading, and caching, are evaluated together with three different 
file replacement policies, including least recently used, least 
frequently used, and least urgent first, under various Grid settings. 
For this evaluation, a process oriented and discrete-event driven 
simulator is developed. A detailed set of simulation studies are 
conducted using the simulator and the results obtained are 
presented to elaborate on the real-time performance of the 
aforementioned replication algorithms. 
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1. INTRODUCTION 
Data Grids, which are composed of geographically distributed 
storage, computing, and networking resources, are envisaged to 
run a variety of scientific simulation and experiment applications 
[1]. Common to such applications is that they involve a large 
number of data-intensive jobs and require the efficient 
management and transfer of terabytes and petabytes of 
information [1], [2]. A major problem identified for the peta-scale 
data intensive computing is how to schedule jobs and their related 
data in an effort to minimize jobs’ completion times and 
bandwidth/storage space consumed due to the file transfers [3]-
[7]. In order to alleviate these problems, data are dynamically 
replicated on multiple storage systems guided by a replication 
algorithm [3]-[11].  

 

Data Grids are also considered for running applications with real-
time requirements. A few examples of real-time Grid applications 
can be found in [12]-[16]. A common characteristic of such 
applications is that data produced or stored in one component of 
the system need to be transferred across a network of limited 
resources to another component (or components) while respecting 
associated real-time attributes. Achieving such data transfers in a 
timely manner and servicing as many data transfer requests as 
possible in a distributed environment is a nontrivial problem 
known as the real-time data dissemination problem [17]-[19]. 
The real-time data dissemination algorithms in [17]-[19] can be 
grouped into two categories based on how many data transfer 
requests are scheduled in each iteration. In the first category, 
Partial Path Heuristic (PPH), Full Path Heuristic (FPH), Full 

Path All Destinations Heuristic (FPA) [17] and Extended Partial 

Path Heuristic (EPP) [18] schedule only one request per iteration. 
In the second one, Concurrent Scheduling Heuristic (CSH) [18] 
and Blocking Analysis Concurrent Scheduling (BACS) [19] try to 
transfer data related to a set of requests in parallel. However, the 
studies in [17]-[19] assumed a specific file replication algorithm 
and they did not study the performance of these real-time data 
scheduling algorithms under different data (file) replication 
algorithms. Furthermore, they evaluated the algorithms’ 
performances under a naïve (static) data replacement policy and 
uniformly distributed data access pattern only. Recently, in [20], 
the performance of both FPH and EPP were investigated for a 
dynamic data replacement policy and a variety of data access 
patterns.   

The motivation of this study stems from the following 
observation. The studies in [3]-[11] assessed the value of a variety 
of file replication/replacement strategies under different data 
access patterns. Because the scope of these studies did not include 
real-time issues they did not evaluate the performance of the 
proposed algorithms therein under time constraints. However, the 
real-time performance of Grid could be essential for some Grid 
applications as exemplified above. Thus, this preliminary study 
tries to elaborate on the real-time performance of the file 
replication algorithms, namely fast spread, cascading, and 
caching, together with three file replacement heuristics, which are 
least recently used, least frequently used, and least urgent first, 
under different Grid conditions.   
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2. A MULTI-TIER DATA GRID MODEL 
A Data Grid is composed of a set of machines M= {M1, M2, ..., 
Mm} and links L= {L1, L2, …, Ln} each of which provides a 
bidirectional connection between two machines. Each machine Mi 
has a limited storage capacity Ci and each link Lj is associated 
with a specific bandwidth of Bj. The machines in the Data Grid 
are assumed to be organized in tiers, which results in a multi-tier 

computing model inspired by the Large Hadron Collider (LHC) 
computing model [21], [22]. In this study, the Data Grid is 
modeled to have four tiers. Tier 0 is the source where all data files 
are produced and initially stored. Connected to the Tier 0 machine 
is the Tier 1 machines which correspond to a few national centers 
around a country. Each Tier 1 machine has a number of related 
Tier 2 machines each of which models a workgroup at a university 
or research laboratory. Finally, each Tier 2 machine is associated 
with a set of Tier 3 workstations.  

In the tiered computing model adopted, file transfer requests can 
come from only the Tier 3 machines which provide the computing 
power of the Grid. On the other hand, the Tier 1 and Tier 2 
machines play the role of the intermediate replica servers on 
which the files can be replicated during their transfer to the Tier 3 
machines. For the tiered computing model, the store-and-forward 
is adopted as the data transfer scheme, which requires that a 
machine receive the file completely before it starts sending it to 
the next machine along the path to the destination. As a result, 
when a file is transferred from the Tier 0 to a Tier 3 machine, both 
Tier 1 and Tier 2 machines along the path also receive the file in 
addition to the destination machine.  

The Data Grid is used for running real-time distributed 
applications which generate a set of requests R= {R1, R2, …, Rr} 
for data files X, where X= {X1, X2, …, Xq} denotes the set of q 
unique data files. Each request Rk is associated with one of q files 
Xk to be transferred from a source machine to a destination 
machine Mk, a deadline value Dk by which file Xk must be 
delivered to its destination Mk. Thus, request Rk is summarized by 
the following tuple: {Xk, Mk, Dk}.  

In order to facilitate dynamic file replication in the multi-tier Data 
Grid, following structures are assumed to be in place in the 
system: Replica Catalog (RC), Replica Manager (RM), and Local 

Replica Manager (LRM). The RC is a centralized database which 
stores the mappings from the logical file names to the physical file 
names in the Grid. The logical file names (X) are unique 
identifiers for the data files in the Grid, whereas the physical file 
names represent their physical locations. When the RC is queried 
by the RM using a logical file name (Xk) the RC should respond 
to the RM with one or multiple available physical file names 
corresponding to the logical file name. In addition to responding 
to the RM’s queries, the RC also receives the logical file name 
update messages from the LRMs and consolidates them into the 
database.  

The RM is a centralized service with the following functions. The 
RM accepts the file transfer requests from the LRMs of the Tier 3 
machines. Upon receiving a request Rk, it should query the RC 
and obtain a set of physical file names related to the logical file 
name Xk. For each physical file name returned by the RC, the RM 
evaluates the transmission time of the replica to destination Mk 
using the predicted performance of the network. Then, it find outs 
the replica with the minimum transmission time and the computes 

the request’s urgency, denoted by Uk. The urgency can be 
computed as Uk = Dk – tk

RM – tXfer, where tk
RM is the RM’s current 

wall-clock time and tXfer is the estimated file transfer time. If the 
request’s urgency is equal to or less than zero, the RM drops the 
request since it is impossible to meet its deadline under the 
current network conditions. Otherwise, the RM notifies the 
corresponding LRM about the file transfer request (Rk) via a 
request message. In order to support the store-and-forward model 
for the real-time file transfers, the RM includes the urgency of the 
request (Uk) and the time of the urgency computation (tk

RM) into 
the request message. 

The LRM runs on all machines in all tiers and manages the 
storage resource of the machine on which it is deployed. The 
LRM is responsible for the following activities: (1) honoring a file 
transfer request, (2) forwarding a file to the next machine along 
the path, (3) keeping its Local Replica Catalog (LRC) up-to-date 
and publishing the LRC’s content to the RC, (4) executing a 
particular file replacement algorithm. The way an LRM honors a 
file transfer request depends on where it is deployed. If the LRM 
is deployed on a Tier 3 machine, upon receiving a request, it 
checks its Local Replica Catalog (LRC) to see if it owns the 
requested file, where the LRC holds the logical file names on this 
machine. If the LRM owns it, it provides the file to the requestor 
job on the same machine. Otherwise, the Tier 3 LRM sends a 
request to the RM for the remote file access. If the LRM runs on a 
Tier 0, Tier 1, or Tier 2 machine, it will receive the requests from 
the RM, not from a job on the same machine. After receiving the 
request message from the RM, the LRM starts the transmission of 
the requested file to the destination machine only if the urgency of 
the request is equal to or greater than zero. The LRM can compute 
the current urgency of the request as Uk – (tk

LRM  - tk
RM), where 

tk
LRM is the LRM’s current wall-clock time.  

Another responsibility of a Tier 1 and Tier 2 LRM is to forward a 
file to the next machine along the request’s path after the file is 
completely written into its local storage. Similar to honoring a 
request, the LRM must compute the request’s urgency and process 
the request accordingly. The third function of the LRM is that it 
must keep its LRC up-to-date by updating the LRC whenever a 
new file is written into the local storage. Following the update, the 
LRM must publish the content of its LRC to the RC. Finally, the 
LRM must implement a file replacement policy to choose one or 
more files to delete when a new file needs to be copied into the 
local storage facility without enough available storage space. 

3. FILE REPLICATION ALGORITHMS 
In the literature, a variety of dynamic file replication algorithms 
has been proposed for replicating files without real-time 
requirements in Data Grids. In this preliminary study, among 
these replication algorithms, three basic algorithms are chosen for 
the evaluation of the impact of the file replication on the real-time 
data distribution in a multi-tier Grid environment. All three 
replication algorithms are taken from [8].  

Caching: The replica manager forwards all file transfer requests 
to the LRM of the Tier 0 machine. As a result, the Tier 1 and Tier 
2 machines do not function as replica servers and their LRMs are 
not required to publish their LRCs. Once a Tier 3 machine 
receives the file it has requested, it keeps the file in its local 
storage for a possible future reference until it gets replaced.  



Cascading: In order to support the cascading replication 
algorithm, LRMs also need to keep a history for each file they 
have, where the history information includes the number of 
requests for that file and the machines each request came from. 
After an LRM honors a request from the RM it updates the file 
history information. During the history update, if the LRM finds 
out that the number of requests for the file has reached to a preset 
threshold value, it determines the best client for the file and 
forwards it to the next machine (one tier below) along the path to 
the best client machine. The best client is a Tier 3 machine which 
has generated the most requests for that file. With the completion 
of the forwarding operation, the LRM clears the history 
information of the file and starts over logging again. Furthermore, 
the LRM of the next machine one tier below updates its LRC and 
publishes the new content, which will make this machine an 
alternative source for the file after the RC is updated accordingly. 
Once the requestor Tier 3 machine receives the file, it caches the 
file until it gets replaced. As a result, the cascading replication is 
implemented in a distributed fashion by the LRMs deployed on 
the Grid machines. Note that the replica manager initially sends 
all file transfer requests to the LRM of the Tier 0 machine. 
Furthermore, any regular forwarding of a file due to the store-and-
forward scheme requires neither an intermediate source LRM to 
update its file history nor an intermediate destination LRM 
publish its LRC after the completion of the forwarding. 

Fast Spread: This replication algorithm is naturally supported by 
the adopted data transfer scheme. During the transmission of a 
file, any LRM on a Tier 1 or Tier 2 machine along the path to the 
destination machine needs to update its LRC and to publish it to 
the RC after the file is written into the local storage. As a result, 
the Tier 1 or Tier 2 machine will be considered as possible source 
machine for that file once the RC receives the LRC update 
message.  

In order to complement these file replication algorithms, a 
particular file replacement policy needs to be enforced by the 
LRMs. In this study, three different file replacement policies are 
considered. These policies are Least Recently Used (LRU), Least 

Frequently Used (LFU), and Least Urgent First (LUF). The first 
two policies are commonly used in the literature and they are 
shown to be as effective as more advanced economic model based 
file replacement policies [5]. The latter is proposed in this study. 

Least Recently Used: LRM keeps a history for each file in its 
LRC indicating the latest time at which that file is accessed. When 
the storage space available is not enough to hold a new file, LRM 
sorts the files in the increasing order of their latest access times 
into a list and then deletes the files starting from the file at the top 
of the list until it frees up large enough storage space for the new 
file.  

Least Frequently Used: In this algorithm, the history information 
for each file is the number of requests for that file. Thus, LRM 
sorts the files in the increasing order of their number of requests 
into a list and then deletes the files starting from the file at the top 
of the list until large enough storage space for the new file is 
obtained. 

Least Urgent First: The history information needed to realize 
this algorithm is the average urgency of the file when LRM 
receives the request message from the RM. As a result, LRM finds 
out the least urgent files on average and removes them from the 
storage to open the necessary space for the new file. 

4. SIMULATIONS 
A simulator was developed to investigate the performance of the 
file replication strategies, Caching, Cascading, and Fast Spread 
together with the file replacement policies, LRU, LFU, and LUF. 
The simulator was written in C programming language using the 
CSIM 19 library [23]. The CSIM library allows the development 
of process-oriented discrete-event simulation programs. A CSIM 
program models a system as a collection of CSIM processes 
which interact with each other by using the CSIM structures. 
Following the CSIM programming style, the simulator developed 
models the file transfer of each request as a process and uses 
events to signal the end of file transfers. Furthermore, the network 
links and storage devices are modeled as facilities, a CSIM 
structure, which can be used and later released by the processes. 

The simulator consists of three parts. The network component is 
used to create LHC-like tiered computing systems. The next 
component of the simulator is the request generator which 
produces real-time file transfer requests. The third component is 
the heuristic which handles the simulation of the file replication 
algorithms and file replacement policies.  

4.1 Network 
With the start of the simulation, a LHC-like tiered computing 
system is created. As in [8] and [10], there are four tiers. The Tier 
0, 1, 2, and 3 are assumed to include 1, 5, 25, and 125 machines, 
respectively, which is a total of 156 machines (85 in [8] and 156 
in [10]). These machines are interconnected by a randomly 
generated tree topology.  

In the tree topology generated, each machine except those in the 
Tier 3 has at least one child machine in the lower tier. The 
bandwidth of a link connecting two machines in the different tiers 
is assumed as follows: 2.5 Gbit/s for a link between Tier 0 and 
Tier 1, 1 Gbit/s between Tier 1 and Tier 2, and 622 Mbit/s 
between Tier 2 and Tier 3.  

In the simulated Grid, the storage capacity of each machine is 
determined based on the relative capacity (R) index, which is the 
ratio between the total storage capacity of Tier 1 and Tier 2 
machines and the total size of all data files. It should be noted that 
a higher value of R will have an effect of allowing more file 
replicas in the Grid. Thus, the performance of a particular file 
replication algorithm depends on the value of R. In the 
simulations, three different values for the relative capacity, which 
are 76.8%, 38.4%, and 19.2%, are assumed and the corresponding 
storage capacities are determined as shown Table 1. 

 

Table 1. Storage capacity configurations for Tier 1 and Tier 2 

machines. 

Case 
Tier 1 Tier 2 Overall 

T1 (TB) R1 (%) T2 (TB) R2 (%) R (%) 

1 1×5 = 5 51.2 
0.1×25 = 

2.5 
25.6 76.8 

2 
0.5×5 = 

2.5 
25.6 

0.05×25 = 
1.25 

12.8 38.4 

3 
0.25×5 
= 1.25 

12.8 
0.025×25 
= 0.625 

6.4 19.2 

 



In Table 1, the relative capacity of the simulated Grid is computed 
as follows. The number of data files in a Grid will be in the order 
of millions. However, it is not feasible to simulate the transfer of 
such a large number of files on a single computer. Thus, the 
number of files is scaled down and it is assumed to be 5000 
during the simulations, each of which is 2 GB. Fixed file size is 
also common in other studies, e.g., [4], [8], [10]. As a result, the 
total size of all files is about 9.75 TB. At the beginning of the 
simulation, all original data files are stored in the Tier 0 machine 
with unlimited storage capacity and all other machines do not 
store any files. Once the requests start coming into the system, 
Tier 1 and Tier 2 machines are used as the replica servers on 
which the original files can be replicated following a replication 
algorithm. Taking case 2 as an example, the total storage capacity 
of Tier 1 machines, T1, is 2.5 TB, where Tier 1 has 5 machines 
each of which has a storage capacity of 0.5 TB; the total storage 
capacity of Tier 2 machines, T2, is 1.25 TB, where Tier 2 includes 
25 machines, each with a storage capacity of 0.05 TB. Thus, the 
total replication capacity, T, is T1 + T2= 3.75 TB and the relative 
capacity R becomes 3.75/9.75= 38.4%. Finally, each Tier 3 
machine has 2 GB of storage capacity which is enough to hold 
only one file.  

4.2 Request Generator 
The request generator component is implemented as a CSIM 
process. During the simulations, the requests are assumed to come 
in to the Grid according to a Poisson process with a specific 
arrival rate. Furthermore, they are submitted only from the Tier 3 
machines [4], [8], [10]. For each submitted request, three different 
parameters are associated with it. First, the request is associated 
with a data file available in the Grid according to a particular file 
access pattern. However, as of now, no actual file access patterns 
for the Grid applications are known. Thus, three commonly used 
file access patterns [3]-[11], namely random, geometric, and Zipf, 
are implemented in the simulator. Specifically, the geometric 
distribution with the file popularity parameter of 0.05 and the Zipf 
distribution with the file popularity parameter of 0.8 are assumed. 
Second, the request is accompanied with a randomly chosen Tier 
3 destination machine. Finally, a deadline value is assigned to the 
request using the formula: Dk = Ak + rand (0, λ)×|Xk|/B2-3, where 
Ak is the arrival time of the request, rand (0, λ) is a function which 
returns a uniformly distributed real number between 0 and λ,  λ 
denotes the deadline factor, |Xk| is the size of file Xk, B2-3 
represents the link bandwidth between Tier 2 and Tier 3 
machines. 

4.3 Heuristics 
Three file replication algorithms and three file replacement 
policies are implemented in another CSIM process, called as 
file_transfer. For each file request submitted, one file_transfer 
process is created to take care of the transfer of the file. During 
the transfer, the process implements the store-and-forward style of 
communication between source and destination as the core 
component. On top of this core, the file replication and 
replacement algorithms are developed. 

In the implementation of the store-and-forward by file_transfer, it 
is assumed that the network links can be used to transfer only one 
file at a time. That is, if more than one file needs to be transferred 
on the same link, these files are serviced in FIFO order on the 
link. An immediate result of this assumption is that the number of 
simultaneous file transfer operations (read or write) for a machine 

cannot be greater than the number of point-to-point connections 
that machine has. In the simulator developed, each machine is 
allowed to have simultaneous file transfer operations as many as 
its point-to-point connections.         

4.4 Performance Results 
Using the simulator developed, a set of simulation studies were 
conducted. First, a base set of results was established. In the base 
set, the fast spread and cascading with LRU, LFU, and LUF and 
caching replication algorithms are evaluated in terms of the 
percentage of the satisfied requests for the random, geometric, and 
Zipf file access patterns under the following simulation 
parameters: number of data files = 5000, number of requests= 
50000, deadline factor= 10, and arrival rate of requests= 1 
request/second. Later, each of these simulation parameters is 
individually varied to study the impact of the parameter on the 
performance of the algorithms. The results of the simulation 
studies are presented in Tables 2-6, where each data shown is the 
average of 10 simulation runs. Note that each iteration of the 
simulation creates a different Grid topology and request set under 
the given simulation parameters. 

Table 2 shows the base set of results. As far as the performance is 
concerned, the fast spread is always the best, followed by the 
cascading, and caching. Note that since the caching algorithm 
replicates files only on the clients, it is not affected by the changes 
in the relative capacity. When the fast spread and caching are 
compared, the caching shows a close performance to the fast 
spread for the random file access pattern only. The reason for the 
close performance is due to the fact that accessing files in random 
fashion decreases the time of stay for files in the replica servers, 
which makes the file replication less effective for the clients. For 
the geometric access pattern, the fast spread outperforms the 
caching in the range of 40% and %54; for the Zipf, the 
performance difference is between 14% and 29%. When the 
performance of the cascading and caching are compared, the 
performance improvement of the cascading is between 35% and 
47% for the geometric and between 4% and 12.5% for the Zipf 
file access patterns, respectively. For the random access pattern, 
the caching is a bit better than the cascading. This can be 
attributed to two factors. The first one is as explained above. The 
second factor stems from the nature of the cascading. That is, the 
number of file transfers under the cascading is more than the 
number of file requests (50000). This excess number of the file 
transfers is used for replicating files to machines on the paths to 
the best client machines, which increases the network load and 
makes more requests to be unsatisfied. Finally, when the fast 
spread and cascading are compared, the fast spread always 
outperforms the cascading with the following margins: 4%-11% 
for the random, 4%-%5 for the geometric, and 8%-14% for the 
Zipf file access pattern. The additional network load created by 
the cascading as well as the aggressive replications performed by 
the fast spread have created this performance difference. 

According to Table 2, as expected, decreasing the relative 
capacity has adverse impact on the performance of both fast 
spread and cascading. In terms of the effect of the file access 
pattern on the performance, all three algorithms show their best 
performance for the geometric access pattern, followed by the 
Zipf and random. Under the geometric and Zipf access patterns, 
several files are requested more as compared to the others. This 
makes it more probable to  find  these  popular  files on the replica  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The performance of the fast spread and cascading with LRU, LFU, and LUF and caching 

under the base simulation parameters. 

 

Base 

Random Geometric Zipf 

76.8% 38.4% 19.2% 76.8% 38.4% 19.2% 76.8% 38.4% 19.2% 

Fast 

Spread 

LRU 60 57 55 88 86 82 72 69 67 

LFU 58 56 55 87 83 80 69 67 64 

LUF 60 57 55 86 84 81 71 68 66 

Cascading 

LRU 54 53 53 84 83 79 63 63 62 

LFU 54 53 53 84 80 77 63 62 60 

LUF 54 53 53 84 80 77 63 61 58 

Caching 55 57 56 

Table 3. The performance of the fast spread and cascading with LRU, LFU, 

and LUF and caching for two different values of the number of files. 

  No of files= 5000  (Base) No of files= 10000 

  Random Geometric Zipf Random Geometric Zipf 

Fast 
Spread 

LRU 55 82 67 56 82 63 

LFU 55 80 64 55 80 61 

LUF 55 81 66 55 80 63 

Cascading 

LRU 53 79 62 54 79 61 

LFU 53 77 60 54 77 60 

LUF 53 77 58 54 77 58 

Caching 55 57 56 54 58 56 

Table 4. The performance of the fast spread and cascading with LRU, LFU, and LUF and 

caching for two different values of the number of requests. 

  No of requests= 50000  (Base) No of requests= 75000 

  Random Geometric Zipf Random Geometric Zipf 

Fast Spread 

LRU 55 82 67 55 82 64 

LFU 55 80 64 54 80 64 

LUF 55 81 66 55 81 66 

Cascading 

LRU 53 79 62 50 79 64 

LFU 53 77 60 50 75 61 

LUF 53 77 58 50 78 60 

Caching 55 57 56 54 57 58 



servers, which results in more requests to be satisfied. The worse 
performance under the Zipf file access pattern can be due to the 
long-tail of the Zipf distribution. That is, the number of different 
files requested under the Zipf is more as compared to the 
geometric distribution and this adversely affects the replication 
performance. Finally, in terms of the file replacement policy of the 
choice, all three policies have lead to quite similar performance 
values. More specifically, the LRU is followed by the LUF and 
then LFU. 

Table 3 compares the performance of the algorithms when the 
number of files is increased from 5000 to 10000 while keeping the 
other simulation parameters unaltered and the relative capacity at 
19.2%. The only noticeable performance difference as compared 
to the base case is observed for the fast spread under the Zipf file 
replacement policy, which is not very significant. 

Table 4 presents the performance of the algorithms when the 
number of requests is increased from 50000 to 75000 while 
keeping the other simulation parameters fixed. This simulation 
study is conducted to see how the algorithms react when the 
request load in the Grid is increased. All three algorithms have 
performed a stable performance under heavier load conditions. 
Based on the results in Table 3 and 4, it can be concluded that the 
algorithms studied show scalable performances.  

Table 5 shows the performance of the algorithms when the 
deadline factor is increased from 10 to 20 while keeping the other 
simulation parameters unchanged. Note that increasing the 
deadline factor leads to relaxing the request deadlines. Thus, it is 
expected that all three algorithms perform better when λ= 20, 
which is really the case in Table 5.  

Table 6 shows the performance of the algorithms when the request 
arrival rate is increased from 1 request/sec to 2 requests/sec while 
keeping the other simulation parameters fixed. Increasing the 
request arrival rate is expected to lead to more resource contention 
among the requests. Consequently, the less number of requests 
will be satisfied. According to Table 6, all three algorithms have 
been significantly affected and they have experienced sharp 
decreases in their performances. For the random and Zipf file 
access patterns, the decrease in the performance is more profound; 
for the geometric access pattern, it is more tolerable.    

5. CONCLUSIONS  
From the results presented in the previous section, it is evident 
that the file replication algorithm chosen and the file access 
pattern of the tasks running on the Grid have significant impact on 
the real-time Grid performance. Among the simulated algorithms, 
the fast spread has shown superior performance to the cascading 
and caching and the caching being the worst of the three. In 
addition to the file replication algorithms, three different file 
replacement policies are accounted for the fast spread and 
cascading. Among these policies, the LRU has constantly 
improved the performance more as compared to the LUF and 
LFU. Finally, the algorithms have demonstrated better 
performance under the geometric file access pattern, followed by 
the Zipf and random. These initial yet detailed results on the 
impact of the replication algorithms on the real-time Grid 
performance motivate the development of more sophisticated 
replication algorithms to better use of the Grid resources, which 
will be topic of the future research.   
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Table 5. The performance of the fast spread and cascading with LRU, LFU, and LUF and 

caching for two different values of deadline factor. 

  Deadline factor= 10  (Base) Deadline factor= 20 

  Random Geometric Zipf Random Geometric Zipf 

Fast Spread 

LRU 55 82 67 64 91 76 

LFU 55 80 64 63 90 74 

LUF 55 81 66 64 90 76 

Cascading 

LRU 53 79 62 61 89 71 

LFU 53 77 60 61 87 69 

LUF 53 77 58 61 88 66 

Caching 55 57 56 64 65 64 

Table 6. The performance of the fast spread and cascading with LRU, LFU, and LUF and 

caching for two different values of arrival rate. 

  Arrival rate= 1 (Base) Arrival rate= 2 

  Random Geometric Zipf Random Geometric Zipf 

Fast Spread 

LRU 55 82 67 29 76 46 

LFU 55 80 64 28 73 42 

LUF 55 81 66 28 75 45 

Cascading 

LRU 53 79 62 24 70 40 

LFU 53 77 60 23 65 37 

LUF 53 77 58 24 66 33 

Caching 55 57 56 27 30 29 




