
Performance of File Replication Policies for

Real-time File Access in Data Grids

Atakan Doğan
Anadolu University

Dept. of Electrical and Electronics
Engineering, 26470 Eskisehir Turkey

+ (90) (222) 335 0580

atdogan@anadolu.edu.tr

ABSTRACT
A variety of file replication and replacement algorithms were
proposed for the Data Grids in the literature. On the other hand,
real-time Grid applications are emerging in many disciplines of
science and engineering. Thus, it is natural to ask about the real-
time performance of these file replication and replacement
algorithms. Based on this motivation, in this study, the
performance of three replication algorithms, namely fast spread,
cascading, and caching, are evaluated together with three different
file replacement policies, including least recently used, least
frequently used, and least urgent first, under various Grid settings.
For this evaluation, a process oriented and discrete-event driven
simulator is developed. A detailed set of simulation studies are
conducted using the simulator and the results obtained are
presented to elaborate on the real-time performance of the
aforementioned replication algorithms.

Keywords
Data Grids, File Replication, File Replacement, Simulation

1. INTRODUCTION
Data Grids, which are composed of geographically distributed
storage, computing, and networking resources, are envisaged to
run a variety of scientific simulation and experiment applications
[1]. Common to such applications is that they involve a large
number of data-intensive jobs and require the efficient
management and transfer of terabytes and petabytes of
information [1], [2]. A major problem identified for the peta-scale
data intensive computing is how to schedule jobs and their related
data in an effort to minimize jobs’ completion times and
bandwidth/storage space consumed due to the file transfers [3]-
[7]. In order to alleviate these problems, data are dynamically
replicated on multiple storage systems guided by a replication
algorithm [3]-[11].

Data Grids are also considered for running applications with real-
time requirements. A few examples of real-time Grid applications
can be found in [12]-[16]. A common characteristic of such
applications is that data produced or stored in one component of
the system need to be transferred across a network of limited
resources to another component (or components) while respecting
associated real-time attributes. Achieving such data transfers in a
timely manner and servicing as many data transfer requests as
possible in a distributed environment is a nontrivial problem
known as the real-time data dissemination problem [17]-[19].
The real-time data dissemination algorithms in [17]-[19] can be
grouped into two categories based on how many data transfer
requests are scheduled in each iteration. In the first category,
Partial Path Heuristic (PPH), Full Path Heuristic (FPH), Full

Path All Destinations Heuristic (FPA) [17] and Extended Partial

Path Heuristic (EPP) [18] schedule only one request per iteration.
In the second one, Concurrent Scheduling Heuristic (CSH) [18]
and Blocking Analysis Concurrent Scheduling (BACS) [19] try to
transfer data related to a set of requests in parallel. However, the
studies in [17]-[19] assumed a specific file replication algorithm
and they did not study the performance of these real-time data
scheduling algorithms under different data (file) replication
algorithms. Furthermore, they evaluated the algorithms’
performances under a naïve (static) data replacement policy and
uniformly distributed data access pattern only. Recently, in [20],
the performance of both FPH and EPP were investigated for a
dynamic data replacement policy and a variety of data access
patterns.

The motivation of this study stems from the following
observation. The studies in [3]-[11] assessed the value of a variety
of file replication/replacement strategies under different data
access patterns. Because the scope of these studies did not include
real-time issues they did not evaluate the performance of the
proposed algorithms therein under time constraints. However, the
real-time performance of Grid could be essential for some Grid
applications as exemplified above. Thus, this preliminary study
tries to elaborate on the real-time performance of the file
replication algorithms, namely fast spread, cascading, and
caching, together with three file replacement heuristics, which are
least recently used, least frequently used, and least urgent first,
under different Grid conditions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference name: GridNets 2007, October 17-19, 2007, Lyon, France

Copyright 2007 ICST ISBN 978-963-9799-07-3

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter
DOI 10.4108/gridnets.2007.2235

peri
Typewriter

peri
Typewriter

peri
Typewriter

2. A MULTI-TIER DATA GRID MODEL
A Data Grid is composed of a set of machines M= {M1, M2, ...,
Mm} and links L= {L1, L2, …, Ln} each of which provides a
bidirectional connection between two machines. Each machine Mi
has a limited storage capacity Ci and each link Lj is associated
with a specific bandwidth of Bj. The machines in the Data Grid
are assumed to be organized in tiers, which results in a multi-tier

computing model inspired by the Large Hadron Collider (LHC)
computing model [21], [22]. In this study, the Data Grid is
modeled to have four tiers. Tier 0 is the source where all data files
are produced and initially stored. Connected to the Tier 0 machine
is the Tier 1 machines which correspond to a few national centers
around a country. Each Tier 1 machine has a number of related
Tier 2 machines each of which models a workgroup at a university
or research laboratory. Finally, each Tier 2 machine is associated
with a set of Tier 3 workstations.

In the tiered computing model adopted, file transfer requests can
come from only the Tier 3 machines which provide the computing
power of the Grid. On the other hand, the Tier 1 and Tier 2
machines play the role of the intermediate replica servers on
which the files can be replicated during their transfer to the Tier 3
machines. For the tiered computing model, the store-and-forward
is adopted as the data transfer scheme, which requires that a
machine receive the file completely before it starts sending it to
the next machine along the path to the destination. As a result,
when a file is transferred from the Tier 0 to a Tier 3 machine, both
Tier 1 and Tier 2 machines along the path also receive the file in
addition to the destination machine.

The Data Grid is used for running real-time distributed
applications which generate a set of requests R= {R1, R2, …, Rr}
for data files X, where X= {X1, X2, …, Xq} denotes the set of q
unique data files. Each request Rk is associated with one of q files
Xk to be transferred from a source machine to a destination
machine Mk, a deadline value Dk by which file Xk must be
delivered to its destination Mk. Thus, request Rk is summarized by
the following tuple: {Xk, Mk, Dk}.

In order to facilitate dynamic file replication in the multi-tier Data
Grid, following structures are assumed to be in place in the
system: Replica Catalog (RC), Replica Manager (RM), and Local

Replica Manager (LRM). The RC is a centralized database which
stores the mappings from the logical file names to the physical file
names in the Grid. The logical file names (X) are unique
identifiers for the data files in the Grid, whereas the physical file
names represent their physical locations. When the RC is queried
by the RM using a logical file name (Xk) the RC should respond
to the RM with one or multiple available physical file names
corresponding to the logical file name. In addition to responding
to the RM’s queries, the RC also receives the logical file name
update messages from the LRMs and consolidates them into the
database.

The RM is a centralized service with the following functions. The
RM accepts the file transfer requests from the LRMs of the Tier 3
machines. Upon receiving a request Rk, it should query the RC
and obtain a set of physical file names related to the logical file
name Xk. For each physical file name returned by the RC, the RM
evaluates the transmission time of the replica to destination Mk
using the predicted performance of the network. Then, it find outs
the replica with the minimum transmission time and the computes

the request’s urgency, denoted by Uk. The urgency can be
computed as Uk = Dk – tk

RM – tXfer, where tk
RM is the RM’s current

wall-clock time and tXfer is the estimated file transfer time. If the
request’s urgency is equal to or less than zero, the RM drops the
request since it is impossible to meet its deadline under the
current network conditions. Otherwise, the RM notifies the
corresponding LRM about the file transfer request (Rk) via a
request message. In order to support the store-and-forward model
for the real-time file transfers, the RM includes the urgency of the
request (Uk) and the time of the urgency computation (tk

RM) into
the request message.

The LRM runs on all machines in all tiers and manages the
storage resource of the machine on which it is deployed. The
LRM is responsible for the following activities: (1) honoring a file
transfer request, (2) forwarding a file to the next machine along
the path, (3) keeping its Local Replica Catalog (LRC) up-to-date
and publishing the LRC’s content to the RC, (4) executing a
particular file replacement algorithm. The way an LRM honors a
file transfer request depends on where it is deployed. If the LRM
is deployed on a Tier 3 machine, upon receiving a request, it
checks its Local Replica Catalog (LRC) to see if it owns the
requested file, where the LRC holds the logical file names on this
machine. If the LRM owns it, it provides the file to the requestor
job on the same machine. Otherwise, the Tier 3 LRM sends a
request to the RM for the remote file access. If the LRM runs on a
Tier 0, Tier 1, or Tier 2 machine, it will receive the requests from
the RM, not from a job on the same machine. After receiving the
request message from the RM, the LRM starts the transmission of
the requested file to the destination machine only if the urgency of
the request is equal to or greater than zero. The LRM can compute
the current urgency of the request as Uk – (tk

LRM - tk
RM), where

tk
LRM is the LRM’s current wall-clock time.

Another responsibility of a Tier 1 and Tier 2 LRM is to forward a
file to the next machine along the request’s path after the file is
completely written into its local storage. Similar to honoring a
request, the LRM must compute the request’s urgency and process
the request accordingly. The third function of the LRM is that it
must keep its LRC up-to-date by updating the LRC whenever a
new file is written into the local storage. Following the update, the
LRM must publish the content of its LRC to the RC. Finally, the
LRM must implement a file replacement policy to choose one or
more files to delete when a new file needs to be copied into the
local storage facility without enough available storage space.

3. FILE REPLICATION ALGORITHMS
In the literature, a variety of dynamic file replication algorithms
has been proposed for replicating files without real-time
requirements in Data Grids. In this preliminary study, among
these replication algorithms, three basic algorithms are chosen for
the evaluation of the impact of the file replication on the real-time
data distribution in a multi-tier Grid environment. All three
replication algorithms are taken from [8].

Caching: The replica manager forwards all file transfer requests
to the LRM of the Tier 0 machine. As a result, the Tier 1 and Tier
2 machines do not function as replica servers and their LRMs are
not required to publish their LRCs. Once a Tier 3 machine
receives the file it has requested, it keeps the file in its local
storage for a possible future reference until it gets replaced.

Cascading: In order to support the cascading replication
algorithm, LRMs also need to keep a history for each file they
have, where the history information includes the number of
requests for that file and the machines each request came from.
After an LRM honors a request from the RM it updates the file
history information. During the history update, if the LRM finds
out that the number of requests for the file has reached to a preset
threshold value, it determines the best client for the file and
forwards it to the next machine (one tier below) along the path to
the best client machine. The best client is a Tier 3 machine which
has generated the most requests for that file. With the completion
of the forwarding operation, the LRM clears the history
information of the file and starts over logging again. Furthermore,
the LRM of the next machine one tier below updates its LRC and
publishes the new content, which will make this machine an
alternative source for the file after the RC is updated accordingly.
Once the requestor Tier 3 machine receives the file, it caches the
file until it gets replaced. As a result, the cascading replication is
implemented in a distributed fashion by the LRMs deployed on
the Grid machines. Note that the replica manager initially sends
all file transfer requests to the LRM of the Tier 0 machine.
Furthermore, any regular forwarding of a file due to the store-and-
forward scheme requires neither an intermediate source LRM to
update its file history nor an intermediate destination LRM
publish its LRC after the completion of the forwarding.

Fast Spread: This replication algorithm is naturally supported by
the adopted data transfer scheme. During the transmission of a
file, any LRM on a Tier 1 or Tier 2 machine along the path to the
destination machine needs to update its LRC and to publish it to
the RC after the file is written into the local storage. As a result,
the Tier 1 or Tier 2 machine will be considered as possible source
machine for that file once the RC receives the LRC update
message.

In order to complement these file replication algorithms, a
particular file replacement policy needs to be enforced by the
LRMs. In this study, three different file replacement policies are
considered. These policies are Least Recently Used (LRU), Least

Frequently Used (LFU), and Least Urgent First (LUF). The first
two policies are commonly used in the literature and they are
shown to be as effective as more advanced economic model based
file replacement policies [5]. The latter is proposed in this study.

Least Recently Used: LRM keeps a history for each file in its
LRC indicating the latest time at which that file is accessed. When
the storage space available is not enough to hold a new file, LRM
sorts the files in the increasing order of their latest access times
into a list and then deletes the files starting from the file at the top
of the list until it frees up large enough storage space for the new
file.

Least Frequently Used: In this algorithm, the history information
for each file is the number of requests for that file. Thus, LRM
sorts the files in the increasing order of their number of requests
into a list and then deletes the files starting from the file at the top
of the list until large enough storage space for the new file is
obtained.

Least Urgent First: The history information needed to realize
this algorithm is the average urgency of the file when LRM
receives the request message from the RM. As a result, LRM finds
out the least urgent files on average and removes them from the
storage to open the necessary space for the new file.

4. SIMULATIONS
A simulator was developed to investigate the performance of the
file replication strategies, Caching, Cascading, and Fast Spread
together with the file replacement policies, LRU, LFU, and LUF.
The simulator was written in C programming language using the
CSIM 19 library [23]. The CSIM library allows the development
of process-oriented discrete-event simulation programs. A CSIM
program models a system as a collection of CSIM processes
which interact with each other by using the CSIM structures.
Following the CSIM programming style, the simulator developed
models the file transfer of each request as a process and uses
events to signal the end of file transfers. Furthermore, the network
links and storage devices are modeled as facilities, a CSIM
structure, which can be used and later released by the processes.

The simulator consists of three parts. The network component is
used to create LHC-like tiered computing systems. The next
component of the simulator is the request generator which
produces real-time file transfer requests. The third component is
the heuristic which handles the simulation of the file replication
algorithms and file replacement policies.

4.1 Network
With the start of the simulation, a LHC-like tiered computing
system is created. As in [8] and [10], there are four tiers. The Tier
0, 1, 2, and 3 are assumed to include 1, 5, 25, and 125 machines,
respectively, which is a total of 156 machines (85 in [8] and 156
in [10]). These machines are interconnected by a randomly
generated tree topology.

In the tree topology generated, each machine except those in the
Tier 3 has at least one child machine in the lower tier. The
bandwidth of a link connecting two machines in the different tiers
is assumed as follows: 2.5 Gbit/s for a link between Tier 0 and
Tier 1, 1 Gbit/s between Tier 1 and Tier 2, and 622 Mbit/s
between Tier 2 and Tier 3.

In the simulated Grid, the storage capacity of each machine is
determined based on the relative capacity (R) index, which is the
ratio between the total storage capacity of Tier 1 and Tier 2
machines and the total size of all data files. It should be noted that
a higher value of R will have an effect of allowing more file
replicas in the Grid. Thus, the performance of a particular file
replication algorithm depends on the value of R. In the
simulations, three different values for the relative capacity, which
are 76.8%, 38.4%, and 19.2%, are assumed and the corresponding
storage capacities are determined as shown Table 1.

Table 1. Storage capacity configurations for Tier 1 and Tier 2

machines.

Case
Tier 1 Tier 2 Overall

T1 (TB) R1 (%) T2 (TB) R2 (%) R (%)

1 1×5 = 5 51.2
0.1×25 =

2.5
25.6 76.8

2
0.5×5 =

2.5
25.6

0.05×25 =
1.25

12.8 38.4

3
0.25×5
= 1.25

12.8
0.025×25
= 0.625

6.4 19.2

In Table 1, the relative capacity of the simulated Grid is computed
as follows. The number of data files in a Grid will be in the order
of millions. However, it is not feasible to simulate the transfer of
such a large number of files on a single computer. Thus, the
number of files is scaled down and it is assumed to be 5000
during the simulations, each of which is 2 GB. Fixed file size is
also common in other studies, e.g., [4], [8], [10]. As a result, the
total size of all files is about 9.75 TB. At the beginning of the
simulation, all original data files are stored in the Tier 0 machine
with unlimited storage capacity and all other machines do not
store any files. Once the requests start coming into the system,
Tier 1 and Tier 2 machines are used as the replica servers on
which the original files can be replicated following a replication
algorithm. Taking case 2 as an example, the total storage capacity
of Tier 1 machines, T1, is 2.5 TB, where Tier 1 has 5 machines
each of which has a storage capacity of 0.5 TB; the total storage
capacity of Tier 2 machines, T2, is 1.25 TB, where Tier 2 includes
25 machines, each with a storage capacity of 0.05 TB. Thus, the
total replication capacity, T, is T1 + T2= 3.75 TB and the relative
capacity R becomes 3.75/9.75= 38.4%. Finally, each Tier 3
machine has 2 GB of storage capacity which is enough to hold
only one file.

4.2 Request Generator
The request generator component is implemented as a CSIM
process. During the simulations, the requests are assumed to come
in to the Grid according to a Poisson process with a specific
arrival rate. Furthermore, they are submitted only from the Tier 3
machines [4], [8], [10]. For each submitted request, three different
parameters are associated with it. First, the request is associated
with a data file available in the Grid according to a particular file
access pattern. However, as of now, no actual file access patterns
for the Grid applications are known. Thus, three commonly used
file access patterns [3]-[11], namely random, geometric, and Zipf,
are implemented in the simulator. Specifically, the geometric
distribution with the file popularity parameter of 0.05 and the Zipf
distribution with the file popularity parameter of 0.8 are assumed.
Second, the request is accompanied with a randomly chosen Tier
3 destination machine. Finally, a deadline value is assigned to the
request using the formula: Dk = Ak + rand (0, λ)×|Xk|/B2-3, where
Ak is the arrival time of the request, rand (0, λ) is a function which
returns a uniformly distributed real number between 0 and λ, λ
denotes the deadline factor, |Xk| is the size of file Xk, B2-3
represents the link bandwidth between Tier 2 and Tier 3
machines.

4.3 Heuristics
Three file replication algorithms and three file replacement
policies are implemented in another CSIM process, called as
file_transfer. For each file request submitted, one file_transfer
process is created to take care of the transfer of the file. During
the transfer, the process implements the store-and-forward style of
communication between source and destination as the core
component. On top of this core, the file replication and
replacement algorithms are developed.

In the implementation of the store-and-forward by file_transfer, it
is assumed that the network links can be used to transfer only one
file at a time. That is, if more than one file needs to be transferred
on the same link, these files are serviced in FIFO order on the
link. An immediate result of this assumption is that the number of
simultaneous file transfer operations (read or write) for a machine

cannot be greater than the number of point-to-point connections
that machine has. In the simulator developed, each machine is
allowed to have simultaneous file transfer operations as many as
its point-to-point connections.

4.4 Performance Results
Using the simulator developed, a set of simulation studies were
conducted. First, a base set of results was established. In the base
set, the fast spread and cascading with LRU, LFU, and LUF and
caching replication algorithms are evaluated in terms of the
percentage of the satisfied requests for the random, geometric, and
Zipf file access patterns under the following simulation
parameters: number of data files = 5000, number of requests=
50000, deadline factor= 10, and arrival rate of requests= 1
request/second. Later, each of these simulation parameters is
individually varied to study the impact of the parameter on the
performance of the algorithms. The results of the simulation
studies are presented in Tables 2-6, where each data shown is the
average of 10 simulation runs. Note that each iteration of the
simulation creates a different Grid topology and request set under
the given simulation parameters.

Table 2 shows the base set of results. As far as the performance is
concerned, the fast spread is always the best, followed by the
cascading, and caching. Note that since the caching algorithm
replicates files only on the clients, it is not affected by the changes
in the relative capacity. When the fast spread and caching are
compared, the caching shows a close performance to the fast
spread for the random file access pattern only. The reason for the
close performance is due to the fact that accessing files in random
fashion decreases the time of stay for files in the replica servers,
which makes the file replication less effective for the clients. For
the geometric access pattern, the fast spread outperforms the
caching in the range of 40% and %54; for the Zipf, the
performance difference is between 14% and 29%. When the
performance of the cascading and caching are compared, the
performance improvement of the cascading is between 35% and
47% for the geometric and between 4% and 12.5% for the Zipf
file access patterns, respectively. For the random access pattern,
the caching is a bit better than the cascading. This can be
attributed to two factors. The first one is as explained above. The
second factor stems from the nature of the cascading. That is, the
number of file transfers under the cascading is more than the
number of file requests (50000). This excess number of the file
transfers is used for replicating files to machines on the paths to
the best client machines, which increases the network load and
makes more requests to be unsatisfied. Finally, when the fast
spread and cascading are compared, the fast spread always
outperforms the cascading with the following margins: 4%-11%
for the random, 4%-%5 for the geometric, and 8%-14% for the
Zipf file access pattern. The additional network load created by
the cascading as well as the aggressive replications performed by
the fast spread have created this performance difference.

According to Table 2, as expected, decreasing the relative
capacity has adverse impact on the performance of both fast
spread and cascading. In terms of the effect of the file access
pattern on the performance, all three algorithms show their best
performance for the geometric access pattern, followed by the
Zipf and random. Under the geometric and Zipf access patterns,
several files are requested more as compared to the others. This
makes it more probable to find these popular files on the replica

Table 2. The performance of the fast spread and cascading with LRU, LFU, and LUF and caching

under the base simulation parameters.

Base

Random Geometric Zipf

76.8% 38.4% 19.2% 76.8% 38.4% 19.2% 76.8% 38.4% 19.2%

Fast

Spread

LRU 60 57 55 88 86 82 72 69 67

LFU 58 56 55 87 83 80 69 67 64

LUF 60 57 55 86 84 81 71 68 66

Cascading

LRU 54 53 53 84 83 79 63 63 62

LFU 54 53 53 84 80 77 63 62 60

LUF 54 53 53 84 80 77 63 61 58

Caching 55 57 56

Table 3. The performance of the fast spread and cascading with LRU, LFU,

and LUF and caching for two different values of the number of files.

 No of files= 5000 (Base) No of files= 10000

 Random Geometric Zipf Random Geometric Zipf

Fast
Spread

LRU 55 82 67 56 82 63

LFU 55 80 64 55 80 61

LUF 55 81 66 55 80 63

Cascading

LRU 53 79 62 54 79 61

LFU 53 77 60 54 77 60

LUF 53 77 58 54 77 58

Caching 55 57 56 54 58 56

Table 4. The performance of the fast spread and cascading with LRU, LFU, and LUF and

caching for two different values of the number of requests.

 No of requests= 50000 (Base) No of requests= 75000

 Random Geometric Zipf Random Geometric Zipf

Fast Spread

LRU 55 82 67 55 82 64

LFU 55 80 64 54 80 64

LUF 55 81 66 55 81 66

Cascading

LRU 53 79 62 50 79 64

LFU 53 77 60 50 75 61

LUF 53 77 58 50 78 60

Caching 55 57 56 54 57 58

servers, which results in more requests to be satisfied. The worse
performance under the Zipf file access pattern can be due to the
long-tail of the Zipf distribution. That is, the number of different
files requested under the Zipf is more as compared to the
geometric distribution and this adversely affects the replication
performance. Finally, in terms of the file replacement policy of the
choice, all three policies have lead to quite similar performance
values. More specifically, the LRU is followed by the LUF and
then LFU.

Table 3 compares the performance of the algorithms when the
number of files is increased from 5000 to 10000 while keeping the
other simulation parameters unaltered and the relative capacity at
19.2%. The only noticeable performance difference as compared
to the base case is observed for the fast spread under the Zipf file
replacement policy, which is not very significant.

Table 4 presents the performance of the algorithms when the
number of requests is increased from 50000 to 75000 while
keeping the other simulation parameters fixed. This simulation
study is conducted to see how the algorithms react when the
request load in the Grid is increased. All three algorithms have
performed a stable performance under heavier load conditions.
Based on the results in Table 3 and 4, it can be concluded that the
algorithms studied show scalable performances.

Table 5 shows the performance of the algorithms when the
deadline factor is increased from 10 to 20 while keeping the other
simulation parameters unchanged. Note that increasing the
deadline factor leads to relaxing the request deadlines. Thus, it is
expected that all three algorithms perform better when λ= 20,
which is really the case in Table 5.

Table 6 shows the performance of the algorithms when the request
arrival rate is increased from 1 request/sec to 2 requests/sec while
keeping the other simulation parameters fixed. Increasing the
request arrival rate is expected to lead to more resource contention
among the requests. Consequently, the less number of requests
will be satisfied. According to Table 6, all three algorithms have
been significantly affected and they have experienced sharp
decreases in their performances. For the random and Zipf file
access patterns, the decrease in the performance is more profound;
for the geometric access pattern, it is more tolerable.

5. CONCLUSIONS
From the results presented in the previous section, it is evident
that the file replication algorithm chosen and the file access
pattern of the tasks running on the Grid have significant impact on
the real-time Grid performance. Among the simulated algorithms,
the fast spread has shown superior performance to the cascading
and caching and the caching being the worst of the three. In
addition to the file replication algorithms, three different file
replacement policies are accounted for the fast spread and
cascading. Among these policies, the LRU has constantly
improved the performance more as compared to the LUF and
LFU. Finally, the algorithms have demonstrated better
performance under the geometric file access pattern, followed by
the Zipf and random. These initial yet detailed results on the
impact of the replication algorithms on the real-time Grid
performance motivate the development of more sophisticated
replication algorithms to better use of the Grid resources, which
will be topic of the future research.

6. REFERENCES
[1] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C.,

Tuecke, S. The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets. Journal of Network and Computer Applications,
23, 3 (2000), 187-200.

[2] Allock, B., Bester, J., Bresnahan, J., Chervenak, A. L.,
Foster, I., Kesselman, C., Mader, S., Nefedova, V., Quesnel,
D., Tuecke S., Data Management and Transfer in High
Performance Computational Grid Environments. Parallel

Computing Journal, 28, 5 (2002), 749-771.

[3] Ranganathan, K., Foster, I. Simulation Studies of
Computation and Data Scheduling Algorithms for Data
Grids. Journal of Grid Computing, 1, 1 (2003), 63-74.

[4] Camaron, D. G., Millar, A. P., Nicholson, C., C.-Schiaffino,
R., Zini, F., Stockinger, K. Analysis of Scheduling and
Replica Optimisation Strategies for Data Grids using
OptorSim. Journal of Grid Computing, 2, 1 (2004), 57-69.

[5] Nicholson, C., Camaron, D. G., Doyle, A. T., Millar, A. P.,
Stockinger, K. Dynamic Data Replication in LCG 2008. UK

e-Science All Hands Conference (2006).

[6] Tang, M., Lee, B.-S., Tang, X., Yeo, C.-K. The Impact of
Data Replication on Job Scheduling Performance in the Data
Grid. Future Generation Computer Systems, 22 (2006), 254-
268.

[7] Desprez F., Vernois, A. Simultaneous Scheduling of
Replication and Computation for Data-Intensive
Applications on the Grid. Journal of Grid Computing, 4, 1
(2006), 19-31.

[8] Ranganathan, K., Foster, I., Identifying Dynamic Replication
Strategies for a High-Performance Data Grid. Lecture Notes

In Computer Science, 2242 (2001), 75-86.

[9] Lamehamedi, H., Shentu, Z., Szymanski, B., Deelman, E.
Simulation of Dynamic Data Replication Strategies in Data
Grids. Heterogeneous Computing Workshop (2003), 100b.

[10] Tang, M., Lee, B.-S., Yeo, C.-K., Tang, X. Dynamic
Replication Algorithms for the Multi-tier Data Grid. Future

Generation Computer Systems, 21 (2005), 775-790.

[11] Rahman, M. R., Barker, K., Alhaji, R. Replica Placement
Design with Static Optimality and Dynamic Maintainability.
IEEE Int’l Symposium on Cluster Computing and the Grid
(2006).

[12] Keahey, K., Fredian, T., Peng, Q., Schissel, D. P.,
Thompson, M., Foster, I., Greenwald, M., McCune, D.
Computational Grids in Action: The National Fusion
Collaboratory. Future Generation Computer Systems, 18, 8
(2002), 1005-1015.

[13] Wang, Y., De Carlo, F., Mancini, D., McNulty, I., Tieman,
B., Bresnahan, J., Foster, I., Insley, J., Lane, P., von
Laszewski, G., Kesselman, C., Su, M.-H., Thiebaux, M. A
High-Throughput X-ray Microtomography System at the
Advanced Photon Source. Review of Scientific Instruments,
72, 4 (2001), 2062-2068.

[14] Gharai, L., Perkins, C., Real-time Collaborative
Environments and the Grid. Workshop on Advanced

Collaborative Environments (2004).

[15] Fox, G., Ho, A., Pallickara, S., Pierce, M., Wu, W. Grids for
the GiG and Real Time Simulations. IEEE International

Symposium on Distributed Simulation and Real-Time

Applications (2005).

[16] Kim, K. H. Wide-Area Real-Time Distributed Computing in
a Tightly Managed Optical Grid - An Optiputer Vision. Int'l

Conf. on Advanced Information Networking and

Applications (2004).

[17] Theys, M. D., Tan, M., Beck, N., Siegel, H. J., Jurczyk, M.
A. Mathematical Model and Scheduling Heuristic for
Satisfying Prioritized Data Requests in an Oversubscribed
Communication Network. IEEE Transactions on Parallel

and Distributed Systems, 11, 9 (2000), 969-988.

[18] Eltayeb, M., Doğan, A., Özgüner, F. Concurrent Scheduling:
Efficient Heuristics for Online Large-Scale Data Transfers in
Distributed Real-Time Environments. IEEE Transactions on

Parallel and Distributed Computing, 17, 11 (2006), 1348-
1359.

[19] Eltayeb, M., Doğan, A., Özgüner, F. A Path Selection-Based
Algorithm for Real-time Data Staging in Grid Applications.
Journal of Parallel and Distributed Computing, 65, 11
(2005), 1318-1328.

[20] Doğan., A. Performance of Real-Time Data Scheduling
Heuristics Under Data Replacement Policies and Access
Patterns in Data Grids. Lecture Notes in Computer Science,
4330 (2006), 884-893.

[21] GridPP Collaboration. GridPP: Development of the UK
Computing Grid for Particle Physics. Journal of Physics G:

Nuclear and Particle Physics, 32 N1-N20 (2006).

[22] Avery, P. Data Grids: A New Computational Infrastructure
for Data Intensive Science. Philosophical Transactions of

the Royal Society A: Mathematical, Physical & Engineering

Sciences, 360 (2002), 1191-1209.

[23] User’s Guide: CSIM19 Simulation Engine (C Version),
http://www.mesquite.com/documentation/index.htm#userc.

Table 5. The performance of the fast spread and cascading with LRU, LFU, and LUF and

caching for two different values of deadline factor.

 Deadline factor= 10 (Base) Deadline factor= 20

 Random Geometric Zipf Random Geometric Zipf

Fast Spread

LRU 55 82 67 64 91 76

LFU 55 80 64 63 90 74

LUF 55 81 66 64 90 76

Cascading

LRU 53 79 62 61 89 71

LFU 53 77 60 61 87 69

LUF 53 77 58 61 88 66

Caching 55 57 56 64 65 64

Table 6. The performance of the fast spread and cascading with LRU, LFU, and LUF and

caching for two different values of arrival rate.

 Arrival rate= 1 (Base) Arrival rate= 2

 Random Geometric Zipf Random Geometric Zipf

Fast Spread

LRU 55 82 67 29 76 46

LFU 55 80 64 28 73 42

LUF 55 81 66 28 75 45

Cascading

LRU 53 79 62 24 70 40

LFU 53 77 60 23 65 37

LUF 53 77 58 24 66 33

Caching 55 57 56 27 30 29

