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ABSTRACT
In Grids, data transfers and network resources need to be
managed in a more deterministic way than in the Internet.
New approaches like flow scheduling are proposed and stud-
ied as alternatives to traditional QoS and reservation pro-
posals. To enable such flow scheduling approaches, runtime
mechanisms controlling flow sending time and rate have to
be implemented in the data plane. This paper quantifies
and compares such end-host based mechanisms combined
with transport protocols to instantiate different scheduling
strategies in a range of latency conditions. We show that,
a single-rate scheduling strategy implemented by an AIMD-
based protocol and a packet pacing mechanism offers pre-
dictable performance and is insensitive to latency. This pa-
per also highlights the limits of other strategies and rate
limitation mechanisms like token bucket which generates un-
predictability and other drawbacks.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: General;
C.4 [Performance of Systems]: Design studies

Keywords
Grid networks, flow scheduling, bulk data transfers, rate
limitation, pacing

1. INTRODUCTION
High end instruments and applications generate huge amount

of data which have to be moved between data centers, com-
puting centers or visualization centers in a reliable and time-
constrained manner [21]. Today, data are transferred within
packet networks through transport services such as GridFTP
based on the TCP protocol. TCP enables a fair sharing of
the link capacities among contending flows by applying a dis-
tributed congestion control algorithm. Such end to end con-
gestion control approach does not fill the transfer time pre-
dictability and reliability needs of these applications. Mech-
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anism to control huge movements of data in the time axis
seems to be highly required in Grids. Indeed, tight coordina-
tion of resource allocation among end points often requires
a data mover service to carry out a giant task in a specified
time interval.

Let us consider the following example: 200 GB data pro-
duced in a site A need to be moved to a site B for processing.
The CPU and disk resources in site B have been reserved
in advance from 200 s to 400 s for the CPU, and from 0 s to
400 s for the disk. If the transfer can begin only when disk
in site B is allocated, and if there is no pipeline between
transfer and computing services, the bulk data transfer task
r1 needs to move 200 GB data from site A to site B in the
time interval [0 s, 200 s] (Figure 1), to fully use the CPU
resources.

To manage transfer jobs and network resource sharing in
a more deterministic way, researchers are studying new ap-
proaches all based on some resource reservation paradigm
like dynamic light path provisioning or flow scheduling [14].
Bandwidth reservation has been studied extensively for real-
time applications [2], which are often approximately mod-
eled as reserving a fixed amount of bandwidth from a given
start time. In comparison, bulk data transfer tasks are spec-
ified in terms of volume and active window (from arrival
time to deadline). The bulk data transfer optimization prob-
lem has been formulated in networks in different ways [9, 3].
Given a network model, minimizing the congestion factor
appears to be a powerful objective function [1]. In this situ-
ation, allocating bandwidth to flows in a fair manner, as it is
the case in the Internet, is no more the main objective. In-
deed, to complete more tasks before their deadlines, sharing
instantaneous bandwidth fairly among all active flows may
not be optimal [7]. In some cases, it is beneficial to allow
a connection with larger pending volume and earlier dead-
line to grab more bandwidth, similar to the case of Earliest
Deadline First scheduling in real-time systems [19].

Chen and Primet demonstrated in [1] that spaghetti schedul-
ing which consists of allocating a single rate over the full
time window of each request is an optimal solution for the
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bulk data transfer scheduling (BDTS) problem, when all re-
quests have the same time constraints. The allocated rate is
obtained by dividing the volume by the maximal time win-
dow of the request. Indeed, this solution gives the minimal
congestion factor. The flexibility of choosing bandwidth al-
location profile can also be exploited to improve system per-
formance, when the time-windows are different. The BDTS
problem has an optimal solution with bandwidth reservation
profile in the form of the step function with O(r) intervals
where r is the number of requests. The implementation of
the multi-rate allocation strategy is an extension of the sin-
gle rate allocation ones.

As bulk data transfer scheduling problem has been for-
mulated and proved to be a valuable solution to optimize
both user and network provider utility functions, this paper
concentrates on implementation issues of such approach. In-
deed, all proposed scheduling algorithms operating at a ses-
sion abstraction layer rely on an ideal transport protocol
able to fully utilize the controlled bandwidth. However it is
not very clear how current transport protocols have to be
combined with time and rate control mechanisms to approx-
imate the ideal implementation of such approach. The goal
of this paper is then to explore end host based mechanisms
which can be used to have a better control on the band-
width sharing in a scalable and simple way. We also study
how window-based transport protocols interact with these
mechanisms. We aim at evaluating the potential biases in-
troduced at runtime. These biases will have to be integrated
in the flow scheduling algorithms outputs.

This paper is organized as follows: Section 2 presents end
hosts mechanisms considered to enforce allocations. Schedul-
ing strategies and transport protocol issues are considered
in Section 3. Section 4 shows the experimental evaluation
of these strategies and end hosts mechanisms combined.

2. END HOSTS MECHANISMS

2.1 Rate limitation mechanisms
In this work, for the sake of scalability, only software end-

hosts rate limitation mechanisms are considered. We focus
on GNU/Linux mechanisms as it is the most deployed op-
erating system in grid environments.

Timescale used to define rates is of great importance. In
real packet networks, flows are not fluid. Packets are sent
entirely, one after one, at the wire bit-rate. This acts as
an on/off sending process. Then, when considering fixed
size packets, the only way to modify data rates over a large
period of time is to vary inter-packets intervals.

To calculate these intervals, we have to consider the time
source that can be used to enforce the limitation. In an
end-host system four different time sources are available:

1. Userland timers;

2. TCP self clocking namely RTT of the transfer’s path;

3. OS’s kernel timers;

4. Packet-level clocking.

2.1.1 Userland timer based mechanisms
Application level timers can provide up to 8192Hz timers

through RTC1 under GNU/Linux. RTC timers above 64 Hz

1Real Time Clock

are normally not accessible to users. Another solution would
be to use POSIX functions like nanosleep(). But it has
some limitations as the man-page suggests:

The current implementation of nanosleep() is
based on the normal kernel timer mechanism, which
has a resolution of 1/HZ s [. . . ] Therefore, nanosleep()
pauses always for at least the specified time, how-
ever it can take up to 10ms longer than specified
until the process becomes runnable again.

This scheduling issue also applies for processes that use RTC
based timers.

Trickle, proposed in [6], is a userland library which “mod-
erate” send() and recv() calls using nanosleep() function
in order to limit the rate. UDT [8], a transport protocol us-
ing rate-based congestion control, relies on userland sleep()

function.
These mechanisms provide a coarse grained limitation.

2.1.2 TCP self-clocking based mechanisms
TCP self clocking depends on the round-trip time of the

path and is subject to variations and ranges from about
0.01ms within a LAN to several hundred of millisecond for
worldwide connections.

As TCP is self-clocked by its acknowledgment mecha-
nisms [11], the TCP congestion windows based limitation
mechanisms are thus clocked on the RTT. TCP can not
send more than its congestion window over one RTT period
of time. We can thus limit the congestion window value to
control the rate at the RTT timescale. This solution re-
quires a precise knowledge of the RTT and only provides a
controlled rate at RTT timescale which can slightly vary.

2.1.3 OS kernel timer based mechanisms
OS kernel timers depend on the kernel implementation

and can be set up to 1000 Hz under current GNU/Linux
kernel version.

GNU/Linux kernel uses an internal time source that rises
an interrupt every HZ. This value can be set between 100Hz
and 1000Hz. GNU/Linux provides several qdisc2 to control
the rate limitation. These mechanisms use HZ clocking.
We note that HTB (Hierarchical Token Bucket) provides a
classful limitation mechanisms. This mechanisms is actually
implemented as a DRR3 [5, 17] queuing discipline.

Some transport protocols do also rely on this time source.
For example, DCCP [15] (Datagram Congestion Control Pro-
tocol) GNU/Linux implementation which use TFRC (TCP
Friendly Rate Control) as congestion control mechanism re-
lies on HZ timing.

2.1.4 Packet clocking based mechanisms
Packet-level clocking depends on the underlying link. Gi-

gabit Ethernet carries a single 1500 bytes packet in 12 µs.
OS based timers cannot afford time sources being precise

enough to accommodate packet length because OS kernel
cannot be continuously handling interrupts. But the most
precise solution to enforce bandwidth limitation is to in-
crease packets’ departure intervals. This solution is known
as pacing. Although hardware solutions were proposed in
[12], generic Gigabit Ethernet NICs do not provide pacing.

2Queue disciplines
3Deficit Round Robin
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Figure 2: Different sending patterns.

Software implementations, like PSPacer [20], also exist for
packet pacing. PSPacer introduces Ethernet PAUSE pack-
ets between packets carrying data. These PAUSE packets
are discarded at the first switch encountered. They just
introduce spacing between real packets, then limiting the
effective rate. PSPacer is implemented as a GNU/Linux
kernel qdisc but does not use any timers at the cost of
an higher PCI bus bandwidth utilization. PSPacer actu-
ally uses a byte-clock by counting bytes sent and defines the
departure date of a given packets in terms of “byte” time.

These time sources allow to create different sending pat-
terns as shown on figure 2. The upper figure shows a schematic
view of an RTT-based rate limitation, the lower ones packet-
level rate limitation and in-between timer based rate limita-
tion. These different rate limitation patterns generate dif-
ferent burst types, which impact global performance. Con-
sequently, bursts of packets can lead to losses even if the
rates of two flows are limited to insure the sum does not
exceed the available bandwidth. The instantaneous aggre-
gated rate, being larger than the output rate, may overflow
the intermediate buffers. These losses generate retransmis-
sions and TCP’s congestion window moderation.

These different time sources can support different rate lim-
itation mechanisms. In the absence of any rate limitation
mechanisms, packets are sent in bursts due to TCP self-
clocking.

2.2 Time control mechanisms
Synchronization mechanisms are often required by schedul-

ing algorithms to enforce transfers start times. Two main
solutions are available to control the time: time synchroniza-
tion (real time) or explicit synchronization through signaling
(virtual clocks). They both introduce some synchronization
error. This error has to be much smaller (e.g. less than
10%) than the difference between minimum and maximum
completion time of a transfer. For example, in a 1Gbps
real dedicated network, the difference between minimum and
maximum completion time of the 15GB file transfer with a
single flow TCP-based protocol varies from 340 ms at 0.1ms
RTT to 9.3 s at 100ms RTT.

The first solution relies on the time accuracy several ma-
chines can obtain from a time source. As attaching GPS
device to each machine isn’t practical, NTP-like synchro-
nization of clock will have to be considered. In [16] pub-
lished in 1994, NTP synchronization over a LAN is said to

Sender 1 Sender 2

(a) Direct Sig-
nalization

Sender 1 Sender 2

Bandwidth Broker

(b) Indirect
Signalization

Figure 3: Signalization scenarii.

have an accuracy ranging from 500 µs to 2ms representing
0.14% (resp. 0.59%) of the difference between maximum
and minimum completion time of a 15GB file transfer time
with 0.1ms RTT on a 1Gbps link.

The second solution to provide synchronization is to use
signalization. Both direct and indirect signalization can be
used. With the direct signalization method, the first sender
signals an event to the next sender (for example when the
transfer is done as shown in figure 3(a)). Using indirect
signalization, each sender exchange signals through a band-
width broker (Figure 3(b)).

As a robust signalization mechanism is needed a three-
way handshake should be used. For example TCP con-
nection establishment ensures packet-loss resilience signal-
ization. This basically means that the cost of the direct
signalization will be in the order of 1.5 ∗RTT (due to SYN-
SYN/ACK-ACK) where RTT is the path round-trip time
between two senders plus the time to cross the local net-
work stacks and the processing time.

In order to evaluate this cost, we measure the time re-
quired to perform two signalizations (one in each directions)
between two machines and then divide this time by two.
Figure 4 shows the distribution of this duration on a 0.1ms
RTT, 10ms RTT and finally 100ms RTT network. As ex-
pected, measures show that the cost grows linearly with
a 3/2 rate from 0.374ms at 0.1 ms RTT to 150.4ms at
100ms RTT. These durations represent respectively 0.11%
and 1.6% of the difference of completion for the previously
considered 15 GB transfer at 0.1 ms and 100 ms RTT. Thus
cost of direct and indirect signalization are still a small part
(less than 2%) of the variations of transfers’ completion time
if the processing time is assumed to be small.

We can conclude from this section that synchronization
by NTP and direct or indirect signalization do not introduce
too much overhead and unpredictability to the completion
time for the file size considered in this paper. Synchroniza-
tion cost is independent from the size of transferred files.
Thus when this size decreases, the relative cost of time con-
trol will increase and will not be negligible with respects to
the transfer completion time variability and will have to be
considered.

3. FLOW SCHEDULING ALGORITHMS
Before evaluating the accuracy and the interaction of trans-

port protocols with these mechanisms, let us present the
principle of three scheduling strategies evaluated here with
a simple example. In this paper, we compare three flow
scheduling strategies, named respectively ViFi for Virtual
Finish Time First, IFS for Instantaneous Fair Sharing, Min-
Rate for spaghetti scheduling. We consider two identical
requests with the same release date, the same deadline. The
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Figure 4: Distribution of direct-signalization time
(1000 repetitions).

Strategy tc,1 tc,2

IFS
2.v1

C

2.v1

C
+

v2 − v1

C
=

v1 + v2

C

ViFi
v1

C

v1 + v2

C

Spaghetti
scheduling

v1 + v2

C

v1 + v2

C

Table 1: Theoretical completion time of the two
transfers.

first request has a volume being twice the volume of the
second request.

3.1 Simple illustrative example
Let us consider a classical dumbbell topology with two

sources nodes (s1 and s2) and two sink nodes (S1 and S2).
The topology is presented in figure 7. The shared link has
a capacity of C (1Gbps Ethernet). Each source node has a
file of size vi to transfer to the corresponding sink node (S1

for s1 and S2 for s2 ). We assume that both transfers have
the same release date tr and we define the completion time
of the transfers tc,1 and tc,2. Table 1 summarizes the theo-
retical completion time of each transfer under the different
scheduling strategies.

If we consider same size files, IFS and spaghetti scheduling
are equivalent. Thus, the two files transferred will have a
size of v1 = 15000MB and v2 = 30000MB. For the sake
of simplicity, we will consider that the release dates are 0
(tr = 0).

Figures 5(a), 5(b) and 5(c) show the different scheduling
strategies applied to the two transfers considered.

The completion time of each transfer might differ from
strategy to strategy but the global completion time of the
two transfers – i.e. the makespan – is theoretically the same.
We will focus on this last objective: minimize the makespan
tc, with tc = max{tc,1, tc,2} = (v1 + v2)/C. The link capac-

Bandwidth

0 Timetc = tc2tc1

C

(a) IFS scheduling.

Bandwidth

0 Timetc = tc1 = tc2

C

(b) Spaghetti scheduling.

Bandwidth

0 Timetc = tc2tc1

C

(c) ViFi scheduling.

Figure 5: Three simple different scheduling strate-
gies for two transfers (transfer 1 with volume v1 and
transfer 2 with volume v2 = 2.v1), having the same
time window constraint.

ity C used here is the effective rate of carried data. As the
transport protocol provides congestion control mechanisms
and reliable transfers, it introduces some overheads. Then
the considered link capacity is smaller than the raw capacity
of the link. This point will be detailed in next section. The
three strategies allocate the full capacity (link utilization ra-
tio of 1 is optimal) provided that a single flow can fill the
shared link and we assume an accept rate of 1 (all request
accepted). This means that the specified deadline of each
transfer is greater than its completion time.

We consider that IFS can be well approximated by TCP’s
distributed congestion control. ViFi does not require any
bandwidth limitation mechanism as there is only one flow
at a time. But spaghetti scheduling requires bandwidth lim-
itation enforcement mechanisms.

3.2 Transport protocol considerations
Our goal is to determine which configuration (scheduling

strategy combined with end hosts mechanisms) is minimiz-
ing tc which is the time the bandwidth broker will have to
reserve resources to complete the two transfers.

All proposed algorithms assume that an ideal transport
protocol will be used to transfer the files. However, the
achievable bandwidth is not known a priori because it de-
pends on the efficiency of the real transport protocol and
the rate limitations mechanisms. Current transport proto-
cols, used in grid environments, are window-based protocol,
like BIC TCP, which are quite efficient and fair when two
flows have the same reasonable round-trip time (< 100ms)
[10]. But such protocols still introduce some overhead. This
overhead is partially due to the packets’ header which size
is a linear function of the data carried. The overhead is
also due to the retransmissions induced by losses. Under a
congested situation (which is the case here as we can have
two potentially 1Gbps sources sending data in 1Gbps link
at the same time with IFS scheduling), the overhead intro-
duced by retransmissions is more difficult to estimate. The
arbitration algorithms within the network equipment (e.g.
Ethernet switch) that mixes the two flows impact the losses
distribution among flows [18].

This loss-dependent overhead might suggest that spaghetti
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Figure 6: Frame and payload.

scheduling would provide better performance. It avoids con-
gestions by limiting the sending rate of each flow. ViFi
scheduling insures that there is no congestion because only
one flow is scheduled at a time. However these two schedul-
ing strategies imply rate limitation or synchronization and
signalization mechanisms which isn’t costless: Spaghetti schedul-
ing needs rate limitation. ViFi needs to start the second
transfer just after the first one finished.

3.3 Goodput vs throughput
In this section no attention is paid to the timescale used to

define rates. Let rEthB be the Ethernet bit rate. rEthB =

109 bps for Gigabit Ethernet. We define rEth as the Eth-
ernet frame rate assuming 1514 bytes frames (without frame
checksum (FCS), frame preamble and inter frame gap (IFG)),
see figure 6. rEth = (1514/(1514 + 4 + 12 + 8)) ∗ rEthB =
984.40Mbps. We define rIP as the rate of IP packets (Ether-

net payload). Under the assumption of a 1500 bytes MTU4:
rIP = (1500/1514) ∗ rEth = 975.30Mbps.

In order to compare our measurements we define an ideal
transport protocol over an 1 Gbps Ethernet link. We assume
this protocol achieve perfectly max-min fairness among con-
tending flows, there is no slow-start and no losses nor re-
transmissions. We define the data rate rTP of the ideal
transport protocol. Under assumptions presented above,
rTP = ((1500− 40)/1500) ∗ rIP = 949.29Mbps.

This is especially important to differentiate goodput (rTP)
and throughput (rEthB) as flows share links throughput
while completion time of transfers depends on goodput. Thus
the capacity C used in section 3.2 is actually rTP. We can
observe that this rate is a linear function of rEth as each
transport layer payload as its own set of headers, preamble,
FCS and IFG. But real transport protocols are not ideal.
More specifically, the effective data rates are not a linear
function of the portion of the raw link obtained as real trans-
port protocols use congestion window based congestion con-
trol driven by loss event or latency changes. These events
are not independent between contending flows. In order
to obtain deterministic completion time, we have to isolate
flows.

4. EXPERIMENTAL EVALUATION

4.1 Objectives
To evaluate some of the rate limitation mechanisms com-

bined with scheduling strategies introduced above, real ex-
periments have been conducted.

The main goal of these experiments is to compare the
different scheduling strategies in term of completion time
predictability and mean performance. These two points are
important because in a scheduling perspective, predictabil-
ity of completion time is central and secondly scheduling was
introduced to improve mean performance. More specifically

4Message Transfer Unit

s1 S1

S2s2

1Gbps link

Figure 7: Testbed.

any scheduling algorithms has to be more efficient than raw
TCP sharing.

Next section will present the testbed and scenarii consid-
ered, while two following section present mean and schedul-
ing related performance results.

4.2 Testbed, scenarii & practical considerations
As stated before, two transfers are used. These transfers

are realized by using iperf on Sun Fire V20z workstations
of Grid5000 [4] running GNU/Linux 2.6.20.1 kernels. The
switch used to implement the topology is a ExtremeNet-
works BlackDiamond 8810. Latencies are emulated using
a GtrcNet-1 box [13]. Four different experiments were con-
duced at three latencies (RTT): 0.1 ms, 10ms and 100ms.
Completion times were measured with a 10ms precision.
Each experiment consists of hundred repetitions of the two
transfers.

The first experiment implements the IFS strategy. The
two transfers (15GB and 30GB) have been started at the
same time without bandwidth limitation. In this experiment
the time measured is the maximum of the two individual
completion time.

Second experiment implements the ViFi strategy. The
15GB transfer is started first and the second transfer is
started as soon as the first completes. The duration mea-
sured in this experiment is the sum of the duration of the
two transfers.

Third and fourth experiments implement spaghetti schedul-
ing strategy. Third experiment uses PSPacer as limita-
tion mechanism while fourth uses HTB. Here the time mea-
sured is also the maximum of the two individual comple-
tion time. These two scenarii use qdisc based rate limita-
tion mechanisms. First use packet-level rate limitation using
PSPacer while second use OS’s timer based approach with
HTB. As they both use qdisc implementation, the rates
specified for the two flows are 2/3 ∗ rEth = 656Mbps and
1/3 ∗ rEth = 328Mbps for 30GB and 15 GB transfers as
qdisc acts on ready-to-be-sent packets (Ethernet packets).

Retransmissions done by the transport protocol during
10 repetitions of these experiments are also measured using
Web100 kernel patch.

4.3 Mean performance
Figure 8 shows the distribution and cumulative distri-

bution function (CDF) of the completion times of the two
transfers using different strategies at three latencies (RTT).
CDF of completion time is important because it shows the
dispersion which is a key point for defining the time granu-
larity of the scheduling.

IFS strategy implemented through BIC TCP congestion
control mechanism is efficient under low latencies but as
the latency grows, the mean completion time grows quickly.



0.1ms RTT 10ms RTT 100ms RTT
IFS 3.4% 16.4% 64.3%
ViFi 3.7% 9.2% 9.7%

SS (PSP) 4.0% 4.0% 4.7%
SS (HTB) 5.3% 17.7% 59.6%

Table 2: Relative deficiency of mean real completion
time against ideal one.

This is due to the cost of losses which decrease the congestion
window, i.e. the sending rate. Loss have more and more im-
pact as the latency increases as recovering takes longer. At
0.1ms RTT, the congestion window is about 8 packets which
is smaller than the buffer size of the switch. At 10 ms RTT,
the congestion window is about 800 packets and at 100ms
is close to 8000 packets. In these situations, the bursts sent
by the two sources are very likely to cause congestion. In
addition, as losses do not occur exactly at the same time
from experiment to experiment, the dispersion tends to be
very important especially under high latencies (figure 10(b))
were losses are more costly.

ViFi is a bit less efficient than IFS at 0.1ms (figure 8(a))
because there is only one flow at a time. Increasing the
number of flows sharing a link (i.e. the multiplexing level)
is known to increase the average utilization rate of this link.
Performance decreases a little as latency grows but the dis-
tribution remains quite compact.

Spaghetti scheduling’s performance depends on the limi-
tation mechanisms used. HTB introduces some burstiness
as it use OS timers. Thus the number of losses may be im-
portant as observed on figure 9. While IFS strategy allows
flows to recover by momentarily stealing bandwidth to each
others, HTB does not which leads to poor performance. Us-
ing PSPacer, for rate limitation leads to a nearly constant
completion time among repetitions. As we can observe on
figure 10(a), the mean completion time of spaghetti schedul-
ing using PSPacer is stable with respect to the latency. This
combination (spaghetti and packet pacing) offers the near
ideal implementation of the flow scheduling approach.

To summarize these results in term of mean, we can com-
pare real completion time to ideal completion time obtained
with rTP which is tc = (v1 +v2)/rTP = 388.33 s in Table 2.
We observe a mean deficiency of spaghetti scheduling using
PSPacer below 5% while IFS reaches more than 64.3% un-
der 100ms RTT. These results represent mean performance.
Next section will develop worst case results in terms of min-
imizing the maximum completion time as stated in section
3.2.

4.4 Scheduling perspective
From a scheduling perspective, the main concern is the

variability of completion times. This is because when the
flow scheduler decides a time slot for a transfer, this one
must have, with an high probability, enough time to com-
plete. On the other hand, allocating a larger time window
will be wasteful. In this perspective, mean completion time
is of little help. As observed on figure 10(b), variability
greatly depends on the strategy and end hosts mechanisms
used. Variability is actually very low when using PSPacer
and can be important (std. dev. greater than 20 s for a
mean completion time of about 650 s) for IFS.
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Figure 8: Completion time distribution and CDF
for IFS, ViFi and Spaghetti scheduling using BIC
TCP under different RTT (100 repetitions).
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Figure 9: Mean retransmitted bytes as a function of
the RTT (10 repetitions).

10
−1

10
0

10
1

10
2

350

400

450

500

550

600

650

latency (ms)

m
ea

n 
co

m
pl

et
io

n 
tim

e 
(s

)

 

 
IFS
ViFi
Spaghetti sched. (PSP)
Spaghetti sched. (HTB)
Ideal transport proto. & isolation

(a) 99% confidence interval for mean
completion time as a function of the
RTT.
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(b) Standard deviation of completion
time as a function of the RTT.

Figure 10: Mean completion times and standard de-
viations.
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Figure 11: 75 and 99-percentiles of completion
times.

0.1ms RTT 10ms RTT 100ms RTT
IFS 3.6% 17.5% 78.5%
ViFi 3.8% 9.4% 11.4%

SS (PSP) 4.0% 4.0% 4.7%
SS (HTB) 5.6% 19.6% 67.6%

Table 3: Relative deficiency of 99-quantile of real
completion time against ideal one.

Figure 11 shows the 75 and 99-percentiles of the com-
pletion time for the different strategies as a function of la-
tency. This value is the duration of the slot the scheduling
system would have to allocate in order to have a probabil-
ity of completion of 75% (99%) in a given situation. We
can observe that these two values are quite close except un-
der 100ms RTT with IFS and HTB. Second observation,
these last two strategies, and to a lesser extend ViFi, would
require a scheduling system aware of the latencies of the
links. Indeed, the performance slightly decreases as latency
increases.

Performance obtained using real mechanisms and proto-
cols do not behave as an ideal transport protocol as seen on
figure 10(a) and 10(b). There are 3 differences. First, the
mean completion time of real transfers is obviously larger
than the one of ideal transfer (of 3.4% is the best case and
64.3% in the worst one). Second it increases as the latency
increases for HTB and IFS as packet losses are introduced.
Third, the variance is not null and can be relatively high.
To conclude this section, spaghetti scheduling using PSPacer
appears to be the strategy which provides the best maximum
completion time tc under real experiments. Its 99-quantile
completion time deficiency does not vary much with latency
and is the lowest (except for 0.1 ms RTT) as can be seen in
table 3.

5. CONCLUSION
In this paper we have quantified and compared, end-host

based mechanisms combined with transport protocols to in-
stantiate different scheduling strategies. A simple scenario
has been deeply explored in a range of latency conditions.
We have shown that, in high speed network, a single-rate
scheduling strategy implemented by TCP-variant protocol
like BIC with packet pacing mechanism offers predictable
performance and is insensitive to latency (deficiency of mean
completion time ranging from 4% at 0.1ms RTT to 4.7% at



100ms RTT). This paper also highlights the limits of other
strategies and rate limitation mechanisms like token bucket
which may present unpredictability and other drawbacks.
Future work will concentrate on larger experiments on the
Grid5000 testbed and will examine the scalability of the flow
scheduling approach in real grid context, multirate alloca-
tions schemes and transfers preemption issues.
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