
Reliable DAG scheduling on Grids with Rewinding and Migration

Israel Hernandez and Murray Cole
Institute for Computing Systems Architecture

School of Informatics
University of Edinburgh

j.i.hernandez@sms.ed.ac.uk, mic@inf.ed.ac.uk

Abstract

Fault tolerance is an important issue in Grid Computing

as the availability of Grid resources can not be guaran-

teed. Effective scheduling methods must include fault

tolerant mechanisms to preserve the execution of DAG

applications, despite the presence of a processor failure.

To address this, we designed the DAG rewinding mech-

anism, an event-driven process executed when a failure

is detected at some rescheduling point. The rewinding

mechanism preserves the execution of the application by

recomputing and migrating those tasks which will disrupt

the forward execution of succeeding tasks. The mecha-

nism rewinds the progress of the application to a previous

state, thereby preserving the execution despite the failed

processor(s). This paper extends our work in the area by

adding the rewinding mechanism to our previous dynamic

scheduling methods GTP and GTP/c. We show how to

integrate the rewinding mechanism within our dynamic

execution models.

Keywords: Fault tolerance, Grid computing, parallel
processing, DAG scheduling.

1 Introduction

Grid systems are emerging as a distributed computa-
tional platform suitable for executing scientific ap-
plications. Such applications are often abstracted
as directed acyclic graphs (DAGs), in which vertices
represent application tasks and edges represent data
dependencies between tasks. The core scheduling is-

sues are that the availability and performance of grid
resources, can be expected to vary dynamically, even
during the course of an execution. Our previous dy-
namic models GTP [1] and GTP/c [2] address this is-
sue by allowing rescheduling and migration of tasks in
response to significant variations in resource charac-
teristics. However, such dynamic models are not de-
signed to react to processor failure during execution.
Little work [4, 7] has been conducted to design fault
tolerant mechanisms for DAG applications. To ad-
dress this, we propose a rewinding mechanism which
considers the recomputation and migration of those
tasks (even if they have finished execution) whose
loss would otherwise disrupt execution of succeeding
tasks. We extend our work in this area, by including
the rewinding mechanism into our previous schedul-
ing methods GTP [1] and GTP/c [2]. The remainder
of this paper is structured as follows. In Section 2 we
explain how the DAG application is affected when a
processor failure occurs during execution. In Section
3 we show how to integrate the rewinding mechanism
into GTP and in Section 4 we show the integration
into GTP/c. Section 5 presents the results of some
simulated executions using the rewinding mechanism.
Section 6 describes related and future work.

2 Reliable DAG scheduling
with rewinding

Our previous work in Grid scheduling of DAG appli-
cations is sketched in figure 1, in which we address

peri
Typewriter
GridNets 2007 October 17-19, 2007, Lyon, France.
Copyright 2007 ICST ISBN 978-963-9799-07-3.
DOI 10.4108/gridnets.2007.2137

peri
Typewriter

peri
Typewriter

peri
Typewriter

the dynamicity of Grids with cyclic use of a static
mapping method. The first version of the mapping
method, the GTP system [1] addresses the dynamic
nature of Grids by allowing rescheduling and migra-
tion of tasks where such migration helps to reduce
the earliest finish time of tasks.

Schedule

Static

Rewinding

µtµ0

D
at

a

Schedule Generation (only once at the beggining)
Schedule Evaluation (Rescheduling)
Only during extreme variation

GRID monitoring information

Application monitoring information

ITG

Pr
oc

es
s

GRP

STGGRP

Rewinding
DAG

Reschedule

G

GRID

STG

GGRP

Figure 1: The GTP mapping method

The second version, the GTP/c system [2], is fo-
cused on reducing the impact of the migration cost
on execution time (makespan) by maintaining a col-
lection of reusable copies of the results of completed
tasks, derived from the migration strategy defined
for GTP . Though GTP and GTP/c react to dy-
namic changes in Grid resources, they are not able
to react to extreme changes (i.e. processor failure).
The presence of a resource failure in a particular pro-
cessor during execution, may disrupt the subsequent
execution of other tasks. The tasks expected to be
disrupted can be grouped as: a) those succeeding
tasks still retrieving data from preceding tasks al-
ready executed on the failed processor, and b) those
unfinished tasks mapped to the failed processor which
have begun to gather input data for execution. The
proposed rewinding mechanism, an event-driven pro-
cess executed when a processor failure is detected at
some rescheduling point (RP), seeks to preserve the
execution of the application by recomputing and mi-

grating those tasks which will cause these problems.
We identify three main steps to the integration of
the rewinding mechanism into a particular dynamic
mapping approach,

1. The first step is related to the integration of the
rewinding mechanism with the data structures
containing the information on both the perfor-
mance of the processors composing the Grid sys-
tem and the progress of the application (i.e.
STG and GRP defined below).

2. The second step is related to the procedure of the
rewinding mechanism itself, which will rewind
those critical tasks associated with the failed
processor.

3. The last step is related to particular consider-
ations in the dynamic scheduling strategy (i.e.
copying, data replication) and deals with reset-
ting the information maintained in the system
and linked to the failed processor, to avoid in-
consistencies in subsequent scheduling decisions.

3 GTP with rewinding

We recall that our earlier GTP system allows
rescheduling and migration of tasks in response to
variations in the performance of Grid resources. De-
tails of the costing of candidate schedules can be
found in [1]. The inclusion of the rewinding mech-
anism into GTP produces the GTP/r version. As
stated above, we first need to identify the data struc-
tures containing the information on both the perfor-
mance of the processors composing the Grid system
and the progress of the application.

3.1 Definition of the Grid architecture

We represent Grid Resource Pools (GRP) with
graphs GRP :: (P, L,avail,bandwidth) where P is
the set of available processors in the system, pi(1 ≤
i ≤ |P |). L is the set of communication links con-
necting pairs of distinct processors, li(1 ≤ i ≤ |L|)
such that l(m,n) ∈ L denotes a communication link
between pm and pn. The dynamic scheduling de-
cisions are based upon the latest available resource

2

performance information (as returned by standard
Grid monitoring tools such as NWS or Globus MDS).
Thus, at time t we assume knowledge of availt ::
P → [0..1], capturing the availability of each CPU
and bandwidtht :: L → Float capturing the available
bandwidth on each link. We assume that the intra-
processor communication cost (pm = pn) is negligi-
ble. Failures in traditional distributed systems [3]
are mostly linked to physical failures which make the
resources unavailable. However, in a Grid context,
a failure embraces other situations, which affect the
availability of resources. For instance, in the context
of the DAG execution, a particular processor might
be assigned to another job with higher priority in a
manner outside our control.

3.2 Definition of ITG structure

Static information about the DAG application
is represented by an input task graph ITG ::
(V, E, data, W). V is the set of tasks, vi(1 ≤ i ≤ |V |).
E ⊆ V × V is the set of directed edges connect-
ing pairs of distinct tasks, ei(1 ≤ i ≤ |E|), where
e(i, j) ∈ E denotes a direct dependency and data
transfer from task vi to vj . For future convenience,
we define Pred(vi) to denote the subset of tasks
which directly precede vi and Succ(vi) to denote the
subset of tasks which directly succeed vi. Level(vi)
denotes how deep in terms of number of edges, a task
vi is from the entry node. We assume that infor-
mation about data transfer sizes and task computa-
tion times are provided in standard units, compatible
with those of our bandwidth and computational per-
formance measures. We use data :: V × V → Int to
describe the size of data transfers, such that data(i, j)
denotes the amount of data transfer from vi to vj . Re-
membering that our processors are heterogeneous, we
represent computation times with W :: V ×P → Int,
where W (i,m) denotes the execution time in stan-
dard units of task vi on processor pm.

3.3 Definition of the STG Structure

We maintain additional dynamic information on the
progress of the tasks. We model this by augment-
ing the static ITG, to form a Situated Task Graph

STG. This includes information on current sched-
ule of tasks and partial completion of both tasks
and communications. This is necessary, together
with monitored information on the availability of
processors and links, to allow GTP to iteratively
compute improved schedules. We define STG ::
(V, E, data, W,Π, κc, κd), where the first four compo-
nents are taken directly from the corresponding ITG.
We use Π :: V → P+ to represent placement infor-
mation. P+ represents P augmented with the special
value NONE. GTP includes the concept of placed
task. A task is said to become placed on a proces-
sor once it has begun to gather its input data on
that processor. Otherwise, it is considered as non-
placed. The distinction is important because of its
impact on migration costs associated with data re-
transmission. The decision to migrate a non-placed
task will incur no additional migration cost because
retransmission of data is not needed. For placed tasks
vi, Π(vi) indicates the corresponding processor. For
non-placed tasks vi, Π(vi) = NONE. A placed task
remains placed until migrated or until the whole ap-
plication terminates, because even after task comple-
tion we may later need to retrieve its results. For
future convenience, we define Qt :: P → P(V) to
denote the subset of placed tasks mapped on each
pi ∈ P at t. GTP assumes that information con-
cerning the progress of computations and communi-
cations is made available by monitoring mechanisms
at each rescheduling point. We use κc :: V → [0..1] to
capture the proportion of a task’s computation which
has been completed, and similarly, κd :: E → [0..1] to
capture the proportion of a data transfer which has
been completed.

3.4 Procedure of the GTP/r system

In this section we integrate the rewinding mechanism
into the GTP model. To rewind a task vi, at time
t, we must perform the following operations on the
STG data structure.

1. ∀vj ∈ SUCC(vi) set κd(vi, vj) to 0

2. ∀vk ∈ PRED(vi) set κd(vk, vi) to 0

3. Set κc(vi) to 0

3

4. Set Π(vi) to NONE

Thus, assuming that pm is the failed processor, we
have that Qt(pm) = {v0, v1, v2, ..., vk} contains the
set of k placed tasks known at time t mapped onto
pm, from which we will rewind those placed tasks
which are expected to disrupt the forward execution
of succeeding tasks. To do this, we must consider
each task in vi ∈ Qt(pm). Intuitively, vi must be
rewound if either, i) it has a successor task which has
not yet received a complete copy of the result of vi,
or ii) it has a successor vj , which is also assigned to
pm and which also needs to be rewound.

The recursive form of this rule means that we must
consider tasks in Qt in an order which respects a re-
verse topological sort (according to the precedence
constraints between tasks). Thus, within Qt(pm) we
must consider exit tasks first, then their predecessors,
and so on. This ordering is straightforward to main-
tain in an implementation because all precedence in-
formation is available. Thus, a task vi ∈ Qt(pm) must
be rewound if,

1. ∃e(vi, vj) ∈ E : κd(vi, vj) < 1, or

2. ∃vk ∈ SUCC(vi) : vk ∈ Qt(pm) and vk must
be rewound

Note the importance of maintaining information
about all placed tasks in Qt, including those whose
completion is complete. Following the procedure, we
now know that no information related to the failed
processor pm is maintained in GTP/r. Obviously,
after the rewinding process, the failed processor will
not be considered in the subsequent scheduling deci-
sions, unless availt(pm) > 0 in future RP’s.

To illustrate the rewinding mechanism, we will use
the example of figure 2(a) where we observe a pro-
cessor failure in p3 at some point between RPn+1

and RPn+2. We observe that such failure will inhibit
the precedence constraint satisfaction for e(v2, v3) as
v3 will stop retrieving the input required from v2

to start execution. The failure will be detected at
RPn+2 and the rewinding mechanism will be trig-
gered. The rewinding mechanism must determine
which placed tasks mapped to p3 need to rewind to
preserve the execution of the DAG application. At

RPn+2, Qn+2(p1) = {v1}, Qn+2(p3) = {v0, v2} and
Qn+2(p4) = {v3}. The rewinding mechanism will
evaluate in reverse order the sequence of placed tasks
vi ∈ Qn+2(p3). Thus, the first task to evaluate is v2

which inhibits the precedence constraint satisfaction
for e(v2, v3), as v3 will stop retrieving input from v2

executed on p3. Thus, v2 is rewound following the
form explained above. Now, the next task to evalu-
ate from Qn+2(p3) is v0, which Succ(v0) = {v1, v2},
and the first precedence constraint e(v0, v1) is satis-
fied as v1 has finished their execution at p1. However,
the second precedence constraint e(v0, v2) will not be
satisfied as v2 (already rewound) will not be able to
retrieve their input from v0 executed on p3. Thus,
task v0 must also be rewound. Since, task v0 and v2

were rewound, they will be ready to be rescheduled
and migrated to a different available processor. Fol-
lowing the steps for the rewinding mechanism, there
is no additional information linked to p3 which could
lead to inconsistencies in scheduling decisions. After
rewinding and rescheduling the application at RPn+2,
the task v3 was finally executed at p4 after receiving
the required inputs.

4 GTP/c with Rewinding

We will similarly follow the three steps outlined to
integrate the rewinding mechanism into the GTP/c
system to produce the GTP/c/r version.

4.1 Definition of GRP and STG

Our definition of GRP (Grid Resource Pools) and
ITG (Initial Task Graph) are identical to those from
GTP defined in section 3.1 and 3.2 respectively. We
recall that GTP/c now maintains a collection of
reusable copies to reduce the impact of the migra-
tion cost on makespan. Thus, GTP/c includes in the
STG structure, Ω :: E → P(P) to capture informa-
tion on location of copies. Details of the costing of
candidate schedules can be found in [2].

4

P1

P2

P3

P4 v3

v3

v3

P1

P2

P3

P4

v2

v1 P1

P2

P3

P4

P1

P2

P3

P4 v3

Fault in Processor P3

P
la

ce
m

en
ts

t

e(v2−v3)

e(v1−v3)

e(v1−v3)

v0

e(v0−v1)

e(v2−v3)

e(v1−v3)

e(v2−v3)

v0

v2

e(v0−v2)

e(v2−v3)

Data Transfer completed

Data Transfer considered

n n+1 n+2RPs

a) The GTP model

P1

P2

P3

P4

v3

v3

v1 P1

P2

P3

P4 v3

P1

P2

P3

P4

v0

v3

Copy of Data (v1−v3)

Copy of Data (v2−v3)

P
la

ce
m

en
ts

t

e(v1−v3)

e(v2−v3)

v2

e(v2−v3)

e(v0−v1) e(v1−v3)

e(v1−v3)

e(v1−v3) e(v1−v3)

e(v2−v3)

e(v2−v3)
e(v2−v3)

n n+1 n+2RPs

b) The GTP/c model

Figure 2: The rewinding mechanism for GTP and GTP/c

4.2 Procedure of the GTP/c/r system

The rewinding mechanism for GTP/c/r now in-
cludes a criterion related to the existence of possi-
bly reusable copies in Ω(ei,j) for a particular edge
e(vi, vj) ∈ E. We consider that if there exist at least
one reusable copy in a processor different than pm,
then it means that vj can retrieve the data from this
copy despite pm’s failure, and therefore that rewind-
ing is not needed. This particular feature of GTP/c
is expected to reduce the overhead cost generated
by the rewinding mechanism. For GTP/c/r, a task
vi ∈ Qt(pm) must be rewound if,

1. Ω(vi) = {pm}, (this is the only copy), and either

2. ∃(vi, vj) ∈ E : κd(vi, vj) ≤ 1, or

3. ∃vk ∈ SUCC(vi) : vk ∈ Qt(pm) and vk must
be rewound

As before, for tasks to be rewound, we must reset
elements of κd, κc and Π to reflect the rewinding.

For GTP/c/r, all the copies located at the failed
processor pm and maintained in STG can lead to
scheduling thrashing if they are not eliminated.
Thus, as stated in the last step of the procedure, those
copies Ωt(ei,j) = pm must be eliminated from STG.
To illustrate GTP/c/r, we will use the same ex-
ample from GTP/r, with failure in processor p3 at
some point between RPn+1 and RPn+2. This is
shown in figure 2(b). At RPn+2, Qn+2(p1) = {v1},
Qn+2(p3) = {v0, v2} and Qn+2(p4) = {v3}. The first
task to evaluate is v2 which, as we observe, inhibits

the precedence constraint satisfaction for e(v2, v3), as
v3 will stop retrieving input from v2 executed on p3.
However, due to the maintenance of reusable copies
for GTP/c/r, the input required by v3 from v2 can
be retrieved from the copy stored at p2, satisfying
the precedence constraint. Thus, rewinding task v2 is
not needed. The next task to be evaluated is v0 with
Succ(v0) = {v1, v2}. The first precedence constraint
for e(v0, v1) is satisfied as v1 has finished execution
at p1. The next precedence constraint for e(v0, v2) is
considered to be satisfied as v2 kept its status of fin-
ished task, because it was not rewound. Thus task v0

will not be rewound. Finally, since GTP/c/r main-
tains a collection of reusable copies some of which
may be stored at p3, we need to delete those copies
stored at p3 to avoid inconsistency in future deci-
sions. In this case we delete the copy Ωl(v2, v3) as
it could lead to subsequent inconsistency in schedul-
ing decisions if task v3 was migrated in the future.
Thus, after the third step, the application has been
rewound. Completing the example, after rewinding
and rescheduling the application at RPn+2, v3 is fi-
nally executed at p4 after receiving the required in-
puts.

5 Performance Evaluation

Our evaluation is conducted by simulation, since this
allows us to generate repeatable patterns of resource
performance variation. We have used the Simgrid
simulator [5] for this purpose. We evaluated the ver-
sions GTP/r and GPT/c/r which include the DAG

5

rewinding mechanism.

5.1 Comparison Metrics

We use the Normalized schedule length (NSL) to de-
termine the amount of extra time that a particular
application requires to finish execution when proces-
sor failure. The NSL metric is defined as the ratio
of the schedule length (makespan) to the sum of the
computational weights along the critical path and can
be computed as

NSL =
Makespan∑
vi∈CPath Wi

Thus, the amount of extra time required (AET)
can be determined by AET = NSLr −NSL, corre-
sponding to difference between the NSLr (applica-
tion using rewinding mechanism) value and the NSL
value (application without rewinding).

Other complementary metrics to consider are the
Rewound Tasks (RT) metric to determine the num-
ber of placed tasks rewound, the rewinding overhead
to determine the overhead incurred and the Levels
Rewound (LR) metric to determine how deep the ap-
plication had to be rewound in the presence the failed
processor.

5.2 DAG applications

The shape of the DAGs considered in our experiments
were taken from the Standard Task Graph Project
(STDGP) [6]. Since STDGP considers the DAGs
to be executed in a homogeneous environment, with-
out communication cost, we had to add randomly
(but repeatably) generated W and data information
to produce our ITGs. The graph size (in number of
tasks) varied in the range {50,100,300,500,1000} and
the average number of edges per graph-size varies in
the range {300,800,100,10000,35000} respectively. In
keeping with the principles of schedule feedback, we
assume the availability of the latest makespan of the
application, and we set the fixed-period rescheduling
cycle at 10% of the value of the makespan.

5.3 Simulation Results

We created two different groups (TE1 and TE2) of
test scenarios to evaluate the performance of the
rewinding mechanism. Both groups keep the prin-
ciples of our previous work in [1, 2] by involving a se-
quence of randomly defined (but repeatable) events,
each simulating a resource change in either proces-
sor or bandwidth availability. The key difference is
that we injected in TE2 an additional event simu-
lating a processor failure to occur at the mid-point
of the execution. Obviously, GTP/r and GTP/c/r
will use TE2 to evaluate the rewinding mechanism,
while GTP and GTP/c will use TE1 as they are not
able to react to processor failure. Our scenarios are
distinguished by the bound placed on the maximum
variation allowed in one event, expressed as a per-
centage of the peak performance of a resource. For
example, in the scenario with a bound of 30%, any
one event can cause the availability of a processor
to decrease to no less than 70% of its peak perfor-
mance, or of a link to decrease to no less than 70%
of its maximum bandwidth. We experimented with
a bound ranging from 0% to 90% in increments of
10%. Our graphics embraces the whole spectrum of
bounds. For reasons of space we report here only the
results for SCE5-500 (5 Processors and 500 tasks) and
SCE20-1000 (20 Processors and 1000 tasks).
The experimental results show that for most cases
the performance of the rewinding mechanism for
GTP/c/r outperforms GTP/r in the presence of a
processor failure. For scenario SCE5-500 (5 PE’s,500
Tasks), figure 3 shows that GTP/c/r needed up to
13% of extra time compared with GTP/c to exe-
cuted the application in the presence of failure, and
GTP/r needed up to 16% of extra time compared
with GTP . The average number of rewound levels
(LR) for GTP/c/r is up to 40 levels and up to 42
levels for GTP/r. The average of the number of re-
wound tasks for GTP/c/r is up to 20 and up to 27
for GTP/r. For SCE20-1000 (20 PE’s, 1000 Tasks),
GTP/c/r needed up to 12% of extra time compared
with GTP/c to execute the application in the pres-
ence of failures and GTP/r needed up to 14% of ex-
tra time compared with GTP . The average number
of rewound levels is up to 90 for GTP/c/r and up

6

 10

 20

 30

 40

 50

 60

 70

 80

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Grid Resources

SCE(5 Processors,500 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

908070605040302010

A
ve

ra
ge

 N
S

L

% of Variability in Grid Resources

SCE(20 Processors, 1000 Tasks)

GTP/c
GTP/c/r

GTP
GTP/r

Figure 3: Average NSL for GTP/r and GTP/c/r

 36

 37

 38

 39

 40

 41

 42

 43

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Grid Resources

SCE(5 Processors, 500 Tasks)

Max.Level
GTP/c/r

GTP/r

 70

 75

 80

 85

 90

 95

 100

908070605040302010

A
ve

ra
ge

 L
ev

el
s

R
ew

ou
nd

% of Variability in Grid Resources

SCE(20 Processors, 1000 Tasks)

Max.Level
GTP/c/r

GTP/r

Figure 4: Average Levels Rewound for GTP/r and GTP/c/r

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

908070605040302010

A
ve

ra
ge

 R
ew

ou
nd

 T
as

ks

% of Variability in Grid Resources

SCE(5 Processors, 500 Tasks)

GTP/c/r
GTP/r

 26

 26.5

 27

 27.5

 28

 28.5

 29

908070605040302010

A
ve

ra
ge

 R
ew

ou
nd

 T
as

ks

% of Variability in Grid Resources

SCE(20 Processors, 1000 Tasks)

GTP/c/r
GTP/r

Figure 5: Average Rewound Tasks for GTP/r and GTP/c/r

to 93 and for GTP/r. The average of the number
of rewound tasks is up to 19 for GTP/c/r and up
to 22 for GTP/r. The performance of the rewind-
ing mechanism for a particular scheduling method, is

highly dependent upon the details of the scheduling
method used. Moreover, from the experiments, we
observe that there exists a vicious circle linking the
number of rewound levels to the number of rewound

7

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Grid Resources

SCE(5 Processors, 500 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove.GTP/r
Ove.Rew.GTP/r

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

908070605040302010

A
ve

ra
ge

 O
ve

rh
ea

d
C

os
t

% of Variability in Grid Resources

SCE(20 Processors, 1000 Tasks)

Total Ove.GTP/c/r
Ove.Rew.GTP/c/r
Total Ove. GTP/r
Ove.Rew. GTP/r

Figure 6: Average Overhead Cost for GTP/r and GTP/c/r

tasks, to the rewinding overhead cost and finally to
the makespan of the application. The copying fea-
ture in GTP/c/r tends to reduce the impact of the
vicious circle on makespan compared with GTP .

6 Related and Future Work

Little work [4, 7] has been conducted to design fault
tolerant mechanisms for DAG applications. The Di-
rected Acyclic Graph Manager (DAGMan) [7] is a
meta-scheduler for Condor jobs, which consider the
submission of DAGs tasks on Grids. DAGMan con-
tains a mechanism to tolerate faults in the software,
caused mainly by human mistake (i.e. an error in
an output file which is input for a succeeding task).
Such a mechanism consists of the resubmission of un-
completed portions of a DAG when one or more tasks
resulted in failure. If any task in the DAG fails, the
remainder of the DAG is continued until no more
forward progress can be made due to the DAG’s de-
pendencies. At this point, DAGMan produces a file
called a Rescue DAG (input file), containing informa-
tion about the progress of the DAG (unfinished and
successfully finished tasks). Then, using this Rescue
DAG as input file, the unfinished tasks are resub-
mitted. The tasks successfully completed will not be
re-executed. We note that for this case, recomputa-
tion of tasks which had already finished is not needed
as it assumes full availability of processors during ex-
ecution.

We believe that our rewinding mechanism can also

be applied in other aspects of the DAG scheduling
problem. For instance, DAG schedulers usually tend
to obtain a schedule of unfinished tasks, focused on
minimizing the makespan. However, there could be
some cases in which rewinding the DAG (recomputa-
tion of finished tasks) could derive a better makespan,
even without processor failure.

References

[1] I. Hernandez and Murray Cole, ”Reactive Grid
Scheduling of DAG Applications”, Proceedings of
25th IASTED (PDCN), 92-97, Acta Press, 2007.

[2] I. Hernandez and Murray Cole, ”Scheduling
DAGs on Grids with Copying and Migration”, to
appear in Parallel Processing and Applied Mathe-
matics (PPAM07), Springer LNCS, 2007.

[3] Pankaj Jalote, Fault Tolerance in Distributed Sys-
tems, Prentice Hall, 1994.

[4] Medeiros, Cirne, Brasileiro and Sauve ”Faults in
Grids: Why are they so bad and what can be done
about it?”, Proc. 4th Int. Workshop on Grid Com-
puting, 18-24, IEEE Computer Society, 2003.

[5] The Simgrid project, http://simgrid.gforge.inria.fr/

[6] The Standard Graph Project,
http://www.kasahara.elec.waseda.ac.jp/schedule/

[7] Condor DAGMan Applications,
http://www.cs.wisc.edu/condor/manual/

8

