
G-lambda and EnLIGHTened: Wrapped In Middleware
Co-allocating Compute and Network Resources Across Japan and the US

EnLIGHTened:
Steven R. Thorpe5, Lina Battestilli5, Gigi Karmous-Edwards5, Andrei Hutanu6,

Jon MacLaren6, Joe Mambretti7, John H. Moore5, Kamaraju Syam Sundar5, Yufeng Xin5

G-lambda:
Atsuko Takefusa1, Michiaki Hayashi2, Akira Hirano3, Shuichi Okamoto4,2, Tomohiro Kudoh1,

Takahiro Miyamoto2, Yukio Tsukishima3, Tomohiro Otani4,2, Hidemoto Nakada1,
Hideaki Tanaka2, Atsushi Taniguchi4,3, Yasunori Sameshima4,3, Masahiko Jinno3

1. National Institute of Advanced Industrial Science and Technology (AIST); Tokyo, Japan
{atsuko.takefusa,t.kudoh,hide-nakada}@aist.go.jp

2. KDDI R&D Laboratories; Saitama, Japan
{mc-hayashi,okamoto,tk-miyamoto,otani,hide}@kddilabs.jp

3. NTT Network Innovation Laboratories; Kanagawa, Japan
{hirano.akira,tsukishima.yukio,taniguchi.atsushi,
sameshima.yasunori,jinno.masahiko}@lab.ntt.co.jp

4. National Institute of Information and Communications Technology (NICT); Tokyo, Japan

5. Advanced Initiatives, MCNC; Research Triangle Park, NC, USA
{thorpe,lina,gigi,jhm,sundar,yxin}@mcnc.org

6. Center for Computation & Technology, Louisiana State University; Baton Rouge, LA, USA
{ahutanu,maclaren}@cct.lsu.edu

7. International Center for Advanced Internet Research (iCAIR), Northwestern University; Chicago, IL, USA
j-mambretti@northwestern.edu

ABSTRACT
This paper describes innovative architectures and techniques for re-
serving and coordinating highly distributed resources, a capabil-
ity required for many large scale applications. In the fall of 2006,
Japan’s G-lambda research team and the United States’ EnLIGHT-
ened Computing research team used these innovations to achieve
the world’s first inter-domain coordination of resource managers
for in-advance reservation of network bandwidth and compute re-
sources between and among both the US and Japan. The compute
and network resource managers had different interfaces and were
independently developed. Automated interoperability among the
resources in both countries was enabled through various Grid mid-
dleware components. In this paper, we describe the middleware
components, testbeds, results, and lessons learned.

1. INTRODUCTION AND MOTIVATION
Scientific discovery and innovation in the 21st century will increas-
ingly rely on what has been called global collaboratories. This term
refers to the sharing of resources, interdisciplinary knowledge, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GridNets 2007, October 17-19, 2007, Lyon, France.
Copyright 2007 ICST 978-963-9799-07-3

data via information technologies. Several consortiums, forums,
and other international communities are addressing some of the
many challenges arising from the sharing of resources, such as the
Open Grid Forum (OGF)[1] and the Global Lambda Integrated Fa-
cility (GLIF)[2]. A key challenge now is to stitch together the re-
sources across the many domains, projects, testbeds, and hetero-
geneity of the resources. In contrast to conventional Grids which
uses the Internet for network connectivity, global collaboratories
sometime require the use of high capacity deterministic lightpath
connections between resources. In many cases, a single applica-
tion requires several simultaneous lightpaths in coordination with
other resources to run. In this paper we describe the collaboration
of two complementary research projects and provide insights to the
innovations required for resource sharing and interoperability.

Japan’s G-lambda project (GL) [3][4] is a joint collaboration of
the KDDI R&D labs, NTT, NICT, and AIST that was started in
2004. The goal of the project is to establish a standard web services
interface between a Grid resource manager and a network resource
manager provided by network operators.

The United States’ EnLIGHTened Computing project (EL)[5] is
an NSF seed-funded, interdisciplinary effort among MCNC, LSU,
NCSU, RENCI, and several other organizations that began in 2005.
It has grown to include several active industry participants (Cisco,
Calient Networks, IBM, AT&T Research), national collaborating
institutions (StarLight, Caltech, UNCC), and international collabo-
rating projects (Japan’s GL, EU’s PHOSPHORUS). The project has
designed an architectural framework that allows e-science applica-

peri
Typewriter

peri
Typewriter

peri
Typewriter
DOI 10.4108/gridnets.2007.2077

peri
Typewriter

peri
Typewriter

peri
Typewriter

peri
Typewriter



tions to dynamically request in-advance or on-demand any type of
Grid resource - not only high-performance computers, storage, sci-
entific instruments but also deterministic, high-bandwidth network
paths. Based on application requirements, EL middleware directly
communicates with Grid resource managers and, when availability
is verified, co-allocates all the necessary resources.

In late 2006, these two complementary project teams collaborated
to achieve the world’s first inter-domain coordination of resource
managers for in-advance reservation of network bandwidth and com-
pute resources between the US and Japan. The compute and net-
work resource managers had different interfaces and were indepen-
dently developed. Automated interoperability among the resources
in both countries was enabled through various Grid middleware
components and an innovative architecture.

The research described here should be viewed from the perspec-
tive of several major investigative areas that are examining new
architecture and methods to enhance the efficiency and resource
optimization of high performance distributed infrastructure. One
consists of attempts to provide for greater levels of abstraction for
services supported by infrastructure, such as the trend toward ser-
vices oriented architecture. Another consists of methods, such as
computational grids, for creating distributed resources that can be
gathered, configured and reconfigured on an ad hoc basis as re-
quired by large scale applications[1]. A third is comprised of new
network architectures and techniques that are transforming commu-
nication services from static capabilities to highly dynamic directly
addressable resources at all network layers, including lightpaths[6].
Projects focused on dynamic lightpath provisioning include OptI-
Puter, OMNInet, Phosphorus, StarPlane, and DRAGON[7]. Al-
though the research presented in this paper utilizes capabilities from
each of these areas, it also provides for a unique middleware ar-
chitecture for an exceptionally high level of integration among all
major distributed infrastructure components within and among dis-
tinct domains, including distributed computational grids, high per-
formance communication services, and applications.

Figure 1: EnLIGHTened distributed visualization application

1.1 Applications
Several applications today require this type of dynamic global shar-
ing of resources. Many more are predicted due to the extremely
high volume of data being generated in all disciplines. For the
interoperability experiment, two representative applications were
chosen. The EL team has chosen an experimental distributed visu-

alization application and the GL team has chosen a distributed nu-
merical simulation. Both of these applications have very demand-
ing requirements on both the networks and compute resources as
well as strict requirements on the coordination and co-allocation
of these resources. Network requirements include the reservation
and allocation of multiple lightpaths simultaneously per applica-
tion, not just a single lightpath.

EnLIGHTened Distributed Visualization: Scientific simulations
are often carried out on remote computing facilities. Results are
stored on one or multiple (in the case of distributed simulations)
remote computers. The EL distributed visualization application is
targeting the scenario where one scientist needs to interactively vi-
sualize and analyze simulation results that are stored on remote su-
percomputers. One possible option is to copy the entire data to
a local resource. However, the dataset size can exceed the local
storage capacity and the scientist may only be interested in certain
sections of the data, so it would be a waste to transfer the entire
dataset locally. Our application instantiates a “data server” code on
demand on each of the remote resources holding data of interest,
the data servers connect to the visualization client which is instan-
tiated on one of the resources that the scientist has direct access
to. Selected data is transferred from the servers to the client and
interactively visualized by the user. This is illustrated in Figure 1.

G-lambda Distributed Simulation: The GL team’s application
was a distributed quantum mechanics/molecular dynamics simu-
lation This surveyed a chemical reaction path by using a nudged
elastic band method. The simulation was conducted in parallel, on
distributed computing resources, calculating system configurations
during the chemical reaction.

The remainder of the paper is organized as follows. Section 2 intro-
duces the architectures used by the two teams. Section 3 describes
our testbeds. Section 4 covers additional middleware components
required to enable interoperability among the two testbeds, along
with our coordinated experiments. Finally, in Section 5 we con-
clude with some of our results, lessons learned, and future plans.

2. SOFTWARE ARCHITECTURES
2.1 Multiple Resource Managers and Brokers

With Different Implementations
A key goal of our collaboration was to enable interoperability across
our respective testbeds and middleware stacks. The GL and EL
testbeds consist of multiple domains across Japan and the United
states, with each domain managed by its own Network Resource
Manager (NRM) middleware. For applications requiring resources
in multiple locations, coordinated bandwidth reserved between su-
percomputers in different domains is required. Three possible mod-
els of coordination include 1) Network Control Plane Layer inter-
working; 2) Local Resource Manager Layer inter-working; and 3)
Global Resource Layer inter-working. Details, pros and cons of
each of these models are discussed below.

An example of Network Control Plane Layer inter-working would
be GMPLS E-NNI. The flow of communication would be from a
user program, to a resource coordinator software agent (or broker),
to an NRM, to the control plane (e.g. GMPLS). Pros include users
not having to care about “multiple domains”. Cons include a) GM-
PLS is an on-demand protocol and does not support in-advance
reservations; and b) a very close relationship between domains is
required, which may not always be possible.



Local Resource Manager Layer inter-working refers to a scenario
where at path reservation time, an NRM would communicate with
“peer NRMs” in adjacent domains to calculate a suitable multi-
domain path. Then at path instantiation time, each NRM responsi-
ble for a portion of the path would issue commands to the under-
lying control plane in its domain to set up its part of the path. As
with the previously described case, pros include users not having
to care about “multiple domains”. Cons include a) the complexity
introduced by the interworking of NRMs, such as possible political
issues to achieve interoperation among NRMs of multiple carriers
and b) users can’t control the (intermediate) domains they traverse.

In the Global Resource Layer inter-working scenario, a single Re-
source Coordinator (or Resource Broker) in a user’s local domain
communicates with NRMs in multiple domains, and each NRM
communicates with its own control plane; there is no communi-
cation between NRMs or between the control planes of different
domains. Pros include a) the user can control the combination of
domains; and b) there is no lower-layer interaction required. It is
especially useful for the user to control the domains selected, since
it is not just the network provisioning alone that needs to be op-
timized, but the selected compute and other resources attached to
that network also need to be optimized. A Global Resource Layer
method allows optimization of network, compute, and other re-
source choices collectively rather than individually. One con is the
broker is required to have knowledge of inter-domain connections.

We chose the Global Resource Layer approach for handling our
inter-domain connections. In our ongoing research we are studying
ways to optimize and share the knowledge of inter-domain con-
nections. At present this issue is largely dealt with using statically
configured topological descriptions, but in the longer term we hope
to have a more automated resource registry system enabled.

The GL and EL teams developed their own resource coordinator
and resource manager middlewares independently. Both teams had
the goal of achieving in-advance and coordinated reservations of
multiple types of resources – especially compute and network. In
order to enable interoperability between the projects, we needed to
develop software wrappers (described later, in Section 4).

2.2 G-lambda Architecture

Figure 2: G-lambda middleware architecture

The architecture of the GL middleware is shown in Figure 2. The
middleware consists of a Grid Resource Scheduler (GRS), Net-

work Resource Managers (NRMs), and Compute Resource Man-
agers (CRMs). The GRS reserves overall resources and NRMs and
CRMs manage reservation timetables of managed resources and
activate the resources at each reservation time. For each user re-
quirement of resources, such as the number of clusters, the number
of CPUs, network bandwidth between the clusters, and reservation
time, the GRS negotiates with related NRMs and CRMs and books
the resources simultaneously based on distributed transactions via
a WSRF (Web Service Resource Framework)-based interface[8].

For the interface between the GRS and NRMs, the GL project de-
fines GNS-WSI2 (Grid Network Service - Web Service Interface
version 2), a WSRF-based interface for network resources for Grid
middleware and applications[9]. GNS-WSI2 provides a two-phase
commit protocol to enable a generic and secure advance reservation
process based on distributed transactions. GNS-WSI2 provides a
polling-based interface and also a notification-based interface us-
ing WS-Notification[10]. The GNS-WSI2 reservation process is:

1. A client sends an NRM a creation request of a service in-
stance for resource reservation. The NRM creates a Reser-
vationResource, which is a service instance, and returns an
endpoint reference (EPR) to the requested client. The Reser-
vationResource stores reservation property information for
each request.

2. Using 1)’s EPR, the client sends a resource reservation re-
quest to the NRM. The NRM creates a ReservationCom-
mandResource, to manage information on this reservation
request, then returns an EPR to the ReservationComman-
dResource.

3. Using 2)’s EPR, the client checks the reservation status of
at the NRM. After the NRM has prepared the requested re-
sources, the NRM returns status “Prepared”. This completes
phase 1 of the two-phase commit protocol.

4. In order to confirm the reservation, the client sends a commit
request using 2)’s EPR, completing phase 2.

User/GRS and GRS/CRM interfaces also use a WSRF-based two-
phase commit protocol similar to that of GNS-WSI2. This hier-
archical two-phase commit protocol enables the GRS to itself be
a resource manager, so it can easily coordinate with other global
schedulers or co-allocators. For description of compute resources,
we extended JSDL (Job Submission Description Language)[11] to
represent requirements of advance reservations.

In the experiment with the EL team, we used GridARS (Grid Ad-
vance Reservation-based System framework) GRS[12] and multi-
ple NRM implementations developed by KDDI R&D Labs., NTT,
and AIST, respectively. For CRMs, we used a GridARS WSRF in-
terface module and existing compute resource schedulers, PluS[13]
and GridEngine[14]. PluS is a plug-in scheduler enabling advance
reservation capability for existing queuing systems.

To perform the GL distributed simulation application, an applica-
tion portal was developed. The portal architecture is shown in Fig-
ure 3. The portal frontend was developed using Java Script and a
Java Applet; it calls GRS reservation operations via an HTTP in-
terface. For each user request from the frontend, GL middleware
books suitable network and compute resources. After the reserva-
tion has completed, the user launches an application result viewer
from the portal frontend and the portal submits user jobs in the re-
served queues via WS-GRAM, as provided by Globus Toolkit 4.



Figure 3: G-lambda’s application portal architecture

When a parallel application is executed using multiple clusters, we
may need provisioned paths between some cluster pairs, but we
may not need paths between certain pairs of clusters since the traf-
fic is low between these pairs. In such cases, user process should
communicate both using the provisioned data plane paths (where
available) and ordinary (but always available) routed network. To
realize this, we set and reset routing tables of computing nodes be-
fore and after a provisioning. Before executing a scheduled job,
PluS activates a pre-job, in which the routing table of each node is
set appropriately for the execution of the job. After job execution,
the routing tables are reset to the original state by a post-job. Us-
ing this function, user processes can communicate with nodes in
other sites through data plane and cluster management plane using
a single IP address.

The GL team’s north and south domains (described in Section 3)
are managed by NRMs developed by KDDI R&D labs. and NTT
respectively. These two NRMs have different implementation, while
both support the same GNS-WSI2 interface.

2.2.1 NRM developed by KDDI R&D Laboratories
A concept of network resource management system (NRM) has
been proposed to provide the network service via WSI, and that was
demonstrated using JGN II GMPLS testbed for the first time [15].
Moreover, to support latency-aware advance reservation with op-
timized network resource utilization, adaptive path discovery and
allocation schemes with optimized bandwidth resource scheduling
mechanism were introduced[16].

The NRM developed by KDDI R&D Laboratories Inc. mainly
consist of three functional modules: WSRF-based Web services
module, mediation module, and network control and management
(C&M) module) [16], as shown in Figure 4. A Web services mod-
ule cooperates with the GRS through the GNS-WSI2 web-services
API. The NRM provides guaranteed and scheduled network ser-
vice to network service clients. A Web service module of NRM
handles service messaging using Web application server (Web AS).
Following a request processed by Web service module, a mediation
module assigns appropriate resources using optimized-path discov-
ery and scheduling functions. A mediation module allows both
on-demand and in-advance network services. The information of
reservation and network resource are dynamically managed by a
transaction and a resource databases, respectively. A network con-
trol and management (C&M) module interworks with the control
plane (e.g. MPLS, GMPLS) of physical network and utilizes its

distributed operation for multi-layer provisioning and synchroniza-
tion of the network state.

Figure 4: Architecture of NRM developed by KDDI

Figure 5: Path discovery operation up to 3rd stage from nodeA
in IP/optical network.

The shortest path first (SPF) algorithm is used in IP and optical
networks to find the shortest path based on a current topology, and
the constraint-based SPF widely implemented to GMPLS networks
allows handling of TE-link attributes. However, these techniques
are not essentially designed to handle resource availability with the
time domain and latency as constraints. We have proposed a path
discovery scheme based on the breadth first search to obtain pos-
sible paths[16]. Using a currently available topology stored in the
resource database of NRM, possible end-to-end routes are discov-
ered in advance considering the link attributes. Figure 5 shows the
breadth first search-based discovery operation up to the 3rd stage in
the case of a 2.4 Gbit/s path from a packet switch capable (PSC)-
node A through lambda switch capable (LSC) transit nodes. The
stage progresses on a per hop-basis and possible links with the same
attributes are selected to produce an end-to-end route that is man-
aged as a logical tunnel (LSP). Then, each LSP has an end-to-end
latency value that is integrated from component links. In the 3rd
stage shown in Figure 5, discoveries from nodes C and I detect the
loop for a route to node B. Based on this scheme, the NRM allo-
cates appropriate LSPs based on conditions injected from clients.

2.2.2 NRM developed by NTT
In the GL/EL collaboration, a network resource manager[17] devel-
oped by NTT is responsible for management of the JGN II south
domain’s network, over which GMPLS control plane has been su-
perposed[18]. This NRM consists of Web Service (WS)-adapter,
scheduler, path data base, and path control manager modules as
shown in Figure 6. The scheduler module is invoked by a reser-
vation request received from the AIST-GRS via WS-adapter which
is compliant to GNS-WSI2. The scheduler module computes an
available route according to the reservation request. If it finds a



route, it registers the route in the database and returns the result to
the GRS via the WS-adapter. Several seconds prior to the reserved
time, the path control manager initiates GMPLS RSVP-TE signal-
ing to provide the requested connections in time for the application.
Then when the ending time comes, it invokes tear down signaling.

Figure 6: NTT-NRM architecture

2.3 EnLIGHTened Computing Architecture

Figure 7: EnLIGHTened middleware architecture

The architecture of the EL middleware is shown in Figure 7. The
middleware doesn’t yet include automated resource selection, often
referred to as resource brokering. In the current implementation,
this is manually performed by users, who specify the exact compute
and network resources they wish to use, and at which times.

To initiate its activities, the application uses a set of scripts we
call the Application Launcher/Steerer (ALS). The ALS requests
resources for the application from the Highly-Available Resource
Co-allocator (HARC) Acceptors. The HARC Acceptors attempt
to co-allocate the required resources for the selected time range by
using the HARC Network Resource Manager (NRM) and the Com-
pute Resource Managers (CRMs).

HARC is an extensible, open-source co-allocation system that al-
lows clients to book multiple heterogeneous resources in a single
transaction [19]. It consists of a set of Acceptors, which manage the
co-allocation process, and a set of Resource Managers, that pro-
vide the interfaces for HARC to make reservations on individual

resources. To co-allocate a resource set, clients send their request
(expressed as a single XML message) to the Acceptors. For HARC
to be able to book the multiple requested resources in an atomic
fashion, a phased-commit protocol is used. HARC uses the Paxos
Commit protocol [20], which allows the system to function nor-
mally, provided a a majority of the Acceptors remain operational.
The current implementation of HARC includes:

Figure 8: HARC Network Resource Manager

• Network Resource Manager (NRM): for reserving dedicated light-
paths on a single-domain optical network such as the EL testbed.
The HARC NRM’s components are illustrated in Figure 8. Within
the HARC NRM, a model of each link within its domain’s
topology is maintained, along with a timetable for each link
that contains a set of time ranges that link has been reserved
for. The domain’s topology and link characteristics are loaded
when the NRM starts, and this HARC NRM is assumed to have
complete control over its domain’s paths. For paths connecting
any two end points in the topology, the HARC NRM has TL1
commands specifying an Explicit Route Object (ERO) to con-
nect those end points. These paths and corresponding links and
timetables are searched at user request time, in order to choose
an appropriate answer to service the request. At connection
reservation time, TL1 commands are sent to Calient Diamond-
wave PXCs to initiate lightpaths by GMPLS RSVP-TE.
Ideally timetables would not actually be maintained within the
HARC RM, but rather any HARC RM would be a much thin-
ner layer between the Acceptors and a true resource manager
underneath (as is the case with the CRM, described below).
However, as the network has no such resource manager, keep-
ing these in this prototype HARC NRM was simpler.

• Compute Resource Managers (CRMs): for reserving time on
High-Performance Computing resources, via existing batch sched-
ulers such as PBSPro, Torque with Maui, etc. In essence, the
CRMs wrap an existing scheduler so that it can work with other
middleware components. The reservation ID is passed back to
the requestor, and is used when submitting the job to the sched-
uler via the Globus GRAM protocol.

3. NETWORKS AND GRID TESTBEDS
The foundation for success of the middleware development is to
equip the underlying physical network elements with necessary dy-
namic provisioning capabilities. There are two interesting areas
that most of the research and development efforts have been put
on: (1) To better understand the control and management capabili-



Figure 9: Map of network and compute resources

ties that the network system can provide in the near future. There-
fore the middleware development can be done in a most efficient
way by making the best use of these capabilities. (2) In parallel, to
understand and experiment the most updated control and manage-
ment capabilities in the network system. The objective is to find
the optimal meeting point for middleware development and Grid
network and compute system development.

To emulate a wide area environment with a meaningful scale, the
EL project has developed a testbed with a national footprint. On
the GL side, the testbed consists of compute resources distributed
in multiple sites connected by the JGN II research and education
network. Figure 9 illustrates the combined resources.

The most advanced network control feature deployed in both testbeds
is GMPLS and PXC (Photonic Cross Connect) technologies, which
gives capability to provision on-demand high-speed circuits in mul-
tiple granularities, up to 10 Gbps. While some arguments are still
ongoing regarding the appropriateness of deploying GMPLS in a
wide-area Grid system with multiple domains, we have concluded
that GMPLS can give multiple options for the middleware and ap-
plications to call upon in a generic manner. These include topology
discovery, traffic engineering, path computation, path reservation,
and signaling capabilities provided by the LMP, OSPF-TE, RSVP-
TE, and ENNI protocols within the GMPLS protocol suite.

Two different methods of inter-domain circuit provisioning were
demonstrated. The first was achieved with middleware, as described
in the rest of this paper. The other was via manual inter-domain
provisioning using ENNI between domains, as described in [21].

3.1 G-lambda Testbed
Network Resources: The GL testbed uses the JGN II research net-
work, including the Tokyo-Chicago international line. JGN II is
an open testbed network established by NICT in April 2004 for
the purpose of promoting R&D activities of advanced networking
technologies and network-related applications [22]. It includes two
GMPLS administrative domains: Japan North and Japan South.
Each domain consists of multiple OXCs and GMPLS routers.

In the GL testbed, there are three network planes: the data plane,
the cluster management plane and the control plane. Data plane
paths are provisioned according to reservation requests from users.
The data plane is a Layer 3 network. Communication among mid-
dleware uses the cluster management plane, a best-effort always
available network. Non bandwidth demanding user communication

also uses this plane. The control plane is for GMPLS messages.

We have demonstrated control plane interoperability by advanced
GMPLS ENNI [21] [23]. However, in this experiment, GMPLS
was not used for inter-domain connections. An inter-domain path
is realized by a back-to-back static route connection of GMPLS
routers at the edge of intra-domain paths. Two virtual domains,
X1 and X2, were used to support inter-domain path provisioning.
These are modeled as exchange points at which paths in two do-
mains are interconnected – an OXC or equipment with some switch-
ing capability is assumed. However, due to a lack of such func-
tionality in our network equipment, the virtual domains are imple-
mented using ordinary L3 routers. The NRM which manages these
domains, developed by AIST, does not actually manage equipment.
However, the NRM regulates the reserved bandwidth between do-
mains by summing up the requested bandwidth of reservations. If
the sum exceeds a pre-determined threshold, a reservation is not
granted.

Compute Resources: Seven sites each with a computing cluster
are connected by the testbed network: the sites TKB, KMF, KAN
and FUK in the north domain; and AKB, OSA and KHN in the
south domain, as shown in Figure 9. Each of these clusters (which
are dedicated to this experiment) consists of between 3 and 32 com-
puting nodes (either IA32 or Opteron based), and is connected to
the data plane through a router by a Gigabit Ethernet link.

3.2 EnLIGHTened Testbed
Network Resources: The EL testbed is a national-footprint optical
(Layer 1) network deployed to facilitate middleware and applica-
tion goals, as well as to support investigations into new network and
control plane architectures. The core of the testbed is built using
Calient Networks Diamond Wave photonic cross-connect switches
interconnected by 10-GbE circuits provided by Cisco Systems and
National Lambda Rail. GMPLS is used as the control plane pro-
tocol to allow dynamic instantiation of end-to-end paths across the
testbed. Each site that hosts a PXC also provides 10-GbE-attached
switches and/or end hosts as well as the potential to extend connec-
tivity to users and resources via local Regional Optical Networks.
In the experiment, the EL testbed becomes a GMPLS domain that
is connected to the two JGN II domains via the virtual domain X1.

Compute Resources: The EL testbed interconnects five
geographically-distributed compute cluster facilities: (1) Los An-
geles, CA (Caltech), (2) Baton Rouge, LA (CCT at LSU), (3) RTP,
NC (MCNC), (4) Raleigh, NC (VCL at NCSU) and (5) Chicago,
IL (StarLight). These dedicated clusters consist of high-end PCs
with 10 GE network interface cards or a cluster of up to 64 CPUs.

4. EXPERIMENT INTEROPERABILITY
A major goal of our collaboration that started in 2006 was to achieve
an inter-domain coordinated in-advance reservation of both net-
work bandwidth and compute resources between multiple domains
on both continents. Another goal was to continue using our inde-
pendently developed middleware stacks on our respective testbeds.
In order to reach these goals, a set of wrappers were written to
bridge the differences between the two teams’ APIs. The wrappers
are shown within Figure 10, and described in this section.

4.1 Wrappers Around EnLIGHTened
The EL->GL GNS-WSI Wrapper translates requests from the GL
GRS to the EL HARC middleware. The GRS invokes the wrapper



Figure 10: EnLIGHTened / G-lambda interoperability

using GNS-WSI2 (as it would to a native GL NRM); the wrapper
then makes requests to the HARC acceptors to realize the man-
agement of network resources – setup, teardown, canceling, etc.
The EL->GL CRM Wrapper was implemented by the GL team, to
make advanced reservations of EL compute resources available to
the GL GRS. This component talks the GL team’s CRM protocol
with the GRS, but acts as a client to the HARC Acceptors, trans-
lating between formats accordingly. Both of these wrappers are
implemented as WSRF services, running within GT4 containers.

4.2 Wrapper Around G-lambda
The GL->EL Wrapper is a perl-based component that provides a
single HARC Resource Manager interface to the G-lambda team’s
network and compute resources. Requests for combined G-lambda
network and compute resources are sent from the HARC Acceptors
to the GL->EL Wrapper. The wrapper reformats then communi-
cates these to the GL GRS for realization. This method of wrap-
ping is not as elegant, as the EL Application Launcher must pack-
age requests for the GL resources in a different way from the EL
resources. However, the alternative—i.e. the construction of two
wrappers around each of the GL CRM and NRM components—
was not possible given the time-frame.

4.3 Experiment Monitoring
Although the wrapper modules enable reservation of inter-domain
resources, they do not address the complexity of monitoring all the
resources across the two testbeds. To resolve this problem, the GL
Reservation Resource Monitor (RRM) system was used to collect
reservation information from both coordinators (GL GRS and EL
GRC), NRMs, and CRMs. The RRM consists of a Viewer and Ag-
gregator. In the GL and EL middleware stacks, NRMs and CRMs
manage the status of reserved resources, such as Reserved, Acti-
vated, Released, or Error, and coordinators manage mapping infor-
mation of each user reservation requirement and resource reserva-
tion. The Aggregator periodically collects the following informa-
tion (formatted in XML) from the GL GRS, EL GRC, NRMs, and
CRMs; the Viewer then displays a dynamic representation of all the
ongoing reservations as shown in Figure 11:

• [GRS/GRC] Coordinator name (EL / GL), resource reservation
(request) ID, CRM and NRM names of the coordinator-domain
resources, and the other coordinator name (GL / EL) for the
other domain resources for each user request.

Figure 11: Map of network and compute resources as displayed
by G-lambda’s Reservation Resource Monitor viewer

• [NRM/CRM] Start time, End time, endpoints from NRM, re-
served bandwidth/number of CPUs, and reservation statuses

The EL Grid Resource Coordinator (GRC), a Tomcat-hosted web-
service, enabled the GL RRM Viewer to visually display resources
reserved by the EL middleware in a color-coordinated fashion, along-
side the GL initiated requests. When any reservation was made (or
canceled) by the HARC acceptors, an XML message was pushed
to the GRC. The GRC parses this XML to extract the IDs needed
to service getReservationIDMap() requests from the RRM.

In addition to the information from the middleware, in the EL testbed
we monitored the ongoing reservations by talking directly to the
network elements and clusters. For this, we used Caltech’s Mon-
ALISA [24]. We monitored our clusters, Ethernet switches and
Optical switches. Using MonALISA we also created a central-
ized repository for a unified view of the resource status and statis-
tics. Using MonALISA’s Optical Module we communicated to the
optical switches and retrieved port optical power level and cross-
connect information. We used MonALISA’s GUI to watch in real-
time the setting up and tearing down of the lightpaths and the load
on the Ethernet switches and the clusters.

5. CONCLUSIONS AND FUTURE WORK
We were delighted to achieve our collaboration’s initial goal of
inter-domain coordinated in-advance reservation of both network
bandwidth and compute resources among multiple domains on two
continents, and in time for demonstrations at the GLIF 2006 and
Supercomputing 2006 meetings.

This effort has reinforced our understanding that writing software
wrappers to translate among different interfaces is a difficult, time-
consuming, and error prone task. In fact this effort could easily
increase exponentially as additional peer projects get added to the
mix. We emphasize the importance of agreeing upon API standard
definitions that can be commonly adopted by all such collaborat-
ing projects. Regardless of the underlying implementation of e.g.
Network Resource Manager, Compute Resource Manager, and Re-
source Broker functionality, it is imperative to work towards com-
mon APIs these stacks can all avail themselves of. In this way we
can cooperate much easier on the widely distributed collaborative
eScience projects of the future. Therefore we intend to work with
the high performance networking and computing communities to



achieve definitions for APIs such as these.

Here we focused on achieving interoperability to allocate compute
and network resources. However we need to mention that achiev-
ing interoperability to the level where applications can take ad-
vantage of the infrastructure requires much more than that. One
important issue is the interoperability of the respective compute
“grids”. Independent of the network connectivity of the resources
in the two domains, the grid middleware needs to be configured
such that seamless integration of the two or more virtual organiza-
tions is possible. This is still an area of research in Grid computing
and something we need to address in the future in order to have a
clean integration of the two testbeds. Another important issue is
to consider application-specific requirements. For example the dis-
tributed simulation run by the GL team requires a specific type of
a grid-enabled MPI platform which requires the grid middleware
interoperability described above. While running the distributed vi-
sualization experiment we realized that the performance of the TCP
transport protocol across wide-area networks using the default TCP
parameters is disastrous (under 10 Mbps for a 200 ms RTT, 1 Gbps
link from Japan to US). The solution was not different transport
protocols, but rather configuring the TCP parameters on the end-
hosts for particular application scenarios is required. Because the
configuration of these parameters depends on the resources used by
the application, this probably needs to be done on-demand.

Future work also includes software design changes within our re-
spective stacks. We will introduce security functions where possi-
ble. We plan to refactor the timetable and network management ca-
pabilities of the HARC NRM into a separate NRM implementation,
with a thin HARC RM interface to that NRM. An ongoing discus-
sion and investigation is considering whether to move towards plain
Web Services or RESTful XML over HTTP(s) SOA models, rather
than the more heavyweight WSRF-based method currently being
used. Finally, we have involved third partner in 2007: the EU’s
PHOSPHORUS project[25]. Our goal is a common interface that
enables interoperability among multiple organizations’ resources.

Acknowledgments
EL is partially funded by NSF award #0509465. AIST is partially
funded by the Science and Technology Promotion Program’s ”Op-
tical Paths Network Provisioning based on Grid Technologies” of
MEXT, Japan, which AIST and NTT are jointly promoting. Thanks
also to: C. Hunt, A. Mabe, M. Johnson, G. Allen, L. Leger, E. Sei-
del, R. Paruchuri, M. Liška, P. Holub, A. Verlo, X. Su, Y. Xia,
M. Vouk, H. Perros, S. Tanwir, B. Hurst, L. Ramakrishnan, D. Reed,
A. Blatecky, F. Darema, K. Thompson, D. Fisher, T. West, J. Boroumand,
W. Clark, R. Gyurek, K. McGrattan, P. Tompsu, S. Hunter, J. Bow-
ers, O. Jerphagnon, M. Hiltunen, R. Schlichting, Y. Tanaka, F. Okazaki,
S. Sekiguchi, H. Takemiya, M. Matsuda, S. Yanagita, K. Ohkubo,
M. Suzuki, M. Tsurusawa, R. Suitte, T. Leighton, S. Rockriver,
T. Koga, Y. Okano, Y. Takigawa, W. Imajuku and T. Ohara.

6. REFERENCES
[1] Open Grid Forum. http://www.ogf.org.
[2] Global Lambda Integrated Facility (GLIF).

http://www.glif.is.
[3] G-lambda Project Website.

http://www.g-lambda.net/.
[4] A. Takefusa et al. G-lambda: Coordination of a Grid

Scheduler and Lambda Path Service over GMPLS. Future
Generation Computing Systems, 22(2006):868–875, 2006.

[5] EnLIGHTened Computing Project Website.
http://www.enlightenedcomputing.org.

[6] G. Karmous-Edwards et al. Grid networks and layer 1
services. Grid Networks: Enabling Grids with Advanced
Communication Technology (F. Travostino and J. Mambretti
and G. Karmous-Edwards (Ed.)), Sep. 2006.

[7] J. Mambretti and T. Aoyama. Report of the Interagency
Optical Networking Workshop 3, Networking and
Information Technology R & E Program’s Large Scale
Networking Group, May 2007.

[8] Web Services Resource 1.2 (WS-Resource) OASIS Standard,
April 2006.

[9] A. Takefusa et al. GNS-WSI2 Grid Network Service - Web
Services Interface, version 2. OGF19, GHPN-RG, 2007.

[10] Web Services Base Notification 1.3 (WS-BaseNotification)
Public Review Draft 02, November 2005.

[11] A. Anjomshoaa et al. Job Submission Description Language
(JSDL) Specification v1.0, 11 2005.

[12] A. Takefusa et al. GridARS: An Advance Reservation-based
Grid Co-allocation Framework for Distributed Computing
and Network Resources. In Proceedings of the 13th
Workshop on Job Scheduling Strategies for Parallel
Processing (To appear), 2007.

[13] H. Nakada et al. Design and Implementation of a Local
Scheduling System with Advance Reservation for
Co-allocation on the Grid. In Proceedings of CIT2006, 2006.

[14] Grid Engine. http://gridengine.sunsource.net.
[15] M. Hayashi et al. Managing and controlling GMPLS

network resources for Grid network service. In OWQ3,
OFC2006, 2006.

[16] M. Hayashi et al. Advance reservation-based network
resource manager with adaptive path discovery scheme for
SOA-based networking. In OWK2, OFC2007, 2007.

[17] Y. Tsukishima et al. The first optically-virtual-concatenated
lambdas over multiple domains in Chicago metro area
network achieved through interworking of network resource
managers. In Tech. Digest of OECC/IOOC2007 (in press),
2007.

[18] W. Imajuku et al. GMPLS Based Survivable Photonic
Network Architecture. In IEICE Trans. Commun. (in press),
August 2007.

[19] HARC: Highly-Available Resource Co-allocator.
http://www.cct.lsu.edu/∼maclaren/HARC.

[20] J. Gray and L. Lamport. Consensus on transaction commit.
Technical Report MSR-TR-2003-96, Microsoft Research,
January 2004.

[21] S. Okamoto et al. First demonstration of end-to-end
inter-domain lightpath provisioning using gmpls e-nni
between us and japan for high-end data and grid services. In
IEEE OFC’07, Mar. 2007.

[22] JGN II. http:
//www.jgn.nict.go.jp/english/index.html.

[23] Y. Sameshima et al. JGN II Testbed Demonstration of
GMPLS Inter-Carrier Network Control with Actual
Operational Consideration. In We4.1.5, ECOC2006, 2006.

[24] MonALISA Web Page.
http://monalisa.cacr.caltech.edu, February
2006. MONitoring Agents using a Large Integrated Services
Architecture.

[25] PHOSPHORUS Project Website.
http://www.ist-phosphorus.eu.

http://www.ogf.org
http://www.glif.is
http://www.g-lambda.net/
http://www.enlightenedcomputing.org
http://gridengine.sunsource.net
http://www.cct.lsu.edu/~maclaren/HARC
http://www.jgn.nict.go.jp/english/index.html
http://www.jgn.nict.go.jp/english/index.html
http://monalisa.cacr.caltech.edu
http://www.ist-phosphorus.eu

	Introduction and Motivation
	Applications

	Software Architectures
	Multiple Resource Managers and Brokers With Different Implementations
	G-lambda Architecture
	NRM developed by KDDI R&D Laboratories
	NRM developed by NTT

	EnLIGHTened Computing Architecture

	Networks and Grid Testbeds
	G-lambda Testbed
	EnLIGHTened Testbed

	Experiment Interoperability
	Wrappers Around EnLIGHTened
	Wrapper Around G-lambda
	Experiment Monitoring

	Conclusions and Future Work
	References



