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ABSTRACT
We introduce and analyse the simplex game, a non–coo-
perative game between selfish heterogeneous players with
bounded rationality that compete for limited resources. In
this game, players are asked to place their bet among a
set of B choices and the game rewards those in the minor-
ity. Players start out completely uneducated and naive but,
through a selfish learning scheme that seeks to maximise
their own gain, they become more experienced and quickly
learn to adapt and perform with an unexpected efficiency.
Employing methods of Statistical Physics (namely the the-
ory of replicas) we establish explicit analytic estimates of the
game’s performance that clearly reflect the users’ emergent
efficiency. We further map the general simplex game to the
minority game, a simple model introduced in the context of
econophysics. This mapping allows us to study the effect
that the number of choices has on the game’s performance.
For concreteness, our analysis has focused on a system of
WLAN access points, but it can be customised to other net-
works with non-cooperative players, such as OFDMA.

Keywords
Evolutionary Games, Nash Equilibria, Minority Game, Sta-
tistical Physics

1. INTRODUCTION
A common feature in telecommunications networks is the

existence of entities competing for the usage of limited re-
sources (e.g. wireless users competing for power and band-
width). This phenomenon is bound to become even more
prominent in the context of wireless networks, where ad-hoc
and deregulated networks have already appeared. As a re-
sult, a substantial amount of research has recently emerged,
applying the paradigm of non-cooperative games to various
aspects of networks.

One direction pursued is in the context of uncoordinated
radio access in a common radio channel. For example, the
slotted and unslotted ALOHA protocols have been analysed
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by optimizing their transmission probabilities [11] or their
power control [2]. Yet another application is in the realm of
CDMA systems, where game-theoretic techniques have been
used in order to choose the optimal transmitting power [3,
13] and also the optimal carrier in the multi-carrier CDMA
setting [13]. Finally, game theory has also been applied in
finding strategies to relay packets in ad hoc networks [15].

In all of the above, the analysis has been focused on find-
ing a stable operating point for the network, assuming that
the network is static and the users are identical. Indeed,
since all entities are assumed identical, they can all be pro-
grammed to react in the same way to external stimuli and
thus, after a certain number of game iterations, the network
may converge to its predetermined symmetric socially op-
timal state. As a concrete example, in the case of slotted
ALOHA [11], one may calculate the probability of trans-
mission corresponding to the Nash equilibrium, given the
number of users that are waiting to transmit. This amounts
to giving a single (mixed) strategy to each player which, as-
suming everyone plays it, is guaranteed to take the network
to a socially optimal state. Therefore, one can pre-program
users to play a single strategy. In fact, this is similar with
previous optimisation approaches; for example, in OFDMA,
users are equipped with a random (or quasi-random) fre-
quency hopping pattern, which is designed to minimise the
multi-user interference to everyone.

Although this is convenient in a setting of identical pre-
programmed users, it is not clear if this approach will work
properly in a more general context. For one, it is known
that more efficient non-symmetric equilibria do exist, even
in the simplest situation of identical players [11]. Moreover,
even in the existing centrally controlled networks, there exist
different classes of users, each with vastly different quality
of service criteria, and each opting for different strategies
to maximise their utility functions. To make things worse,
these differences in strategies can be exacerbated when the
external conditions (and, hence, the state of the network it-
self) are not constant. For example, data users would be
willing to wait longer times compared to voice users, in ex-
change for higher rates when the channel quality is better
and/or the interference is smaller. As a result, in a deregu-
lated, non-centrally controlled wireless network, heteroge-
nous players entering the game may play along different
strategies to maximise their utility function. It is therefore
important for them to be able to have to choose among sev-
eral pre-programmed strategies, in order to be able to adapt
to the diversity of the environment they may face.

In this paper we will relax these assumptions, working
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with a “worst case scenario”: a multitude of different het-
erogeneous users, constantly learning how to maximise their
own payoff but only with a limited ability to process infor-
mation. Specifically, we will assume that each player has a
set of strategies, randomly drawn at the outset of the game
and they are to use these strategies in order to adapt to the
network setting and maximise their utility. Also, the players
are endowed with a limited-complexity, inductive reasoning
scheme [1], which is what allows them to learn along the
way: thanks to a centrally transmitted training signal (for
example, broadcasting the best performing access point in
the previous instance of the game), the users use this scheme
to rank their strategies and use the one that has the highest
potential for personal gain.

Needless to say, this approach is general in scope but, for
the sake of concreteness, we will focus at a specific exam-
ple, namely the situation of several WLAN access points
and a multitude of users trying to connect to the one with
the least interference level. In section 2 we will define the
details of the model and discuss its similarities with other
situations and, as a metric of its performance, we will ana-
lytically calculate the variance of the steady state solution
of the iterated game in the case of users having B different
choices to make (B access points). This variance will actu-
ally turn out to be a Lyapunov function for the evolutionary
dynamics of the game.

To make analytic progress, we will borrow analytic tools
from statistical physics (namely the replica approach) in or-
der to average over the dynamics of the game, all the while
keeping the underlying randomness of the strategy space
fixed; this approach has already been successfully applied to
communication theory in e.g. [16, 17]. The remarkable out-
come of this analysis is that the global efficiency is dramat-
ically better compared to the case when users make unedu-
cated (effectively random) choices and, in fact, rivals that of
centrally controlled systems. This then is a clear indication
that, despite the apparent chaotic set-up of the problem,
players are indeed able to learn to quickly adapt to each
others’ actions and converge to a socially optimal state.

Our model is essentially an application of the minority
game of [12], a simple model developed in the context of
econophycics where players are trained to buy or sell and
are rewarded when they are in the minority. There, the
training and the corresponding valuation of their randomly
chosen strategies is based on a finite number of previous out-
comes of the repeated game. However, as was shown in [4],
the precise nature of the feedback information is not impor-
tant; what matters is only the actual amount of information
being transmitted to the players. Therefore, it is more nat-
ural to interpret this “feedback” as a training stimulus that
allows users to correlate their strategies to the actions of
other users.

Other similar approaches of allowing the players to learn
have recently appeared in the literature, specifically in the
context of wireless sensor networks. In [8, 9] the authors
analyse a variant of a Kaufman network. However, they
indicate that the fluctuations of the game scale faster than
the random game. Also, in [10] coordination between sensors
appears if they keep track of the previous outcomes of the
repeated game, which is a variant of the Gur game.

In this paper, we adapt the simplex game to the gen-
eral context of wireless networks by allowing the players to
have B ≥ 2 choices (nodes) to connect to. Our main ana-

lytic result is theorem 3.2: A simplex game with B choices
is macroscopically equivalent to a minority game with a re-
tuned training parameter. This virtual reduction of choices
has a number of important consequences. For example, one
can use it to predict the effect that the addition of an access
point will have to the performance of the network, a ques-
tion which turns out to be quite complicated and does not
admit a trivial answer. But, more importantly, this result,
together with the rest of our analysis, can be viewed as a first
step towards establishing a dictionary with which to trans-
late the considerable literature of learning games and, more
specifically, the minority game to the language of networks.

1.1 Outline
Our presentation is organised as follows: in section 2 we

offer the system model that motivates our discussion and
introduce the simplex game with B choices. The definition of
the game takes place in sections 2.1 and 2.2 while, in section
2.3, we calculate some benchmarks for its performance.

In section 3, we specify the iteration mechanism with
which the players actually learn and become more experi-
enced in the simplex game (section 3.1) and we also analyse
the evolutionary steady states of the game (section 3.2) to
obtain exact analytic measures for its performance and effi-
ciency. In section 4 we discuss the effect that the addition
of a node has to the performance of the network.

The proof of theorem 3.2 is presented in appendices A and
B; also, for completeness, we present the basic steps of the
replica symmetric calculation in appendix C.

1.2 Notational conventions
For two vectors v, w of the same dimension, we will denote

their Euclidean product by: v · w ≡Pi viwi. Also, we will
denote the n-dimensional simplex by ∆n and its standard
embedding will be in R

n+1 via:

∆n = {x ∈ R
n+1 : 0 ≤ xi ≤ 1∀i and

X

i

xi = 1}.

2. SYSTEM MODEL
Our principal motivation is a very simple model for a sys-

tem of B WLAN access points (nodes) and N users able to
connect to any of those B nodes. If Nr (with 0 ≤ Nr ≤ N)
users decide to connect to node r = 1, . . . B, we then define
the capacity of that node to be equal to

Cr =
c0

Nr
(2.1)

where c0 is a constant. Note that this quantity diverges for
Nr = 0; however, this is an unrealistic instance of the model,
and it will not appear for a large enough number of users. In
practice, this throughput can be thought of being achieved
through round-robin scheduling or by allocating a certain
number of carriers to each user. However, the specifics of
this model are not essential; the crux of the matter is simply
the fact that the capacity of each node decreases with Nr, i.e.
users that are in a relative minority (small Nr) are rewarded
with better quality of service.

This model can also be encountered in a different context,
namely in the case of an uplink multicarrier CDMA. If we
assume perfect power-control for each user, then the SINR
for the users connected with the carrier r ∈ {1, . . . B} will



be

SINRr =
s

γ + Nr
(2.2)

where s is the signal to interference ratio and γ is the noise
to interference ratio. In this paper, we will be interested in
this model for large numbers of users N and we will therefore
make the important assumption that the variations in Nr

is small compared to its mean N/B. Therefore, we may
linearise the above equations to the following:

Cr ≈ Bc0

N
− B2c0

N2
δNr (2.3)

where δNr = Nr−N/B is the variation of Nr from its mean.
Even though this is an approximation, we will see that it
has virtually no impact on the behaviour of the game (see
equation 3.2) thanks to the fact that the state with a node
having unreasonably low numbers of users connected to it is
inherently unstable.

Now, on an informal level, our game-theoretic analogue of
this model is the following: N selfish players wish to place
a bet among B choices in an effort to maximise their ca-
pacity (equation 2.1 or equation 2.3). To facilitate them in
this decision, public information is being transmitted to all
(e.g. the last performance ranking of the access points in
our system model, the current needs of the network, etc.).
This information will be described by a random variable m
of uniform distribution1, which the players process with the
aid of S strategies (decisional schemes). These strategies are
selected with probability pis = Prob(player i selects strat-
egy s) and, according to their performance, the players will
readjust these probabilities as they learn which strategies
are most effective.

2.1 Introducing the simplex game
This setting is an immediate generalization of the orig-

inal minority game which consisted of a large number N
of heterogeneous agents that were asked to make a binary
choice (e.g. “buy” vs. “sell”), based on public information
and the behavioural schemes that the agents had developed
over time [5].

Obviously then, the first step in order to adapt this game
to our system model would be to expand the “choice set”
{−1, 1} of our agents, in order to accommodate for the B
access points they may choose from. To model a game with
B choices, it is convenient to introduce the characteristic
B-states, which are B vectors of unit norm {qr}B

r=1 ⊆ R
B−1

that constitute the vertices of a (B − 1)-simplex2 centred
at the origin (more details on the properties of these vectors
can be found in appendix A). These characteristic states are
actually the namesake of the simplex game wherein players
will be placing their bets among the vertices of a (B − 1)-
simplex:

Definition 2.1. A simplex game with B choices is a
collection G of the following data:

• The set of players: N = {1, 2 . . . N}.
1Without loss of generality, we may assume that there is no
a priori betting bias.
2Recall that a n-simplex is the generalization of an equilat-
eral triangle (2-simplex) to higher dimensions: regular tetra-
hedron (3-simplex), pentatope (4-simplex), etc. Already, for
B = 2, we recover the choice set {−1, 1} of the original mi-
nority game.

• The set of B choices or bets: B = {qr}B
r=1 (where the

qr are characteristic B-states).

• The training set: M = {1, . . . M}; we will also refer
to the ratio α = M

N
as the training parameter of the

game G .

• The set of strategy labels: S = {1, . . . S}.

Finally, we consider the sample space Ω = S
N×M endowed

with the probability measure P:

P(s1 . . . sn, m) =
1

M
p1s1 . . . pNsN (2.4)

where, for all i, 0 ≤ pis ≤ 1 and
P

s∈S
pis = 1 (i.e. Pi(s) =

pis is itself a probability measure on S ). We will then refer
to an event ω ∈ Ω as an instance of G .

To be more precise, a strategy should convert the training
signal to a betting suggestion (i.e. it should be defined as
a map M → B) and each player i ∈ N would have S of
them. Formally, this can be efficiently encoded in a strategy
matrix c : N ×S ×M → B so that, given a signal m ∈ M ,
cm
is ≡ c(i, s, m) ∈ B is just the choice of player i if he employs

his sth strategy. Clearly, there are C = BNSM different
strategy matrices and we will denote the set of all strategy
matrices by C .

2.2 Playing the simplex game
We are now in a position to study the players’ bids and

their respective payoffs:

Definition 2.2. Let (G , c) be a B-choice simplex game
whose players have been equipped with the strategy matrix
c ∈ C , and let ω = (s1 . . . sN , m) ∈ Ω be an instance of G :

1. The bid of player i is the random variable bi : Ω →
R

B−1 where bi(ω) = c(i, si, m) ≡ cm
isi

. Similarly, the
aggregate bid is defined as: b =

P

i∈N
bi.

2. The payoff that player i receives is the random variable
ui : Ω → R defined by: ui = −bi · b, i.e. ui(ω) =
−bi(ω) ·Pj∈N

bj(ω)

Clearly then, we can see that the aggregate bid is the
quantity of interest in the simplex game, since it succinctly
encodes the actual state of the game, i.e. how many players
made a particular choice. In fact, given the aggregate bid b
at an instance ω of the game, some linear algebra combined
with the properties of the characteristic states (lemma A.1)
will reveal that the number Nr of players whose bet was qr

is just:

Nr =
N

B
+

B − 1

B
qr · b (2.5)

Therefore, in order to study the players’ distribution, it suf-
fices to study the statistical behaviour of the aggregate bid
b (note also that the second term in the above equation is
just δNr, as defined in equation 2.3).

Moreover, the aggregate bid also determines the players’
payoff, defined so as to reward those that took the “path less
trodden”. One way to see this would be to calculate the total
payoff: u = −Pi∈N

ui = −Pi∈N
bi ·
P

j∈N
bj = −b2 ≤ 0;

i.e. minorities are rewarded while majorities are penalised.
Alternatively, a little algebra shows that the payoff to the
Nr players that chose qr is N−BNr

B−1
: this is positive if less



than the average number of players N
B

chose qr (minority
reward) and negative otherwise (majority penalty).

Now, as far as our choice of payoff function is concerned,
our motivation is twofold: to begin with, this “Euclidean”
payoff is the direct generalization of the original minority
payoff used in [12], and this will be very important to us
later on when we perform the theoretical analysis of the sim-
plex game. More importantly however, thanks to equation
2.5, this payoff function is (up to a normalisation constant)
precisely the linear approximation to the users’ capacity in
our system model (equation 2.3) and, for this reason, this
payoff will be dubbed linear. We have already argued that
this approximation is well justified for small variations δNr

and this can be clearly seen in figure 1 where the game is
iterated according to the learning scheme of section 3. Not
surprisingly, the game’s variance exhibits the same steady
state and convergence properties, i.e. players learn exactly
the same things, whether they use the capacity payoff or its
linear approximation.

2.3 Vital Statistics of the simplex game
We will devote the rest of this section to some statisti-

cal calculations that will serve as our benchmarks when we
iterate the game. To begin with, even though the SG has
already been described as a stochastic process, there is still
some inherent randomness in the choice of the strategy ma-
trix c ∈ C . Now, since there are no a priori good strategies3,
we will assume that c is uniformly distributed in C ; this is
equivalent to assuming that, given a training signal m ∈ M ,
the probability of the sth strategy of player i to dictate choice
qr ∈ B is: Prob(cm

is = qr) = 1
B

.
With this ansatz, we get the following array of expecta-

tions:

E(b|c, m) =
X

s

p1s1 · · · pNsN

X

i

cm
isi

=
X

i

X

s

pisc
m
is

and, thus:

E(b) =
1

MC

X

m

X

i

X

s

pis ·
X

c∈C

cm
is = 0

(since
P

r qr = 0).
Furthermore, with regards to the variance:

E(b2) = E

0

@
X

i

b2
i +

X

i6=j

bi · bj

1

A

= N +
1

MC

X

m

X

i6=j

X

s,s′

pispjs′

X

c∈C

cm
is · cm

js′

= N (2.6)

because the random variable cm
is ·cm

js′ only assumes the values

1 (with probability 1
B

) and − 1
B−1

(with probability B−1
B

).

Thus, the (intensive) variance of the aggregate bid in this

stochastic process is σ2(b)
N

= 1 and we will be referring to
this benchmark as the fully random case.

This benchmark is useful by itself but, instead of averaging
out over all possible strategy matrices c ∈ C , it is better to
employ the ergodicity assumption and consider expectations
given a strategy matrix c ∈ C which, typically, has

P

m cm
is =

3Indeed, if there were a strategy that performed consistently
better than others, players would invariably follow it and
lose because of the minority payoff.

0 (i.e. is such that E(b|c) = 0) 4. Given such a typical
strategy, and to leading order N , the variance becomes:

σ2(b|c) = E(b2|c)

= N +
1

M

X

m

X

i6=j

X

s,s′∈S

pispis′ cm
is · cm

js′

∼
N

N +
1

M

X

m∈M

E(b|c, m)2 − NG(p) (2.7)

where G(p) = 1
N

P

i

P

s p2
is measures the self-overlap of

strategies and “∼
x
” is the asymptotic notation: f(x) ∼

x
g(x)

if limx→∞
f(x)
g(x)

= 1.

In contrast to the fully random case, the variance in this
stochastic process depends nontrivially on the probability
measures pis that evolve over time; thus, in the next section
we will be interested in the minima of this quantity, since
they correspond to the optima of the game’s performance.

3. EVOLUTION IN THE SIMPLEX GAME
The main strength of inductive reasoning [1] is that play-

ers become more sophisticated over time because their deci-
sional schemes evolve. In our setting, this means that, as the
game is played over and over, the probability measures pis

are updated in a way that reflects the satisfaction of player i
with his sth strategy. Through this evolutionary procedure,
players become increasingly sophisticated, and it has been
shown in [12] that the game’s dynamics converge to a steady
state which is actually a Nash equilibrium.

3.1 Iterating the simplex game
The key feature of this iteration procedure is that players

reward strategies that pay well and penalise them otherwise.
However, in order to measure the performance of a strategy,
the game has to be actually played and, for that reason, the
reward of a strategy will depend on the actions that every
player took. In fact, this is how players come to interact with
one another: the players’ overall actions indirectly affect the
way any individual player thinks and, through that process,
players eventually learn how others think and become more
sophisticated.

To make this idea precise, let (G , c) be a B-choice simplex
game with strategy matrix c, and consider an instance ω =
(s1 . . . sN , m) ∈ Ω of G . In this setting, a function Wis : Ω →
R will be called a reward for the sth strategy of player i, if
Wis(ω) ≥ 0 precisely when the payoff ui has: ui(s, s−i, m) ≥
0 5. In other words, if employing strategy s in a particular
instance ω of the game would have yielded a positive payoff
ui(s, s−i, m) ≥ 0 to player i, this strategy receives a positive
reward Wis(ω) ≥ 0. Then, if ω(t) ∈ Ω, t ∈ N is a sequence
of instances of the game, we may recursively define the score
Uis(t) of the strategy (i, s) at time t by:

Uis(t + 1) = Uis(t) + Wis(ω(t)) (3.1)

4This is a typical strategy because it has no betting bias: as
m runs through M , cm

is runs through all values of B. SinceP

r qr = 0, it is easy to see by the central limit theorem that
the matrices of C are sharply concentrated around strategies
of this sort.
5This notation is the standard game-theoretic shorthand:

(s, s−i, m) ≡ (s1 . . . si−1, s, si+1 . . . sN , m).



This scoring function is what will keep track of the per-
formance of a strategy as the game is iteratively played (as
described by the sequence ω(t)) and, clearly, the most nat-
ural choice Wis for a strategy’s reward is the payoff itself:

Wis(ω) =
1

M
ui(s, s−i, m)

= − 1

M
cm
is ·
ˆ
b (ω) +

`
cm
is − cm

isi

´˜
(3.2)

Here, the rescaling factor 1
M

has been introduced because
players evolve at a slower pace than the game’s iterations
(on an intuitive level, players would have to compare their
strategies against all M possible training signals).

Now, we are finally ready to incorporate a strategy’s score
into the probability with which it is selected. To that end, we
will adhere to the model of exponential learning according to
which, every player has a learning rate Γi

6 and adjusts his
probability measure pis based on the score of his strategies:

pis(t) =
eΓiUis(t)

P

s′∈S
eΓiUis′ (t)

(3.3)

This“exponential learning”scheme can be seen to be equiv-
alent to the standard replicator dynamics that have been
studied extensively in game theory (see e.g. [12] for a dis-
cussion that can be immediately generalised to our case).
Therefore, the fixed points of the dynamical system 3.3 will
actually be evolutionary stable Nash equilibria of the game.
Hence, once the iteration sequence converges to a specific
stage, the game will be characterised by minimal volatility
and the users will have no incentive to leave, on account of
the stage being a Nash equilibrium.

Of course, to make precise sense of the above, we need to
define rigourously this iteration procedure; to that end, we
have:

Definition 3.1. Let (G , c) be a B-choice simplex game
with strategy matrix c ∈ C , and let ω be an instance of
G . Then, an iteration sequence for G and ω is a sequence
(G (t), ω(t)) where G (t) is a B-choice simplex game with the
same underlying set structure as G (t− 1), but with a proba-
bility measure Pt determined by equation 3.3 and ω(t) is an
instance of G (t), drawn according to Pt.

At this point, it is important to state explicitly that the
choice of strategy matrix c ∈ C does not change throughout
an iteration sequence of a particular simplex game: even
though the players continually rate their decision schemes
and either abandon or embrace them, they do not develop
new ones as time passes. In fact, this is the key difference be-
tween the variances in equations 2.6 and 2.7 which describe
the fully random case and the simplex game, respectively
(see also figure 1).

3.2 Evolutionary Steady States
Essentially, equation 3.3 describes a discrete dynamical

system; as such, it has been studied extensively in [12] and

6The learning rate only affects the rate of convergence to
the steady state, not the steady state itself [12]; for this
reason we will ignore its role in our discussion concerning
the actual steady states of the game. However, we note that
in the “hard” case Γ → ∞, these dynamics simply reduce to
the well-understood “best response” scheme.

[6]7. The main result there is that the probability measures
p = {pis} converge to a steady state which is actually a Nash
equilibrium of the game (i.e. a player has no incentive to
change his way of thinking if other players stick to theirs).
In figure 1 we have performed 64 iterations of a simplex
game with B = 5, S = 2 and training parameter α = 1

4
,

following the training scheme outlined above with both the
linear payoff of definition 2.2 and the payoff ui ∝ 1

Nr
−

1
N/B

entailed by equation 2.1. This performance is then

compared to that of the fully random case; in this way, we
readily observe the convergence to a socially optimal steady
state. Indeed, within approximately M steps of the iteration
sequence, the game has practically converged to a steady
state whose global efficiency is dramatically better than that
of the fully random case. In other words, players (albeit
selfish) do learn to operate efficiently, despite their totally
incompatible needs and the complete lack of central control.

0 10 20 30 40 50 60
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Figure 1: The variance of the aggregate bid over
64 iterations of the simplex game with linear pay-
off(equation 2.3; empty boxes) and capacity payoff
(equation 2.1; diamonds) versus the fully random
case (full boxes). The parameter values chosen here
are B = 5, S = 2 and α = 1/4, with a learning rate of
Γi = 100.

A detailed discussion of these issues can be found e.g. in
[12]; for our purposes, what is most interesting is that these
steady states can be recovered as the minima of a certain
quadratic form. Indeed, it is shown in [6] that the evolution
dynamics for pis of equation 3.3 admit a Lyapunov function,
i.e. a function L(p, c) that is minimised along the system’s
trajectories; hence, its minima will correspond to the steady
states of equation 3.3. Amazingly enough, this Lyapunov
function turns out to be (up to an irrelevant constant) just
the variance (equation 2.7) of the aggregate bid for a given

7Actually, their analysis was done for the B = 2 case but
the scalar product generalization that we use for the payoff
function makes their results immediately transferable to our
setting.



strategy matrix c:

L(p, c) = σ2(b|c) − N

∼
N

1

M

X

m∈M

E(b|c, m)2 − NG(p) (3.4)

where, as before: G(p) = 1
N

P

i

P

s p2
is.

Thus, we will be interested in the quantity L0(G , c) =
minp{L(p, c)}, i.e. the minimum of L with respect to pis. In
appendices B and C, we will see that the Lyapunov function
L can be interpreted as the energy of a certain physical spin
system; motivated by this analogy, we will refer to L0(G , c)
as the minimum energy of the game (G , c). Then, in order to
make further progress, we introduce the so-called partition
function:

Z (β, c) =

Z

D

e−βL(p,c) dp

from which we can harvest L0(G , c) using corollary B.2 of
appendix B as follows:

L0(G , c) = − lim
β→∞

1

β
log Z (β, c). (3.5)

We now need to make the following important assumption

Assumption 1 (Self-Averaging Property). In the
limit N → ∞, the quantity L0(G , c) is asymptotically equal
to its average over all strategy matrices c ∈ C . Thus, in
high probability:

L0(G , c) =
D

L0(G , c′)
E

c′∈C

≡ L0(G ).

To evaluate the average of the logarithm in equation 3.5
we will rely on the following assumption, as discussed for
example in [14]:

Assumption 2 (Replica Continuity). The average
〈Z n(β, c)〉 evaluated for n ∈ N can be analytically extended
for real n in the vicinity of 0+. Specifically,

〈log Z (β, c)〉 =
∂

∂n
〈Z n(β, c)〉

˛
˛
˛
˛
n=0

As a result we have

L0(G ) = − lim
β→∞

1

β

∂

∂n
〈Z n(β, c)〉

˛
˛
˛
˛
n=0

Indeed, not only will L0(G ) yield the steady states for the
iteration sequence of a simplex game, but, perhaps more
importantly, it will also give a lower bound for the game’s
volatility σ2(b) (in fact, this lower bound will turn out to be
an excellent estimate for the volatility itself).

We can finally make a precise statement of our main re-
sult on the reduction of multi-choice games to binary ones.
Indeed, if G is a simplex game with B choices, define its
binary reduction Geff to be the simplex game of 2 choices
which, except for an enlarged training set Meff that has
Meff = M(B − 1) (and, therefore, an effective training pa-

rameter of αeff =
Meff

N
= α(B−1)), otherwise consists of the

same data as G . We then obtain:

Theorem 3.2 (Reduction of Choices). The mini-
mum energy of a B-choice simplex game G is asymptotically
equal to the minimum energy of its binary reduction Geff,
i.e. L0(G ) ∼ L0(Geff) as N → ∞. Thus, the macroscopic

quantities (volatility etc.) of a simplex game with B choices
can be obtained from an associated minority game with a
retuned training parameter: αeff = α(B − 1).

We will leave the details of the proof to appendix B and, ad-
ditionally, we will calculate the analytic expression for L0(G )
in appendix C, following [12] and resorting to the assump-
tion of so-called replica symmetry. Within that framework,
we obtain the following approximation:

σ2(b)

N
= 1 +

1

N
L0(G ) = Θ(α − αc)

„

1 −
r

αc

α

«2

(3.6)

where Θ is the Heaviside step function, and αc ≡ αc(S, B)
is the critical value of the training parameter beyond which
the variance vanishes within the replica symmetric approxi-
mation.

Now, even though equation 3.6 only provides us with an
approximation for the variance σ2(b), it turns out that this
is actually a formidable measure of the game’s actual per-
formance. This agreement is readily seen in figure 2, which
depicts the variance of a simplex game with B = 5 choices
and S = 2 strategies per player in its steady state.
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Figure 2: Volatility as a function of the training pa-
rameter α from numerical simulations (boxes) and
its theoretical estimate (line). Here again we have
used the parameter values B = 5 and S = 2.

4. THE EFFECT OF CHOICES
Already, figures 1 and 2 are a strong indication that, even

as selfish users try to maximise their gain in the simplex
game, they actually start to operate more efficiently and the
game converges to a socially optimal state. However, a fun-
damental question that still remains has to do with the way
that the number of choices affects the overall performance
of the game: does abundance of choices confuse players who
no longer know how to operate efficiently, or does it reduce
individual fluctuations and allow the game to converge to a
steady state more easily?

Naively, one could argue both ways but, thanks to the
efficiency measure of equation 3.6 we may provide an exact
answer. Indeed, recall that from equation 2.5 and the fact
that E(b) = 0, we immediately obtain that: E(Nr) = N

B
.



Furthermore:

E(N2
r ) =

N2

B2
+

(B − 1)2

B2
E
`
(qr · b)2

´

and, since:

E
`
(qr · b)2

´
=

1

B
E

 
BX

r=1

(qr · b)2
!

by symmetry considerations, we may combine the properties
of the characteristic B-states (lemma A.1) and equation 3.6
to finally obtain the variance of the number of users per
access point:

σ2(Nr)

N
=

B − 1

B2

σ2(b)

N
=

B − 1

B2
Θ(α − αc)

„

1 −
r

αc

α

«2

(4.1)
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Figure 3: The variance of the number of users con-
nected to a particular access point as a function of
the total number of access points.

In figure 3 we have exhibited precisely this behaviour for
a simplex game consisting of 100 players and a training set
with size M = 64 (as always, we have restricted ourselves
to the simplest case of S = 2 strategies per player). Sur-
prisingly enough, we see that there is a critical number of
access points (Bc = 4 for the parameter values of figure 3)
where the network’s performance is at an absolute worse
(high fluctuations on the number of users per access point).

This can be explained by considering the competing fac-
tors that determine the game’s performance: abundance of
choices versus players’ confusion. Indeed, if there are few
enough access points, addition of further nodes will actually
decrease the game’s performance because the players are un-
able to process the training signal quickly enough in order to
make educated guesses, i.e. they get confused by too much
information, and this results in poor performance. How-
ever, beyond a critical number of access points, the players’
confusion is quite mild compared to the smoothing effect
that a large number of access points provides to the net-
work’s performance, and we see that the variance decreases
(asymptotically, it vanishes).

Of course, this critical number of access points depends
sharply on the training parameter α and the number S of

strategies per player. In fact, from equation 4.1, we can
easily see that, if the number of nodes is rather small (say 4
or 5), network performance will actually suffer if we increase
the quality of the training signal (i.e. the training parameter
α) because we will be in the region were players are being
confused by too much information. On the other hand, if
we also increase the number S of strategies per player, the
players will now have enough decision schemes with which to
process the signal presented to them and the variance will,
again, decrease. So, in short, unless the players are quite
sophisticated and have a lot of strategies that need to be
ranked, they learn to operate much more effectively with a
training signal of small size, simply because they are better
able to process it to their advantage in the game’s extremely
complex environment.

5. CONCLUSION
In summary, we have introduced and analysed a non-

cooperative game played by heterogeneous agents with boun-
ded rationality. Unlike other applications of game theory to
telecommunications, these players do not adapt their choices
to environmental changes but, rather, change their way of
thinking. In this sense, our model is closely related to the
minority game encountered in econophysics (e.g. [1,5]). We
actually generalise this concept in order to allow players to
choose from a multitude of different resources, thus provid-
ing the foundations for application to a WiFi context or
carriers in an OFDMA case. Then, by using the replica
mehtod, we have calculated the variance of the game’s ag-
gregate bid and have found it to be significantly smaller than
the fully random situation where each player makes random
choices, a fact that is confirmed by our numerical simula-
tions. These promising results suggest that this method can
be used to study network problems involving competition,
such as frequency hopping in OFDMA in order to minimise
collisions.
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APPENDIX

A. CHARACTERISTIC STATES
In order to define the characteristic B-states, let us con-

sider a (B − 1)-simplex ∆B−1 (affinely) embedded in R
B−1,

so that its barycentre lies at the origin while its vertices lie
on the unit sphere SB−2; we will then refer to its vertices
{qr}B

r=1 as characteristic B-states. It is straightforward to
set up a specific embedding q : ∆B−1 → R

B−1 that satis-
fies the above requirements, but the expressions are a bit
cumbersome and we will avoid them. Fortunately, we only
need some easily obtainable calculational properties of the
characteristic states, encapsulated in the following:

Lemma A.1. If B = {qr}B
r=1 ⊆ R

B−1 denotes a set of
characteristic B-states then, for all r, l = 1, 2 . . . B:

1. qr · ql = B
B−1

δrl − 1
B−1

2.
PB

r=1 qr = 0



3. for all ξ ∈ R
B−1:

PB
r=1 (qr · ξ)2 = B

B−1
ξ2.

Proof. Motivated by the standard embedding ∆B−1 →֒
R

B , let {er}B
r=1 be the usual basis of R

B and set e0 =
1
B

PB
r=1 er. Then, if q̃r =

q
B

B−1
(er − e0), it is not hard

to check that the set {q̃r}B
r=1 is a set of characteristic B-

states for the hyperplane E0 = {ξ : ξ · e0 = 0} of R
B that is

perpendicular to e0.
In this embedding, all properties follow trivially. To begin

with:

q̃r · q̃l =
B

B − 1
(er − e0) · (el − e0)

=
B

B − 1
δrl −

1

B − 1

Furthermore:
 

BX

r=1

qr

!2

=
BX

r=1

q2
r +

X

r 6=l

qr · ql = 0

and, finally, property (3) simply has to be established on E0,
i.e for ξ such that ξ · e0 = 0. Indeed:

BX

r=1

(ξ · q̃r)
2 =

B

B − 1

BX

r=1

(e0 · ξ − er · ξ)2 =
B

B − 1
ξ2.

Since all properties are invariant with respect to affine em-
beddings (i.e. they are properties of the simplex and not of
its embedding), our proof is complete.

Property (1) is actually equivalent to our definition of
characteristic states and implies the rest. However, from a
calculational standpoint, property (3) is much more impor-
tant since it is used in a key step of the proof of our main
result on the virtual reduction of choices (theorem 3.2).

B. REDUCTION OF CHOICES
In order to prove the reduction theorem 3.2, we will turn

to replica theory, a well-established tool of Statistical Me-
chanics that greatly facilitates calculations of the so-called
ground states (what we refer to as “minimum energy”). We
will use assumptions 1 and 2 as well as the following lemma:

Lemma B.1 (Steepest Descent). If D is a bounded
domain and f is a measurable function on D, then:

log

Z

D

exf(t) dt ∼ x max
t∈D

f(t)

as x → ∞.

This lemma is just a formal statement of the steepest de-
scent method for asymptotic integration. We will not give a
proof here (see e.g. [7]) but, instead, we will state an obvious
consequence:

Corollary B.2. By descending steeply to large x, we
get:

max
t∈D

f(t) = lim
x→∞

1

x
log

Z

D

exf(t) dt.

and this yields equation 3.5.
Now, drawing our motivation from Statistical Mechanics,

the Lyapunov function L can be considered as the energy of

the continuous-valued spin system p = {pis}. Therefore, we
introduce the partition function:

Z (β, c) =

Z

D

e−βL(p,c) dp

where D is the N-fold product of the (S − 1)-simplices:
∆i

S−1 = {pis :
P

s pis = 1} and dp is the usual Lebesgue
measure on D . Then, if we average over the space Ω = C

of strategy matrices with uniform probability measure, an
application of lemma B.1 and assumptions 1 and 2 yields:

L0(G ) = − lim
β→∞

lim
n→0

1

β

∂

∂n

D

Z
n(β, c)

E

(B.1)

We will first evaluate 〈Z n(β)〉 for n ∈ N (see e.g. [14]) using
the identity:

Z
n(β, c) =

nY

µ=1

Zµ(β, c)

where Zµ(β, c) is the partition function of the µth replica
{pisµ} of the system. Subsequently, we will use assumption
2 to obtain an analytic continuation of this expression for
real values of n in the vicinity of 0. As a result:

〈Z n(β, c)〉 =
DQn

µ=1 Zµ(β, c)
E

=

Z

Dn

eNβ
P

µ Gµµ(p)
D

e−
β
M

P

µ

P

m Eµ(b|c,m)2
E

dp

where Gµν(p) = 1
N

P

i

P

s pisµpisν and Eµ is the expecta-

tion in the µth replica of the system:

Eµ(b|c, m) =
X

i

X

s

pisµcm
is .

To proceed from here, we will employ a calculational prop-
erty of Gaussian integrals that is referred to in the literature
as the Hubbard–Stratonovich transformation. The funda-

mental identity is Ez eiqz = e−
q2

2 where

Ez f =
1√
2π

Z

R

f(z)e−
z2

2 dz

is the expectation with respect to a Gaussian variable of zero
mean and unit variance: z ∼ N(0, 1). We then get8:

D

e−
β
M

P

µ,m Eµ(b|c,m)2
E

=

fi

E{zm
µ } ei

q

2β
M

P

µ,m zm
µ ·Eµ(b|c,m)

fl

= E{zm
µ }

*

exp

 

i
P

i,s,m

P

µ

q
2β
M

pisµzm
µ

| {z }

ξm
is

·cm
is

!+

This is actually the crucial step of the calculation that
necessitated the introduction of the characteristic B-states.
To streamline the presentation, we prove:

8We will actually use vectorial Gaussian random variables
zm

µ ∈ R
B−1, each of whose coordinates has unit variance

and zero mean, i.e.: zm
µ,k ∼ N(0, 1). The only thing that

changes is that we need to use the scalar product instead of
the regular product.



Lemma B.3. Let ξk ∈ R
B−1, k = 1, . . . K be a finite col-

lection of vectors and let ck be independent uniformly dis-
tributed random variables on the set B = {qr}B

1 . Then:
D

ei
P

k ξk·ck

E

= e
− 1

2(B−1)

P

k ξ2
k + O(ξ3)

Proof. By expanding the exponential, we obtain:
D

ei
P

k ξk·ck

E

=
D

1 + i
P

k ξk · ck − 1
2

`P

k ξk · ck

´2
+ O(ξ3)

E

= 1 + i
P

k ξk · 〈ck〉 − 1
2

˙P

k(ξk · ck)2
¸

− 1
2

P

k 6=k′ 〈ξk · ck〉 〈ξ′k · c′k〉 + O(ξ3)

due to the stochastic independence of the ck’s. However, the
uniform distribution for ck implies that: 〈ck〉 = 1

B

PB
r=1 qr =

0; moreover:

˙
(ξk · ck)2

¸
= 1

B

XB

r=1
(ξk · qr)

2 = 1
B−1

ξ2
k

by lemma A.1. We then conclude that:
D

ei
P

k ξk·ck

E

= 1 − 1
2(B−1)

P

k ξ2
k + O(ξ3)

= e
− 1

2(B−1)

P

k ξ2
k + O(ξ3)

and this completes the proof.

By the definition of ξm
is we have ξm

is = O

“

M− 3
2

”

= o
`

1
N

´

and, hence, we can use the previous lemma to get:

D

exp
“

i
P

i,s,m ξm
is · cm

is

”E

=

= exp
n

− 1
2(B−1)

P

i,s,m (ξm
is )2

o

+ o
`

1
N

´

∼ exp
n

− β
α(B−1)

P

m

P

µ,ν Gµν(p)zm
µ · zm

ν

o

where α = M
N

is the training parameter of the game. Then,

if we set: Jµν(p) = δµν + 2β
α(B−1)

Gµν(p), the expectation

over the z-variables yields the Gaussian integral:

E{zm
µ,k

}

D

exp
“

i
P

i,s,m ξm
is · cm

is

”E

∼

∼
Z

RnM(B−1)

e−
1
2

P

m

PB−1
k=1

P

µ,ν Jµν (p)zm
µ,kzm

ν,k dz̃

=
“R

Rn e−
1
2
〈z,z〉J(p) dz̃

”M(B−1)

= exp
n

M(B−1)
2

log det (J(p))
o

where we have introduced the bilinear pairing 〈z, w〉
J

≡
P

µ,ν Jµνzµwν and used the fundamental “change of vari-
ables” identity of multiple Gaussian integrals:

Z

e−
1
2
〈z,z〉J dz̃ =

p

|detJ|

(where dz̃ is the ordinary Lebesgue measure dz normalised

to:
R

R
e−

z2

2 dz̃ = 1).
Combining all of the above, we obtain:

〈Z n(β)〉 ∼
Z

Dn

exp



Nβ
h

tr [G(p)]−

− α(B−1)
2β

log det
“

I + 2β
α(B−1)

G(p)
” iff

dp (B.2)

This expression is valid for any simplex game G with B
choices and training parameter α, the probability measure
P being reflected in the matrix Gµν(p). Therefore, applying
this formula to the binary reduction Geff of G which has 2
choices, training parameter αeff and is otherwise identical to
G , we obtain the averaged partition function:

〈Z n(β)〉 ∼
Z

Dn

exp



Nβ
h

tr [G(p)]−

− αeff

2β
log det

“

I + 2β
αeff

G(p)
” iff

dp

Since αeff = α(B−1), the two expressions are asymptotically
equal and, by equation B.1, we immediately recover L0(G ) ∼
L0(Geff), as claimed in theorem 3.2.

C. THE REPLICA SADDLE-POINT
Our result on the reduction of choices in the simplex game,

already allows us to obtain an analytic expression for the
optimal state L0(G ), simply by adapting the results of [12]:

σ2(b)
N

= 1 + 1
N

L0(G ) = Θ(α − αc)
`
1 −

p
αc

α

´2
(C.1)

where αc = ζ2(S)
B−1

and ζ(S) is the expected value of the

minimum of S Gaussian random variables zs ∼ N(0, 1):

ζ(S) = S
2S−1

q
2
π

R
ze−z2

erfcS−1(z) dz.

For the sake of completeness, we will outline the replica cal-
culation, mainly because we wish to also discuss the role of
replica symmetry.

We will thus consider the exponential representation of the
δ-function: δ(x) = 1

2π

R
eikx dk and introduce a δ-function

for every entry of Gµν(p):

δ(Q− G(p)) =
`

N
2π

´n2
Z

eiN
P

µ,ν kµν (Qµν−Gµν (p)) dk

Then, by descending to the large N limit in order to inte-
grate asymptotically over Q and k, we obtain:

1
N

log 〈Z n(β)〉 ∼ −Nβ×

×
»

α(B−1)
2β

log det
“

I + 2β
α(B−1)

Q
”

− tr (Q)

− i
X

µ,ν

kµνQµν − 1

β
log

Z

∆n

e
−i

P

µ,ν
kµν

P

s psµpsν

dp

–

where the matrices Q, k have been chosen so as to extremise
the function Λ within the brackets.

The replica symmetry assumption is that these saddle-
point matrices have two kinds of elements, one in the di-
agonal and one off-diagonal; more precisely, we will seek
extrema of the form Qµν = q + (Q − q)δµν and kµν =
iαβ2 B−1

2
(r + (R − r)δµν) (the scaling factor has been in-

troduced for future convenience). Of course, this is a rather
strong assumption since there is no a priori reason for the
replicas to eventually converge to the same state. In [6], this
assumption has been shown not to be valid and the authors
perform the first step of replica symmetry breaking (1RSB)
within the setting of the Parisi solution. However, it is also
shown that the replica symmetric ground state does not dif-
fer significantly from the 1RSB state. However, replica sym-
metry breaking is beyond the scope of this short account of



replica-theoretic techniques, and we will not carry out the
1RSB analysis here.

Regardless, under the replica symmetric assumption:

Λ = α(B−1)
2β

log det
“

q +
“

1 + 2β
α

Q−q
B−1

”

δµν

”

− nQ

+ nαβ B−1
2

(QR − qr) + n2αβ B−1
2

− 1
β

log
R

∆n e
αβ2 B−1

2

“

(R−r)
P

µ p2
µ+r(

P

µ pµ)2
”

dp

where pµ is shorthand for the vector
P

s psµes (in the stan-

dard basis of R
S). Now, in order to study the last term

of this expression, we will use once again the Hubbard–
Stratonovich transformation:

eαrβ2 B−1
2 (

P

µ pµ)2 = Ez e−
√

αr(B−1) z·
P

µ pµ

Then, if we let Vz(p) =
p

αr(B − 1) p ·z−αβ B−1
2

·(R−r)p2,
we get:

log
R

∆n e
αβ2 B−1

2

“

(R−r)
P

µ p2
µ+r(

P

µ pµ)2
”

dp

= log Ez

R

∆n e−β
P

µ Vz(pµ) dp

= log Ez en log
R

∆ exp{−βVz(p)} dp

= nEz log
R

∆
e−βVz(p) dp + o(n)

Now, because of assumption 2, we only need to calculate
Λ0 = limn→0

1
n
Λ. So, if we retrace our steps and perform

some elementary calculations along the way, we find:

Λ0 = q
1+χ

+ α
2β

(B − 1) log (1 + χ) − Q

+ αβ B−1
2

(QR − qr)

− 1
β

Ez

h

log
R

∆
exp

“

−βH̃z(p)
”i

(C.2)

where χ = 2β
α

Q−q
B−1

and the parameters Q, q, R, r are such
as to satisfy the replica symmetric saddle-point conditions:
∂Λ0
∂Q

= 0,. . .
These equations have to be solved in the limit β → ∞ to

which we will descend by taking advantage of the asymptotic
approximation of lemma B.1. To wit, we first let p∗(z) ∈
∆S−1 be the point of ∆S−1 where Vz attains its minimum9

and set ζ = Ez[p∗(z) · z] and φ = Ez[p
2
∗(z)]. Then, one can

show that both (Q−q) and (R−r) are O( 1
β
), and we obtain

the following asymptotic solutions:

Q ∼ φ R = r + 1
αβ(B−1)

2χ
1+χ

q ∼ φ + 1
β

ζ√
αr(B−1)

r = 4
α2(B−1)2

q
(1+χ)2

Finally, after some geometric considerations, one sees that
z · p∗(z) = mins∈S {z1 . . . zS}, an expression that yields φ =
1 and also:

ζ ≡ ζ(S) = S
2S−1

q
2
π

R
ze−z2

erfcS−1(z) dz

Therefore, for finite χ (which happens for α ≥ αc = ζ2(S)
B−1

),
expression C.2 becomes:

Λ0 = Θ(α − αc)
`
1 −

p
αc

α

´2 − 1 (C.3)

and, with Λ0 = 1
N

L0(G ), we obtain equation 3.6:

σ2(b)
N

= 1 + 1
N

L0(G ) = Θ(α − αc)
`
1 −

p
αc

α

´2
.

9The function p∗(z) is only well-defined almost everywhere
but still remains a measurable function.
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