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Department of Electrical and Computer

Engineering &
Coordinated Science Laboratory

University of Illinois
Urbana, IL 61801, USA

tbasar@control.csl.uiuc.edu

ABSTRACT
In this paper, we study optimal nonlinear pricing policy de-
sign for a monopolistic network service provider in the face
of a large population of users. We assume that users have
stochastic types. In [1], games with information symmetry
have been considered; that is, users’ true types may be pub-
lic information available to all parties, or each user’s true
type may be private information known only to that user.
In this paper, we study the intermediate case with infor-
mation asymmetry; that is, users’ true types are shared in-
formation among users, but are not disclosed to the service
provider. The problem can be formulated as an incentive-
design problem, and an ε-team optimal incentive (pricing)
policy is obtained, which almost achieves Pareto optimal-
ity for the service provider. A comparative study between
games with information symmetry and asymmetry are con-
ducted as well to evaluate the service provider’s game pref-
erences.

Keywords
Nonlinear pricing, incomplete information, information asym-
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1. INTRODUCTION
In recent years, pricing has been increasingly studied for

communication networks. Pricing can help to alleviate con-
gestion. In this case, prices are essentially used as control
signals from network service providers to users for them to
adjust their usages of bandwidth (called flows here) accord-
ingly. We can call this passive pricing, and the work in [2]
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stimulated much research in this direction, such as in [3], [4].
On the other hand, we can have active pricing, as considered
in this paper, where prices are charged by network service
providers to users in order to generate the maximal profits
(which are equivalent to revenues here, since we assume that
the costs are negligible or fixed). Examples of studies in this
direction include [5], [6].

For active pricing, a hierarchical Stackelberg (leader-fol-
lower) game framework was proposed in [7] to study the
interaction between profit-maximizing service providers and
utility-maximizing users. Like most other works in the com-
munication network pricing literature, [7] dealt with linear
pricing, where what service providers announce to users are
prices per unit flow which are fixed (i.e., without quantity
discounts). In [8] and [1], we extended the framework, with
a monopolistic network service provider, from linear pricing
to general nonlinear pricing, where there may exist quantity
discounts, such that the charge to a user may be a nonlinear
function of the user’s flow. In this context, the underlying
game becomes a reverse Stackelberg game, where the service
provider first needs to obtain the team solution (i.e., the
action outcomes of users that jointly maximize the profit),
and then solve the incentive-design problem for the optimal
incentive policy (i.e., nonlinear pricing policy) such that the
team solution is achieved. Precise definitions can be found in
these two references. Particularly, in [8], a single user case
was studied to illustrate the concept of nonlinear pricing,
and in [1] the other extreme case of a large number of users
was considered. We were interested in this asymptotic case
because first, it allows derivation of analytical results, and
second, practical communication networks generally feature
a large user population.

Also, in [8] and [1], we assumed that each user may be
stochastically of different true types, resulting in different
utility functions, and considered the complete information
game, where each user’s true type is public information avail-
able to all parties, as well as the incomplete information
game, where each user’s true type is private information
known to that user only. Moreover, for the case of multi-
ple users, we can have the intermediate game where there
is information asymmetry between the service provider and
the users, so that a user’s true type is shared information
available to all users, but not to the service provider. This
is called the partially incomplete information game in [9],
in addition to the complete information game and the in-
complete information game (called totally incomplete infor-



mation game, for distinction) studied in [1]. The work [9]
considered linear pricing, and here we extend the study to
nonlinear pricing.

Specifically, we consider in this paper optimal nonlinear
pricing policy design for a monopolistic network service pro-
vider in the face of a large number of users under partially
incomplete information, and compare the results with those
obtained in [1] for the other two classes of games with in-
formation symmetry. Comparison of nonlinear pricing with
linear pricing for the three classes of games was reported in
[10] and is not included here due to page limitation.

The rest of the paper is organized as follows. We first
introduce the problem and reproduce some results of [1] in
the next section. Then, in Section 3, which is the main part
of this work, we study optimal nonlinear pricing policy un-
der information asymmetry (i.e., under partially incomplete
information). Following that, results are compared for the
three classes of games in Section 4, and finally the paper
concludes with some remarks included in Section 5.

2. PRICING UNDER INFORMATION SYM-
METRY

Denote the set of users by N := {1, · · · , n}. Following the
model of [7], we formulate the net utility of User i as

Fwi(xi,x−i; ri) := wi log(1 + xi)−
1

n− xi − x−i
− ri, (1)

for 0 ≤ xi < n − x−i, where xi is User i’s flow, x−i :=
{xj}j∈N,j 6=i is the set of all the other users’ flows, x−i :=P

j∈N xj − xi, and ri is the total charge to User i by the
service provider, which is allowed to depend nonlinearly on
xi. Also, let x̄ :=

P
j∈N xj = xi +x−i and x := {xj}j∈N . In

(1), the first term captures the user’s utility for flow, which
is taken to be logarithmic, with wi a user-specific param-
eter, called the type of the user. The second term is the
congestion cost, which captures the delay in the framework
of an M/M/1 queue modeling of a link of capacity n1. While
each user tries to maximize his net utility by choosing his
flow (taking the pricing policy and the other users’ flows as
given), the service provider needs to design optimal pricing
policies such that his profit, r̄ :=

P
j∈N rj , is maximized.

Let w := {wj}j∈N be the set of all the users’ true types,
and wav :=

P
j∈N wj/n. For User i, w−i := {wj}j∈N,j 6=i is

the set of all the other users’ true types. In the complete
information game, w is public information available to all
parties, including the users and the service provider. In the
partially incomplete information game, w is known to the
users, but not to the service provider. In the totally in-
complete information game, each user’s true type is private
information to himself; thus, User i does not know w−i, for
i ∈ N , and the service provider does not know w. For all
cases, we assume that statistical information on w is avail-
able and is common information to all parties. Furthermore,
users are independently and identically distributed regard-
ing their types. Suppose that for any user, there are m pos-
sible types, whose set is {wl}l∈M , where M := {1, · · · , m}.
1We can see that the service provider increases the link ca-
pacity in proportion to the number of users. In [7], a more
general link capacity nc, where c > 0 is the per user capac-
ity, was considered. Here we only study the special case with
c = 1, and leave the extension to more general c to future
work.

The user’s type is wl with probability ql for l ∈ M , where
ql > 0 and

P
l∈M ql = 1. Without loss of generality, assume

that w1 > · · · > wm > 0.

2.1 Complete information
In the complete information game, w is known to all the

players and hence no statistical information is necessary.
Since the service provider knows w, he can charge users dif-
ferentially according to their true types. In order to obtain
the optimal incentive policy, he needs to compute the team
solution first, which is the action outcome that maximizes
his profit:

{(xCt
i (w), rCt

i (w))}i∈N = arg max{(xi,ri)}i∈N

X
j∈N

rj ,

subject to

Fwi(xi,x−i; ri) ≥ Fwi(0,x−i; 0), i ∈ N ; (2)

xi ≥ 0, ri ≥ 0, i ∈ N ;
X
j∈N

xj < n.

Note that ri should be 0 for xi = 0, and (2) is the individual
rationality constraint, which guarantees that the users are
not worse off by participating. It was obtained in [1] that
for finite but large n, the asymptotic team-optimal flows and
charges are

xCt
i (w)(n) ∼ 2wi

wav
− 1, rCt

i (w)(n) ∼ wi log

„
2wi

wav

«
,

for i ∈ N , if and only if

wi >
wav

2
, ∀ i ∈ N, (3)

and the resulting team-optimal total profit is

r̄Ct(w)(n) ∼
X
j∈N

wj log

„
2wj

wav

«
≥ wav(log 2)n, (4)

where the equality holds if and only if wi = wav for all i ∈ N .
Having obtained the team solution , the next step would

be to design a pricing policy for each user, ri = γi(xi), that
solves the following incentive-design problem, under which
individual users’ utility maximizing responses lead to the
team solution computed above; that is, for i ∈ N ,

xCt
i (w)

= arg maxxi:0≤xi<n−xCt
−i(w)Fwi(xi,x−i

Ct(w); γi(xi)), (5)

γi(x
Ct
i (w)) = rCt

i (w), (6)

γi(0) = 0. (7)

If there exists a solution to (5)-(7), which is then denoted
by {γCt

i (w)}i∈N , we say that the incentive-design problem
is incentive controllable. However, it was shown in [1] that
the problem is actually not incentive controllable; rather,
we can find {γCtε

i (w)}i∈N which makes the service provider
come arbitrarily close to the team-optimal profit, and so the
problem is ε-incentive controllable.

2.2 Totally incomplete information
With totally incomplete information, the service provider

only has statistical information on w. Thus, his objective
is to maximize the expected total profit. Also, he cannot
have price discrimination for different users according to
their true types, which means that he should have the same



pricing policy for all users. As a result, the team solution is
the same for all the users, which consists of m optimal flow-
charge pairs, one pair for each possible user type, such that
the expected profit is maximized. Thus, we can formulate
the team problem as follows:

{(xlT t, rlT t)}l∈M = arg max{(xl,rl)}l∈M
n
X
l∈M

qlr
l,

subject to

F(wl, xl, rl; {xli}) ≥ F(wl, 0, 0; {xli}), l ∈ M ; (8)

F(wl, xl, rl; {xli}) ≥ F(wl, xk, rk; {xli}),
l, k ∈ M, l 6= k; (9)

0 ≤ xl < 1, rl ≥ 0, l ∈ M,

where F(w, x, r; {yli}) is defined asX
{li}

n−1
i=1 ∈Mn−1

{(
n−1Y
i=1

qli)Fw(x, {yli}n−1
i=1 ; r)}.

Here, we require xl < 1 for l ∈ M , because in any case the
total flow cannot exceed the total capacity n for the con-
gestion cost in (1) to be well defined. (8) is the individual
rationality constraint, which guarantees that users are not
worse off by participating. In addition, for incomplete infor-
mation, we need (9) to induce any user with a certain type
to choose the flow-charge pair desired for this type, which
is called “self selection” (see [11, p. 442], [12]). Note that
the individual rationality constraint is also a special kind of
self-selection constraint. Also, the constraints (8) and (9)
are based on the expected net utility for a user, F , since he
does not know the true types of the other n − 1 users. In
[1], a near-optimal asymptotic team solution was obtained
as follows:

l ∈ MH : x̃lT t = 1− δ, r̃lT t = wlh log(2− δ);

l ∈ ML : x̃lT t = 0, r̃lT t = 0,

where

lh = min{arg max
k:k∈M

kX
l=1

qlw
k}, (10)

MH = {1, · · · , lh}, ML = {lh + 1, · · · , m}, and δ = an−b

for some a > 0 and 0 < b < 1. For this near-optimal
team solution, the resulting expected profit for the service
provider approaches the team-optimal expected profit in the
asymptotic case, which is

r̄Tt(n) = n
X

l∈MH

qlw
lh log 2. (11)

Next, the incentive-design problem is to find a common
incentive function for all users, γ, such that

xlT t = arg maxx:x≥0F(wl, x, γ(x); {xliTt}), l ∈ M ; (12)

γ(xlT t) = rlT t, l ∈ M ; (13)

γ(0) = 0. (14)

If there exists a solution to (12)-(14), which we then denote
by γTt, we say that the incentive-design problem is incen-
tive controllable. Again, we showed in [1] that the problem
is in fact ε-incentive controllable by obtaining an ε-team op-
timal incentive policy γ̃Ttε, which almost achieves the near-
optimal asymptotic team solution.

3. PRICING UNDER PARTIALLY INCOM-
PLETE INFORMATION

In this section, we study optimal nonlinear pricing policy
design for the partially incomplete information game. We
first formulate the team problem and the incentive-design
problem, and subsequently solve these two problems.

3.1 Incentive-Design Problem Formulation
In the partially incomplete information game, the service

provider does not know w, which is however known to the
users. Thus, in order to find the team solution which maxi-
mizes the expected profit, the service provider needs to con-
sider all the possible values of w. In other words, suppose
that User i’s type is wi = wli , where li ∈ M , and then
l := {lj}j∈N can take any value from Mn. Therefore, the
team solution consists of n×mn flow-charge pairs, with one
pair for each user, and totally n pairs for each possible value
of l, such that the expected profit is maximized. This team
problem can be formulated as follows:

{{(xlPt
i , rlPt

i )}i∈N}l∈Mn

= arg max{{(xl
i,rli)}i∈N}l∈Mn

X
l∈Mn

(
Y
j∈N

qlj )
X
j∈N

rl
j ,(15)

subject to

Fwli (x
l
i,x

l
−i; r

l
i) ≥ Fwli (0,xl

−i; 0), i ∈ N, l ∈ Mn; (16)

Fwli (x
l
i,x

l
−i; r

l
i) ≥ Fwli (x

k
j ,xl

−i; r
k
j ),

i, j ∈ N, l,k ∈ Mn; (17)

xl
i ≥ 0, rl

i ≥ 0,
X
j∈N

xl
j < n, i ∈ N, l ∈ Mn.

Note that (16) is the individual rationality constraint, which
guarantees that the users are not worse off by participating,
and (17) is the self-selection constraint, such that given a
certain value of l, a user should choose the flow-charge pair
desired for him in this case.

Assume that a team-optimal solution exists. Then, the
incentive-design problem is to find a common incentive func-
tion, γ, for all users, since the service provider cannot dif-
ferentiate users according to their types, such that for any
l, any user’s net utility is maximized at the team solution.
This problem can be formulated as follows:

xlPt
i = arg maxx:0≤x<n−xlP t

−i
Fwli (x, xlPt

−i ; γ(x)),

i ∈ N, l ∈ Mn; (18)

γ(xlPt
i ) = rlPt

i , i ∈ N, l ∈ Mn; (19)

γ(0) = 0. (20)

If there exists a solution to (18)-(20), which is then denoted
by γPt, we say that the incentive-design problem is incentive
controllable.

We have thus completed the formulation of the team prob-
lem, given by (15)-(17), and the incentive-design problem,
given by (18)-(20), for the partially incomplete information
game. However, these two problems become intractable as
n → ∞, for the asymptotic case which is of particular in-
terest to us, since the dimension of the set of possible l’s,
Mn, approaches infinity in this case. Therefore, in the fol-
lowing, we provide a simplified problem formulation for the
asymptotic case. Note that as n →∞, since users are inde-
pendently and identically distributed in terms of their types,



by the Strong Law of Large Numbers [13, p. 48], with prob-
ability 1, the fraction of those users whose types are wl ap-
proaches ql for l ∈ M . In view of this, we make the following
assumption:

Assumption 1. For the asymptotic case with partially in-
complete information, the service provider assumes that the
number of users whose types are wl is nql, for l ∈ M , and
can maximize his profit based on this assumption.

Then, by Assumption 1, the problem formulation for the
team solution can be simplified such that the service provider
only needs to find m flow-charge pairs, one pair for each
type, which maximize the total profit. Again, we take n as
a parameter for the asymptotic case, and the team solution
can be expressed as follows2:

{(xlP t(n), rlP t(n))}l∈M

= arg max{(xl,rl)}l∈M
n
X
l∈M

qlr
l, (21)

subject to

Fwl(x
l, n

X
h∈M

qhxh − xl; rl) ≥ Fwl(0, n
X
h∈M

qhxh − xl; 0),

l ∈ M ; (22)

Fwl(x
l, n

X
h∈M

qhxh − xl; rl) ≥ Fwl(x
k, n

X
h∈M

qhxh − xl; rk),

l, k ∈ M, l 6= k; (23)

xl ≥ 0, rl ≥ 0, l ∈ M ;
X
l∈M

qlx
l < 1.

Assume that a solution to (21)-(23) exists. Then, the incen-
tive-design problem is to find a common incentive function,
γ, for all users, such that those users whose types are wl get
the maximal net utilities at (xlP t(n), rlP t(n)), for l ∈ M ,
which can be formulated as follows:

xlP t(n) = arg maxx:0≤x<n−x−lP t(n)Fwl(x, x−lP t(n); γ(x)),

l ∈ M ; (24)

γ(xlP t(n)) = rlP t(n), l ∈ M ; (25)

γ(0) = 0, (26)

where x−lP t(n) := n
P

h∈M qhxhPt(n)−xlP t(n). If there ex-

ists a solution to (24)-(26), which is then denoted by γPt(n),
we say that the incentive-design problem is incentive control-
lable.

Actually, we can further simplify the problem formulation
under the following assumption:

Assumption 2. As n →∞, for (22), (23) and (24), assume
that

lim
n→∞

1

n− n
P

h∈M qhxh + xl − xk
= 0, l, k ∈ M.

In other words, the congestion cost tends to zero, and thus
can be neglected, for the asymptotic case with partially in-
complete information.

2For the convenience of notation here, we have mod-
ified slightly the form of F given in (1), such that
Fwi(xi, x−i; ri) := wi log(1 + xi) − (n − xi − x−i)

−1 − ri,
for 0 ≤ xi < n− x−i.

Later, we will see that Assumption 2 is satisfied by the so-
lution obtained. Under Assumption 2, the associated team
problem, (21)-(23), can be further simplified as

{(x̃lP t, r̃lP t)}l∈M = arg max{(xl,rl)}l∈M
n
X
l∈M

qlr
l, (27)

subject to

F̃wl(x
l; rl) ≥ F̃wl(0; 0), l ∈ M ; (28)

F̃wl(x
l; rl) ≥ F̃wl(x

k; rk), l, k ∈ M, l 6= k; (29)

xl ≥ 0, rl ≥ 0, l ∈ M ;
X
l∈M

qlx
l < 1, (30)

where F̃w(x; r) := w log(1+x)−r. Then, the incentive-design
problem, (24)-(26), can be expressed as

x̃lP t = arg maxx:x≥0F̃wl(x; γ(x)), l ∈ M ; (31)

γ(x̃lP t) = r̃lP t, l ∈ M ; (32)

γ(0) = 0. (33)

If the problem is incentive controllable, then the solution is
denoted by γ̃Pt.

3.2 Team Solution

3.2.1 Optimization problem decomposition
Next, we solve (27)-(30) for the asymptotic team solution.
As in the case of the single user with incomplete information,
we decompose the problem such that the optimal flows can
be obtained first, followed by the optimal charges. First we
have the following two lemmas, followed by two propositions,
leading to the main result captured in Theorem 1.

Lemma 1. x̃1Pt ≥ · · · ≥ x̃mPt.

Proof. Fix any l, k ∈ M such that l < k. By assump-
tion, wl > wk. From (29), F̃wl(xl; rl) ≥ F̃wl(xk; rk), and

F̃wk (xk; rk) ≥ F̃wk (xl; rl). By summing the two inequalities
and rearranging the terms, we obtain (wl−wk)[log(1+xl)−
log(1 + xk)] ≥ 0, which implies xl ≥ xk.

Lemma 2. Suppose that (29) holds. If (28) holds for l =
m, then it automatically holds for l ∈ M/{m}.

Proof. Fix any l, k ∈ M such that l < k. By assump-
tion, wl > wk, and thus F̃wl(xk; rk) ≥ F̃wk (xk; rk). Then

from (29), F̃wl(xl; rl) ≥ F̃wk (xk; rk). Note that F̃wl(0; 0) =

F̃wk (0; 0) = 0. Thus, if (28) holds for k, it also holds for l.
Finally, we only need (28) to hold for m.

Proposition 1. The optimization problem for the asymp-
totic team solution, (27)-(30), is equivalent to the following
optimization problem: max n

P
l∈M qlr

l subject to

x1 ≥ · · · ≥ xm ≥ 0; (34)X
l∈M

qlx
l < 1; (35)

rl ≥ 0, l ∈ M ; (36)

rm ≤ wm log(1 + xm); (37)

wl+1 log
1 + xl

1 + xl+1
≤ rl − rl+1 ≤ wl log

1 + xl

1 + xl+1
,

l ∈ M/{m}. (38)



Proof. Expressions (34)-(36) come directly from (30)
and Lemma 1. By Lemma 2, (28) can be written as (37).
Next, we prove that (29) can be written as (38). Fix l,
k and h ∈ M such that l < k < h. By assumption,
wl > wk > wh. By (34), xl ≥ xk ≥ xh. Suppose that

F̃wl(xl; rl) ≥ F̃wl(xk; rk) and F̃wk (xk; rk) ≥ F̃wk (xh; rh).
Summing the second inequality with (wl−wk) log(1+xk) ≥
(wl − wk) log(1 + xh), which comes from wl > wk and

xk ≥ xh, we get F̃wl(xk; rk) ≥ F̃wl(xh; rh). Therefore,

F̃wl(xl; rl) ≥ F̃wl(xh; rh), which means that if (29) holds
for the pairs (l, k) and (k, h), then it is also satisfied for the

pair (l, h). One the other hand, suppose that F̃wh(xh; rh) ≥
F̃wh(xk; rk) and F̃wk (xk; rk) ≥ F̃wk (xl; rl). Adding the sec-
ond inequality with

−(wk − wh) log(1 + xk) ≥ −(wk − wh) log(1 + xl),

which comes from wk > wh and xk ≤ xl, we get F̃wh(xk; rk)

≥ F̃wh(xl; rl). Therefore, F̃wh(xh; rh) ≥ F̃wh(xl; rl), which
means that if (29) holds for the pairs (h, k) and (k, l), then
it must also hold for the pair (h, l). In conclusion, (29) can
be reduced to

F̃wl(x
l; rl) ≥ F̃wl(x

l+1; rl+1);

F̃wl+1(x
l+1; rl+1) ≥ F̃wl+1(x

l; rl), l ∈ M/{m},

which can be equivalently written as (38).

Obviously, to maximize n
P

l∈M qlr
l, rm should equal the

upper bound in (37), and rl − rl−1 should equal the upper
bound in (38), for l ∈ M/{m}, such that rl’s take the largest
possible values. It can be easily seen that these values satisfy
(36). Thus, we have the following proposition as a direct
result of Proposition 1, whose proof is omitted here:

Proposition 2. The optimization problem for the asymp-
totic team solution, (27)-(30), is equivalent to
max n

P
l∈M qlr

l subject to

x1 ≥ · · · ≥ xm ≥ 0; (39)X
l∈M

qlx
l < 1; (40)

rm = wm log(1 + xm); (41)

rl = wl log(1 + xl)−
mX

k=l+1

(wk−1 − wk) log(1 + xk),

l ∈ M/{m}. (42)

Immediately from Proposition 2, the team solution can be
decomposed as follows:

Theorem 1. The optimization problem for the asymp-
totic team solution, (27)-(30), can be decomposed, such that
the optimal flows can be obtained from the following problem
first:

{x̃lP t}l∈M = arg max{xl}l∈M :x1≥···≥xm≥0nr̃P
av, (43)

s. t.
X
l∈M

qlx
l < 1, (44)

where q̄l :=
Pl

k=1 qk for l ∈ M , q̄0 := 0, w0 := 0, and

r̃P
av :=

X
l∈M

(q̄lw
l − q̄l−1w

l−1) log(1 + xl).

Then, the optimal charges, {r̃lP t}l∈M , can be calculated from
the optimal flows, {x̃lP t}l∈M , by (41) and (42).

3.2.2 Asymptotic optimal flows with relaxed constr-
aint

We first solve (43) and (44) for the asymptotic optimal flows.
In order to apply the Lagrange multiplier method [14], [15],
here we first relax the constraint (44) to

P
l∈M qlx

l ≤ 1.

Also, let ym = xm, and yl = xl − xl+1 for l ∈ M/{m}, or
equivalently, xl =

Pm
k=l yk for l ∈ M . Then, the constraint

x1 ≥ · · · ≥ xm ≥ 0 becomes yl ≥ 0 for l ∈ M , and (43) and
(44) can be rewritten as

max
{yl:yl≥0}l∈M

nr̃P
av,

s. t.
X
l∈M

q̄ly
l ≤ 1,

where

r̃P
av =

X
l∈M

(q̄lw
l − q̄l−1w

l−1) log(1 +

mX
k=l

yk).

Now, for some λ ≥ 0, define the Lagrangian function

L(y1, · · · , ym; λ) := r̃P
av − λ(

X
l∈M

q̄ly
l − 1).

Then, we obtain that the optimal solution must satisfy

∂

∂yl
L(y1, · · · , ym; λ)

=

lX
h=1

»
q̄hwh − q̄h−1w

h−1

1 +
Pm

k=h yk
− λqh

–
≤ 0, l ∈ M ; (45)

yl · ∂

∂yl
L(y1, · · · , ym; λ) = 0, l ∈ M ; (46)

λ(
X
l∈M

q̄ly
l − 1) = 0; (47)

X
l∈M

q̄ly
l ≤ 1; yl ≥ 0, l ∈ M ; λ ≥ 0. (48)

It can be easily seen that ∂L(y1, · · · , ym; λ)/∂y1 > 0 if λ =
0, which contradicts (45). Thus, we must have λ > 0, and
(47) and (48) can be revised toX

l∈M

q̄ly
l = 1; yl ≥ 0, l ∈ M ; λ > 0. (49)

Let {l1, · · · , lK} be a subset of M , such that 1 ≤ l1 < · · · <
lK ≤ m, ylk > 0 for k = 1, · · · , K, and yl = 0 for any other
l ∈ M . Define l0 := 0. Then, for ylk , k = 1, · · · , K, (45),
(46) and (49) can be reduced to

q̄lkwlk − q̄lk−1wlk−1

1 +
PK

h=k ylh
− λ(q̄lk − q̄lk−1) = 0,

k = 1, · · · , K; (50)

KX
k=1

q̄lkylk = 1; ylk > 0, k = 1, · · · , K; λ > 0. (51)

By (50),

KX
h=k

ylh =
q̄lkwlk − q̄lk−1wlk−1

λ(q̄lk − q̄lk−1)
− 1, k = 1, · · · , K, (52)



and thus

ylk =
1

λ

 
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

−
q̄lk+1wlk+1 − q̄lkwlk

q̄lk+1 − q̄lk

!
,

k = 1, · · · , K − 1; (53)

ylK =
1

λ
·
q̄lK wlK − q̄lK−1wlK−1

q̄lK − q̄lK−1

− 1. (54)

Also, by substituting (52) into (51), we get

1 =

KX
k=1

q̄lkylk =

KX
k=1

(

KX
h=k

ylh)(q̄lk − q̄lk−1) =
1

λ
q̄lK wlK − q̄lK ,

and thus

λ =
q̄lK wlK

1 + q̄lK

. (55)

Obviously, λ > 0. From (53) and (54), for ylk > 0, k =
1, · · · , K, we need

q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

>
q̄lk+1wlk+1 − q̄lkwlk

q̄lk+1 − q̄lk

,

k = 1, · · · , K − 1; (56)

q̄lK wlK

1 + q̄lK

>
q̄lK−1wlK−1

1 + q̄lK−1

. (57)

Now for l ∈ M/{l1, · · · , lK}, yl = 0, and thus we only need
(45) to hold for these yl’s. Given the fact that the equality
holds for (45) when l = lk−1 for k = 1, · · · , K, then for
lk−1 < l < lk, (45) can be reduced to

lX
h=lk−1+1

"
q̄hwh − q̄h−1w

h−1

1 +
PK

j=k ylj
− λqh

#

=
q̄lw

l − q̄lk−1wlk−1

1 +
PK

j=k ylj
− λ(q̄l − q̄lk−1) ≤ 0.

Combining this with (52), we get

q̄lw
l − q̄lk−1wlk−1

q̄l − q̄lk−1

≤
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

,

lk−1 < l < lk, k = 1, · · · , K. (58)

Also, since the equality holds for (45) when l = lK , for
lK < l ≤ m, (45) can be reduced to

lX
h=lK+1

h
q̄hwh − q̄h−1w

h−1 − λqh

i
= (q̄lw

l − q̄lK wlK )− λ(q̄l − q̄lK ) ≤ 0.

Combining this with (55), we obtain

q̄lw
l

1 + q̄l
≤ q̄lK wlK

1 + q̄lK

, lK < l ≤ m. (59)

Now, having obtained the optimal yl’s, we go back to com-
pute xl’s. Recall that xl =

Pm
k=l yk for l ∈ M . Therefore,

from (52) and (55),

xl = xlk =
1 + q̄lK

q̄lK wlK
·
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

− 1,

lk−1 < l ≤ lk, k = 1, · · · , K; (60)

xl = 0, lK < l ≤ m. (61)

In conclusion, the asymptotic optimal flows with the relaxed
constraint

P
l∈M qlx

l ≤ 1 are given in (60) and (61), with
(56)-(59) being the necessary and sufficient condition for op-
timality.

3.2.3 An inductive method for {l1, · · · , lK}
Now, we discuss the determination of the set {l1, · · · , lK}
based on (56)-(59). First, we have the following proposition:

Proposition 3. The conditions for {l1, · · · , lK}, (56)-
(59), are equivalent to

q̄lw
l − q̄lk−1wlk−1

q̄l − q̄lk−1

≤
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

,

lk−1 < l < lk, k = 1, · · · , K; (62)

q̄lw
l − q̄lk−1wlk−1

q̄l − q̄lk−1

<
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

,

lk < l ≤ m, k = 1, · · · , K; (63)

q̄lK−1wlK−1

1 + q̄lK−1

<
q̄lK wlK

1 + q̄lK

; (64)

q̄lw
l

1 + q̄l
≤ q̄lK wlK

1 + q̄lK

, lK < l ≤ m. (65)

Proof. First, suppose that (56)-(59) hold. We want to
prove that (62)-(65) hold as well. Note that (62), (64) and
(65) are just (58), (57) and (59), respectively. Thus, we
only need to prove (63). For lk < l ≤ m, k = 1, · · · , K, we
discuss this for different cases of l. If lh−1 < l ≤ lh for some
h, k < h ≤ K, then from (56), we can deduce

q̄lj wlj − q̄lj−1wlj−1

q̄lj − q̄lj−1

<
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

, j > k.

Also, by (58),

q̄lw
l − q̄lh−1wlh−1

q̄l − q̄lh−1

≤
q̄lhwlh − q̄lh−1wlh−1

q̄lh − q̄lh−1

<
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

.

Thus,

q̄lw
l − q̄lk−1wlk−1

q̄l − q̄lk−1

=
q̄lw

l − q̄lh−1wlh−1 +
Ph−1

j=k (q̄lj wlj − q̄lj−1wlj−1)

q̄l − q̄lh−1 +
Ph−1

j=k (q̄lj − q̄lj−1)

<
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

.

The other possible case is lK < l ≤ m. By (59),

q̄lw
l − q̄lK wlK

q̄l − q̄lK

≤ q̄lK wlK

q̄lK

.

On the other hand, by (57),

q̄lw
l − q̄lK wlK

q̄l − q̄lK

≤ q̄lK wlK

q̄lK

<
q̄lK wlK − q̄lK−1wlK−1

q̄lK − q̄lK−1

,



which implies3

q̄lw
l − q̄lk−1wlk−1

q̄l − q̄lk−1

=
q̄lw

l − q̄lK wlK +
PK

j=k(q̄lj wlj − q̄lj−1wlj−1)

q̄l − q̄lK +
PK

j=k(q̄lj − q̄lj−1)

<
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

.

Finally, we conclude that (63) holds.
For the reverse direction, suppose that (62)-(65) hold.

Then, we only need to prove (56). By (63),

q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

>
q̄lk+1wlk+1 − q̄lk−1wlk−1

q̄lk+1 − q̄lk−1

=
q̄lk+1wlk+1 − q̄lkwlk + q̄lkwlk − q̄lk−1wlk−1

q̄lk+1 − q̄lk + q̄lk − q̄lk−1

,

k = 1, · · · , K − 1.

which immediately implies (56).

Based on Proposition 3, now we can determine lk’s induc-
tively. Recall that l0 = 0, q̄0 = 0 and w0 = 0. Then, given
lk−1, k = 1, · · · , K, by (62) and (63),

lk = max

(
arg max

l:lk−1<l≤m

q̄lw
l − q̄lk−1wlk−1

q̄l − q̄lk−1

)
,

k = 1, · · · , K. (66)

We have one remark here: It can be easily seen that l1 = 1,
since w1 > · · · > wm > 0 by assumption. Next, we check
whether lk satisfies (64) and (65) or not. If that is the case,
then k = K and we stop; otherwise, we proceed to determine
lk+1 by (66). Actually, we have the following proposition for
lK :

Proposition 4.

lK = min


arg max

l:l∈M

q̄lw
l

1 + q̄l

ff
. (67)

Proof. Let l̄ := min{arg maxl:l∈M q̄lw
l/(1 + q̄l)}. Obvi-

ously, we must have lK ≥ l̄, since otherwise (65) cannot be
satisfied. Next, we show lK = l̄. First, suppose that l̄ = 1.
Given l0 = 0, we have verified that l1 = 1 by (62) and (63),
or equivalently, by (66). Since l̄ = 1, according to the def-
inition of l̄, (64) and (65) also hold for l1 = 1. Therefore,
K = 1 and lK = l1 = l̄ = 1. On the other hand, if l̄ > 1,
then given 1 ≤ lk−1 < l̄, according to the definition of l̄,

0 <
q̄lk−1wlk−1

1 + q̄lk−1

<
q̄l̄w

l̄

1 + q̄l̄

,

which implies

q̄l̄w
l̄ − q̄lk−1wlk−1

q̄l̄ − q̄lk−1

>
q̄l̄w

l̄

1 + q̄l̄

.

3The only exception happens when lK = 1. For this case,
the last two terms in the previous line are actually equal.
However, since w1 is larger than all the other wl’s by as-
sumption, we can still verify the result to be proved in the
following line.

Then for l > l̄, again by the definition of l̄,

q̄lw
l

1 + q̄l
≤ q̄l̄w

l̄

1 + q̄l̄

,

and thus

q̄lw
l − q̄l̄w

l̄

q̄l − q̄l̄

≤ q̄l̄w
l̄

1 + q̄l̄

<
q̄l̄w

l̄ − q̄lk−1wlk−1

q̄l̄ − q̄lk−1

.

Therefore,

q̄lw
l − q̄lk−1wlk−1

q̄l − q̄lk−

=
q̄lw

l − q̄l̄w
l̄ + q̄l̄w

l̄ − q̄lk−1wlk−1

q̄l − q̄l̄ + q̄l̄ − q̄lk−1

<
q̄l̄w

l̄ − q̄lk−1wlk−1

q̄l̄ − q̄lk−1

.

This means lk ≤ l̄, since otherwise (63) cannot be satisfied.
Furthermore, from the fact that lK ≥ l̄, we do not stop
if lk < l̄. Finally, we can always proceed to some k, such
that lk = l̄. Then, by the definition of l̄, (64) and (65) are
satisfied for lk, and so k = K and lK = l̄.

In conclusion, the set {l1, · · · , lK} can be determined by (66)
and (67) inductively.

3.2.4 Near-optimal asymptotic team solution
We have shown that with the relaxed constraint

P
l∈M qlx

l ≤
1, the asymptotic optimal flows can be obtained by (60)
and (61). It can be seen from (49) that for these flows,P

l∈M qlx
l = 1. Also, the resulting maximal profit attain-

able with the relaxed constraint, divided by n, is

r̃P
av =

X
l∈M

(q̄lw
l − q̄l−1w

l−1) log(1 + xl)

=

KX
k=1

lkX
l=lk−1+1

(q̄lw
l − q̄l−1w

l−1) log(1 + xlk )

=

KX
k=1

(q̄lkwlk − q̄lk−1wlk−1)

· log

 
1 + q̄lK

q̄lK wlK
·
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

!

=

KX
k=1

(q̄lkwlk − q̄lk−1wlk−1) log
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

−q̄lK wlK log
q̄lK wlK

1 + q̄lK

.

Now, based on (60) and (61), let

x̃lP t = x̃lkPt =
1 + q̄lK

q̄lK wlK
·
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

− 1− δ,

lk−1 < l ≤ lk, k = 1, · · · , K; (68)

x̃lP t = 0, lK < l ≤ m, (69)

where δ = an−b for some a > 0 and 0 < b < 1. Next, we
show that x̃lP t’s defined by (68) and (69) solve (43) and (44)
for the asymptotic case, and thus provide the near-optimal
flows for the asymptotic team solution. First,

P
l∈M qlx̃

lP t =
1 − q̄lK δ < 1, which satisfies the original constraint (44).



Also, Assumption 2 holds, since for l, k ∈ M ,

lim
n→∞

1

n− n
P

h∈M qhx̃hPt + x̃lP t − x̃kPt

= lim
n→∞

1

q̄lK an1−b + x̃lP t − x̃kPt
= 0.

Furthermore,

r̃Pt
av :=

X
l∈M

(q̄lw
l − q̄l−1w

l−1) log(1 + x̃lP t)

=

KX
k=1

(q̄lkwlk − q̄lk−1wlk−1)

·[log(1 + x̃lkPt + δ)− (1 + x̃lkPt + δ)−1an−b]

∼
KX

k=1

(q̄lkwlk − q̄lk−1wlk−1) log
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

− q̄lK wlK log
q̄lK wlK

1 + q̄lK

.

Therefore, for the asymptotic case, x̃lP t’s almost achieve
the maximal profit attainable with the relaxed constraint,
defined by

r̄Pt(n)

:= n

KX
k=1

(q̄lkwlk − q̄lk−1wlk−1) log
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

− nq̄lK wlK log
q̄lK wlK

1 + q̄lK

, (70)

and so (68) and (69) provide the near-optimal flows for the
asymptotic team solution. Then, the near-optimal charges
for the asymptotic team solution, {r̃lP t}l∈M , can be ob-
tained from {x̃lP t}l∈M by (41) and (42), and finally we have

r̃lP t = r̃lkPt

= wlk log(1 + x̃lkPt)−
KX

h=k+1

(wlh−1 − wlh) log(1 + x̃lhPt),

lk−1 < l ≤ lk, k = 1, · · · , K; (71)

r̃lP t = 0, lK < l ≤ m. (72)

3.3 Solution of the Incentive-Design Problem
Having obtained the near-optimal asymptotic team solu-

tion {(x̃lP t, r̃lP t)}l∈M , we now address the incentive-design
problem (31)-(33) for γ̃Pt. Note that {(x̃lP t, r̃lP t)}l∈M sat-
isfies (41) and (42), or equivalently,

wm log(1 + x̃mPt)− r̃mPt = 0;

wl log(1 + x̃lP t)− r̃lP t = wl log(1 + x̃(l+1)Pt)− r̃(l+1)Pt,

l ∈ M/{m}.

In particular, this implies

F̃wlK (x̃lKPt; r̃lKPt) = F̃wlK (0; 0) = 0;

F̃wlk (x̃lkPt; r̃lkPt) = F̃wlk (x̃lk+1Pt; r̃lk+1Pt),

k = 1, · · · , K − 1,

which means that a user with the type wlK may choose the
flow-charge pair (0, 0) instead of (x̃lKPt, r̃lKPt), and a user
with the type wlk may choose (x̃lk+1Pt, r̃lk+1Pt) instead of

(x̃lkPt, r̃lkPt), for k = 1, · · · , K − 1. Thus, strictly speak-
ing, the incentive-design problem (31)-(33) is not incentive
controllable.

Next, we show that the problem is ε-incentive controllable
by obtaining an ε-team optimal incentive policy, γ̃Ptε. First,
let γ̃Ptε(0) = 0, and γ̃Ptε(x̃lKPt) = r̃lKPt − εK , where εK is
some small positive number. Then,

F̃wlK (x̃lKPt; γ̃Ptε(x̃lKPt)) = εK > 0,

which guarantees that a user with the type wlK will not
choose (0, 0). On the other hand, for a user with the type
wl, lK < l ≤ m, to still stick to (0, 0), we need

F̃wl(x̃
lKPt; γ̃Ptε(x̃lKPt))

= εK − (wlK − wl) log(1 + x̃lKPt) < 0. (73)

Next, for k = K − 1, · · · , 1, let γ̃Ptε(x̃lkPt) = r̃lkPt − εk,
where εk > εk+1 such that

F̃wlk (x̃lkPt; γ̃Ptε(x̃lkPt))

= F̃wlk (x̃lk+1Pt; γ̃Ptε(x̃lk+1Pt)) + εk − εk+1

> F̃wlk (x̃lk+1Pt; γ̃Ptε(x̃lk+1Pt)).

On the other hand, for a user with the type wl, lk < l ≤ m,
to stick to their desired choices, similarly, we need

(wlk − wlk+1)[log(1 + x̃lkPt)− log(1 + x̃lk+1Pt)],

> εk − εk+1, k = 1, · · · , K − 1. (74)

Finally, for (31) to be satisfied, that is, for x̃lP t to be the

unique maximizing point of F̃wl(x; γ̃Ptε(x)) for x ≥ 0, we
need

γ̃Ptε(x) > wl log(1 + x)− [wl log(1 + x̃lP t)− r̃lP t]− εl,

l ∈ M, (75)

for x ≥ 0 and x /∈ {0, x̃l1Pt, · · · , x̃lKPt} (for instance, we can
let γ̃Ptε(x) = w1 log(1 + x)). In conclusion, a user with the
type wl, l ∈ M , chooses the pair (x̃lP t, γ̃Ptε(x̃lP t)), if for the
incentive policy γ̃Ptε, γ̃Ptε(0) = 0, γ̃Ptε(x̃lkPt) = r̃lkPt − εk

for k = 1, · · · , K, where ε1 > · · · > εK > 0, and (73) to (75)
are satisfied. Then, the resulting profit is

r̄Pt(n)− n
X
l∈M

qlεl = r̄Pt(n)− n

KX
k=1

(q̄lk − q̄lk−1)εk,

which can come arbitrarily close to the team-optimal profit
r̄Pt(n) by making εk’s arbitrarily small. Therefore, γ̃Ptε is
an ε-team optimal incentive policy.

4. COMPARISON OF THE THREE GAMES
In the following, we compare results for the partially in-

complete information game, given by (66), (67), and (70),
with those for the other two games, given by (3) and (4)
for complete information, and (10) and (11) for totally in-
complete information. Note that for the asymptotic case,
it is stipulated by Assumption 1 that with probability 1,
the number of users whose types are wl is nql, for l ∈ M .
Then for the complete information game, by (3) and (4), the
asymptotic optimal profit for this case is

r̄Ct(n) = n

lCtX
l=1

qlw
l log wl − n(

lCtX
l=1

qlw
l) log

PlCt
l=1 qlw

l

2q̄lCt
,



where lCt for the smallest admissible type satisfies

wlCt >

PlCt
l=1 qlw

l

2q̄lCt
.

We first compare the partially incomplete information game
with the totally incomplete one. From the definition of lh,
for l > lh, we must have q̄lw

l ≤ q̄lhwlh , which implies

q̄lw
l

1 + q̄l
<

q̄lhwlh

1 + q̄lh

, l > lh.

Thus, lh ≥ lK , which means that more users can be possibly
admitted for the totally incomplete information game. Next,
we compare r̄Pt(n) with r̄Tt(n), and discuss several possible
cases. First, if lK = lh = 1, then

r̄Pt(n) = nq1w
1 log

1 + q1

q1
≥ nq1w

l log 2 = r̄Tt(n).

If lK = lh > 1, then we have the following proposition for
r̄Pt(n), the proof of which is provided in the appendix:

Proposition 5. If lK > 1, then

r̄Pt(n) > nq̄lK wlK log
1 + q̄lK

q̄lK

. (76)

Thus,

r̄Pt(n) > nq̄lK wlK log 2 = nq̄lhwlh log 2 = r̄Tt(n).

If lK < lh, then from the definitions of lK and lh, we must
have

q̄lK wlK < q̄lhwlh ≤ (1 + q̄lh)
q̄lK wlK

1 + q̄lK

,

and so

nq̄lK wlK log 2 < r̄Tt(n) = nq̄lhwlh log 2

≤ n(1 + q̄lh)
q̄lK wlK

1 + q̄lK

log 2,

which, combined with (76), implies

r̄Tt(n)

r̄Pt(n)
≤ (1 + q̄lh) log 2

»
(1 + q̄lK ) log

1 + q̄lK

q̄lK

–−1

.

We can easily verify that (1+q̄lK ) log[(1+q̄lK )/q̄lK ] is strictly
convex and strictly decreasing for 0 < q̄lK < 1 (since lK <
lh), and so it is larger than the infimum, 2 log 2. Thus,

r̄Tt(n)

r̄Pt(n)
<

1 + q̄lh

2
≤ 1.

In conclusion, even though more users can possibly be ad-
mitted for the totally incomplete information game, we al-
ways have r̄Pt(n) > r̄Tt(n), except that the equality may
hold when lK = lh = 1.

Next, for comparison with the complete information game,
we first know that all being team-optimal with correspond-
ingly inferior information, we have r̄Ct(n) ≥ r̄Pt(n) ≥ r̄Tt(n).
However, the relative differences are difficult to express in
any useful analytic form, and hence we resort to numerical
analysis to evaluate the profit loss due to the two different
types of incomplete information. From Table 1, we can see
that for the scenarios picked (rather arbitrarily), compared
with the complete information game, the profit loss due to
partially incomplete information is always less (and rather
substantially) than the profit loss due to totally incomplete

information, which confirms our previous conclusion. The
table also shows the extent of the drop in profit due to loss
of information. The bottom line is that the service provider
makes the most profit with complete information, while if
he cannot obtain information on the users’ true types, he
prefers partially incomplete information for a higher profit,
and it is beneficial for him to encourage users to share this in-
formation among themselves when possible. In other words,
as leader in the game, the service provider is better off with
better informed users (followers).

5. CONCLUSION
In this paper, we have obtained an ε-team optimal incen-

tive policy, which almost achieves Pareto optimality for a
monopolistic network service provider facing a large popula-
tion of users, for the partially incomplete information game.
Comparison with results obtained in [1] for the complete
and totally incomplete information games indicates that if
the service provider is not able to obtain information on
users’ true types, then it is beneficial for him to encourage
information sharing among users on each other’s true types
when possible.

Note that the above conclusion is made for general non-
linear pricing policies. One remark here is that if we restrict
pricing policies to be linear, the same relationship holds;
that is, the service provider makes the highest profit under
complete information, followed by the profit under partially,
and finally the profit under totally incomplete information.
However, by turning from linear pricing policies to nonlin-
ear ones, the service provider achieves a higher profit for all
three games. A complete study of linear and nonlinear pric-
ing under the three information scenarios can be found in
[10].
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APPENDIX
Given q̄lk ’s and qlK wlK as fixed, such that 0 < q̄l1 < · · · <
q̄lK ≤ 1 and wlK > 0, we study how to choose wlk , k =
1, · · · , K − 1, such that r̄Pt(n) is minimized. Let

zk :=
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

, k = 1, · · · , K,

and ak := q̄lk − q̄lk−1 , k = 1, · · · , K. Then by assumption,

ak’s are fixed, and S := qlK wlK =
PK

k=1 akzk is specified as

well. Thus, the above problem is equivalent to minimizing

Z(z1, · · · , zK−1)

:=

KX
k=1

(q̄lkwlk − q̄lk−1wlk−1) log
q̄lkwlk − q̄lk−1wlk−1

q̄lk − q̄lk−1

=

KX
k=1

akzk log zk

=

K−1X
k=1

akzk log zk + (S −
K−1X
k=1

akzk) log
S −

PK−1
k=1 akzk

aK

by choosing zk, k = 1, · · · , K − 1, such that zk > 0 for
k = 1, · · · , K. Now,

∂

∂zk
Z(z1, · · · , zK−1) = ak log zk − ak log

S −
PK−1

h=1 ahzh

aK

for k = 1, · · · , K − 1, and

∂2

∂z2
k

Z(z1, · · · , zK−1) =
ak

zk
+

a2
k

S −
Pk−1

h=1 ahzh

;

∂2

∂zk∂zl
Z(z1, · · · , zK−1) =

akal

S −
Pk−1

h=1 ahzh

, k 6= l.

It can be easily verified that the Hessian matrix of Z is pos-
itive definite, and so Z is strictly convex. Thus, the unique
minimizing solution can be obtained by solving the first or-
der condition, which implies zk = (S −

PK−1
h=1 ahzh)/aK =

zK for k = 1, · · · , K − 1. Therefore, to minimize r̄Pt(n),
zk’s should all be the same. As a result, wlk = wlK for
k = 1, · · · , K − 1, and the infimum of r̄Pt(n) is as given on
the right side of (76). However, by assumption, we must
have wl1 > · · · > wlK . That means we cannot obtain this
infimum, but can come arbitrarily close to it. Note that this
can be achieved without violating (66) and (67). Finally, we
conclude that (76) holds.


