EAI Endorsed Transactions
 on Energy Web

Research Article
EAI.EU

Adaptive FPA Algorithm based OPF with Unified Power Flow Controller

A. Immanuel ${ }^{1, *}$, Challa Babu ${ }^{2}$, P. Sudheer ${ }^{3}$, R. Pavan Kumar Naidu ${ }^{4}$ and Nageswara Rao Atyam ${ }^{5}$
${ }^{1}$ Dept. of EEE, Audisankara College of Engineering and Technology, AP, India
${ }^{2}$ Dept. of EEE, Siddartha Institute of Science and Technology, AP, India
${ }^{3}$ Dept. of ECE, SITAMS, AP, India
${ }^{4}$ Dept. of ECE, Sasi Institute of Technology and Engineering, AP, India
${ }^{5}$ Dept. of EEE, Presidency University, Bangalore, India

Abstract

In this work a novel modified flower pollination algorithm has been developed to solve the problem of single and multiobjective Optimal Power Flow operations for Unified power Flow Controller in Flexible Alternating Current Transmission Systems. In the proposed Adaptive Flower Pollination Algorithm the best initial solution can be chosen from the fittest and also the weights are adaptively adjusted to get better convergence characteristics. The nature of the objective functions is non-linear and difficult to get best possible solutions within the boundary conditions of total power demand. The weak nodes are determined in the system to locate the UPFC with Fuzzy approach considering input parameters as L-Index and voltage magnitudes. The projected method is validated using IEEE-30 and IEEE-57 bus systems for three objective functions, namely, system real power loss minimization, fuel cost minimization and the combination of total generating cost and system real power loss. Results of Fuzzy- Adaptive Flower Pollination Algorithm based OPF optimization for UPFC produced optimum results for the considered objectives of total fuel cost, real power loss and for the multiobjective.

Keywords: OPF, Adaptive FPA, Fuzzy, FACTS, UPFC
Received on 26 March 2022, accepted on 24 September 2022, published on 12 October 2022
Copyright © 2022 A. Immanuel et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NCSA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.
doi: 10.4108/ew.v9i40.150
*Corresponding author. Email: immanuel.acet@gmail.com

1. Introduction

The power system is a largest man made system due to its wide geological coverage, a diversity of transactions among different utilities, and diversity in the layouts of electric power industries, size and the connected equipments. There is a necessity of advanced methods to optimally investigate, monitor and manage an assortment of aspects of such complicated system that take account of Unit Commitment (UC), Automatic Generation Control (AGC), state estimation, Economic Dispatch (ED) and Optimal Power Flow (OPF). The OPF is treated as the
spinal column technique which was expansively researched since 1962 [1].

OPF is a static nonlinear problem that optimizes an objective function which suits a set of operational and physical constraints forced by apparatus restrictions as well as security needs. Numerous successful OPF techniques $[2-4]$ have been projected to yield a best OPF solution.

Evolutionary algorithms with multiple objectives [5-6] have been examined to work out different OPF problems to defeat the shortfalls of orthodox methods. Diversified hybrid techniques were developed called hybrid EP with tabu search [7], firefly and particle swarm optimization [8] enroot for steadfastness ED problem for valve point fuel cost functions.

For the past twenty years, the ever-increasing developments in computational astuteness tools have been providing best solutions in the area of metaheuristics optimization techniques. Some of them are: Artificial Bee and Ant Colony and Bacterial Foraging algorithms [9-11], Cuckoo Search [12], Tabu Search [13], Harmony Search Algorithm [14], Black Hole Based Optimization [15], Improved GA [16-17] etc.

Flower Pollination Algorithm (FPA), is one of the latest optimization algorithms that intended to provide solutions for individual and combined objective optimization problems [18-20] introduced by X. S. Yang in the year 2012. This natural world inspired technique is developed from the distinctiveness of flowering plants with fascinating characteristics that lend a hand to travel around the viable groom in the neighbourhood and globally. In the recent times, it has gained increased attention to solve the OPF problem [21-22] to discover the most select settings of the controllable variables [23].

In the past three decades several research articles were published on OPF solution with FACTS devices. A decomposition scheme developed by Taranto et al. [24] to get to the bottom of OPF solution in the presence of FACTS. [25] Presented the FACTS modeling in OPF solution and discussed the task of that modeling. [26] published the OPF technique by placing the FACTS using Newton's method that led to an exceedingly dynamic solution. However, it has been identified that the solutions of OPF becomes a non-convex solution with series compensation that results, the traditional methods may struck at local optimum. To assuage the afore said complicatedness many advanced techniques have been projected by many researchers viz., [27] proposed with MDE, Hybrid DA-PSO in [28] to solve OPF problem by incorporating FACTS.

The main intention of this article is to put forward an Adaptive Flower Pollination Algorithm (AFPA) with UPFC for single and Multi-objective optimization problems. The modifications proposed in the Flower pollination algorithm to obtain AFPA are given in section-4. Here weak nodes are identified through fuzzy to identify the best location of UPFC. The three considered single and multi objectives are optimized using AFPA algorithm by controlling the shunt compensators, tap settings of the transformers along with UPFC series and shunt controllers. The L-Index is a voltage stability index is also considered as one of the constraints along with equality and inequality constraints to maintain the stability of the system while optimizing the considered objectives. The step by step procedure is represented in the block diagram given in Figure 1.

Figure 1. Proposed AFPA block diagram

2. Fuzzy Approach To Find Weak Nodes

The proposed fuzzy approach uses L-index bus voltage profiles to identify the weak nodes in the system.

2.1 L-index

A transmission system chosen with ' n ' buses consists of ' g ' generator buses, ' $n-g$ ' P-Q buses. L-Index [29] of the network is given by:

$$
\begin{equation*}
L_{k}=\left|1-\sum_{i=1}^{g} F_{k i} \frac{v_{i}}{v_{k}}\right| \tag{1}
\end{equation*}
$$

Where, $\mathrm{k}=\mathrm{g}+1, \ldots ., \mathrm{n}$. The F_{ki} values of Y -bus matrix are complex in nature.
i.e. $F_{L G}=\left[Y_{L L}\right]^{-1}\left[Y_{L G}\right]^{-1}$
where, $\left[\mathrm{Y}_{\mathrm{LG}}\right]$ and $\left[\mathrm{Y}_{\mathrm{LL}}\right]$ are the sub parts of Y -bus. For the system to be stable, at any P-Q bus k the maximum value of L_{k} should be 1 [29].

The bus voltage profile and L-index values are expressed in fuzzy set notation. The severity index of each bus as an output are also divided into different categories. The fuzzy rules are used to evaluate the severity of each bus in the system.

2.2. Bus voltage profiles

The bus voltage profiles are divided into three categories using fuzzy-set notations: low voltage (LV), below 0.95 p.u.; normal voltage (NV), 0.95-1.05 p.u.; and over voltage (OV), above 1.05 p.u.

2.3. Voltage stability Index

The L-indices are divided into five categories using fuzzy set notation; very small (VS),0-0.1; small (S), 0.1-0.3; medium (M), 0.3-0.6; high (H), 0.6-0.8; very high (VH) 0.8-0.9.

The output membership functions to evaluate the severity of a week nodes are divided into five categories using fuzzy set notations: Very Less Severe (VLS), Less Severe (LS), Below Severe (BS), Above Severe (AS) and More Severe (MS).

Table 1. Decision matrix to find weak nodes of the system

AND		VOLTAGE STABILITY INDEX				
		VLI	LI	MI	HI	VHI
$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{y}{4} \\ & \underset{\sim}{0} \\ & \underset{\gamma}{i} \end{aligned}$	LV	LS	LS	S	HS	MS
	NV	VLS	LS	LS	S	HS
	HV	LS	S	HS	MS	MS

The severity index of each bus in the system is found using the formula

$$
\begin{equation*}
S I=S I_{V P}+S I_{V S I} \tag{3}
\end{equation*}
$$

Where, SIvp and SIvsi are the severity indexes of postcontingent voltage profile and voltage stability indexes, respectively.

3. Modeling of UPFC

UPFC is one of the sophisticated device from FACTS, can offer instant control of real, reactive power and voltage. The power injection model of the UPFC with two harmonized synchronous voltage sources shown in Figure 2.The voltage sources of UPFC are:
$\overrightarrow{V_{s h}}=\overrightarrow{V_{s h}}\left(\cos \delta_{s h}+j \sin \delta_{s h}\right)$
$\overrightarrow{V_{s e}}=\overrightarrow{V_{s e}}\left(\cos \delta_{s e}+j \sin \delta_{s e}\right)$

Figure 2. UPFC-Power injection model

Where, $V_{s h}, V_{s e}, \delta_{s h}, \delta_{s e}$ are the voltage magnitude and angle of Shunt and series converter respectively.

With the help of equations (4) and (5) derived from the model, real and reactive power expressions can be obtained as:

$$
\begin{align*}
& P_{s h}=V_{i}^{2} g_{s h}-V_{i} V_{s h}\binom{g_{s h} \cos \left(\theta_{i}-\theta_{s h}\right)}{+b_{s h} \sin \left(\theta_{i}-\theta_{s h}\right)} \tag{6}\\
& Q_{s h}=-V_{i}^{2} b_{s h}-V_{i} V_{s h}\binom{g_{s h} \sin \left(\theta_{i}-\theta_{s h}\right)}{+b_{s h} \cos \left(\theta_{i}-\theta_{s h}\right)} \\
& P_{i j}=V_{i}^{2} g_{i j}-V_{i} V_{j}\left(g_{i j} \cos \theta_{i j}+b_{i j} \sin \theta_{i j}\right) \\
& -V_{i} V_{s e}\left(g_{i j} \cos \left(\theta_{i}-\theta_{s e}\right)+b_{i j} \sin \left(\theta_{i}-\theta_{s e}\right)\right) \tag{8}
\end{align*}
$$

$Q_{i j}=-V_{i}^{2} b_{i j}-V_{i} V_{j}\left(g_{i j} \sin \theta_{i j}-b_{i j} \cos \theta_{i j}\right)$
$-V_{i} V_{s e}\left(g_{i j} \sin \left(\theta_{i}-\theta_{s e}\right)+b_{i j} \cos \left(\theta_{i}-\theta_{s e}\right)\right)$
$P_{j i}=V_{j}^{2} g_{i j}-V_{i} V_{j}\left(g_{i j} \cos \theta_{j i}+b_{i j} \sin \theta_{j i}\right)$
$+V_{j} V_{s e}\left(g_{i j} \cos \left(\theta_{j}-\theta_{s e}\right)+b_{i j} \sin \left(\theta_{j}-\theta_{s e}\right)\right)$
$Q_{j i}=-V_{j}^{2} b_{i j}-V_{i} V_{j}\left(g_{i j} \sin \theta_{j i}-b_{i j} \cos \theta_{j i}\right)$
$+V_{j} V_{s e}\left(g_{i j} \sin \left(\theta_{j}-\theta_{s e}\right)+b_{i j} \cos \left(\theta_{j}-\theta_{s e}\right)\right)$
where
$g_{s h}+j b_{s h}=\frac{1}{z_{s h}}, g_{i j}+j b_{i j}=\frac{1}{z_{s e}}$ and
$\theta_{i j}=\theta_{i}-\theta_{j}, \theta_{j i}=\theta_{j}-\theta_{i}$

4. Formulation of OPF Problem

The solution of OPF focus at optimizing a preferred objective with the best promising amendment of the power network control parameters satisfying both equality and inequality constraints. OPF problem is formulated as:

Subjected

$$
\min j(x, u)
$$

$$
\begin{aligned}
& \quad g(x, u)=0 \\
& h_{\min } £ h(x, u) € h_{\max }
\end{aligned}
$$

where, J is the objective function;
x is dependent variable;
g and h are equality and operating constraints;
u is the control variable vector such as:

1. Generator voltages at PV buses.
2. Real power at PV buses excluding $\mathrm{P}_{\mathrm{G} 1}$ swing bus.
3. Tap settings of transformer.
4. Shunt compensators.

Optimal location of UPFC is calculated to optimize the particular objective function to improve the performance of the system where as thermal limits and voltage constraints should be satisfied. OPF problem formulation is given. After UPFC installation for the following objective functions:

4.1 Fuel cost function

The total fuel cost as objective function ' f_{1} ' by daunting the constraints is as follows:

$$
\begin{align*}
& f_{l}=\left[\sum_{i=1}^{N G}\left(a_{i} P_{G i}^{2}+b_{i} P_{G i}+c_{i}\right)\right]+K P\left(P_{G l}-P_{G l}^{\text {lim }}\right)^{2} \\
& +K V\left(\sum_{i=1}^{N L}\left(V_{i}-V_{\text {lim }}\right)^{2}\right)+K Q\left(\sum_{i=1}^{N}\left(Q_{G, i}-Q_{G, i}^{\text {lim }}\right)^{2}\right) \\
& +K S\left(\sum_{i=1}^{n l} a b s\left(S_{i}-S_{i}^{\text {lim }}\right)^{2}\right)+K L\left(\sum_{j=1}^{N L}\left(L_{j}-L_{j}^{\text {lim }}\right)^{2}\right) \tag{12}
\end{align*}
$$

Where, $\mathrm{NG}=\mathrm{No}$. of generator units, $\mathrm{PG}_{\mathrm{i}}=$ Active power generation at $\mathrm{i}^{\text {th }}$ unit, $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$ and c_{i} are the cost coefficients of $\mathrm{i}^{\text {th }}$ generator and $\mathrm{KP}, \mathrm{KV}, \mathrm{KQ}, \mathrm{KS}$ and KL are penalty factors for the limit violation. NL represents number of load buses, nl represent number of transmission lines and $\mathrm{X}^{\mathrm{lim}}$ is restrictive values reliant variable given as:
$X^{\mathrm{lim}}=\left\{\begin{array}{l}X^{\text {max }} ; X>X^{\text {max }} \\ X^{\text {min }} ; X<X^{\text {min }}\end{array}\right.$

4.2 Power loss

The power loss minimization can be articulated as follows:
$f_{2}=\sum_{i=1}^{n l} G_{i j}\left(V_{i}^{2}+V_{j}^{2}-2 V_{i} V_{j} \cos \left(\delta_{i}-\delta_{j}\right)\right)+$
$K P\left(P_{G I}-P_{G I}^{l i m}\right)^{2}+K V\left(\sum_{i=1}^{N L}\left(V_{i}-V_{l i m}\right)^{2}\right)+K Q\left(\sum_{i=1}^{N}\left(Q_{G, i}-Q_{G, i}^{l i m}\right)^{2}\right)$
$+K S\left(\sum_{i=1}^{n l} a b s\left(S_{i}-S_{i}^{\text {lim }}\right)^{2}\right)+K L\left(\sum_{j=1}^{N L}\left(L_{j}-L_{j}^{\text {lim }}\right)^{2}\right)$
Where $\mathrm{G}_{\mathrm{ij}}=$ Conductance belongs to $\mathrm{i}-\mathrm{j}{ }^{\text {th }}$ line
The amalgamation of objective function $1 \& 2$ is expressed as multi objective function.

$$
\begin{align*}
& f 3=\left[\sum_{i=1}^{N G}\left(a_{i} P_{G i}^{2}+b_{i} P_{G i}+c_{i}\right)\right]+\sum_{i=1}^{n l} G_{i j}\left(v_{i}^{2}+V_{j}^{2}-2 V_{i} V_{j} \cos \left(\delta_{i}-\delta_{j}\right)\right)+ \\
& K P\left(P_{G l}-P_{G l}^{\text {lim }}\right)^{2}+K V\left(\sum_{i=1}^{N L}\left(V_{i}-V_{l i m}\right)^{2}\right)+K Q\left(\sum_{i=1}^{N}\left(Q_{G, i}-Q_{G, i}^{l i m}\right)^{2}\right) \\
& +K S\left(\sum_{i=1}^{n l} a b s\left(S_{i}-S_{i}^{\text {lim }}\right)^{2}\right)+K L\left(\sum_{j=1}^{N L}\left(L_{j}-L_{j}^{\text {lim }}\right)^{2}\right) \tag{15}
\end{align*}
$$

The optimization problem can be solved underneath the subsequent constraints:

4.3 Equality constraints

Nonlinear load flow equations that govern the power systems is given by,

$$
\begin{align*}
& P_{G i}-P_{D i}-\sum_{j=1}^{n}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)=0 \tag{16}\\
& Q_{G i}-Q_{D i}+\sum_{j=1}^{n}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \sin \left(\theta_{i j}-\delta_{i}+\delta_{j}\right)=0 \tag{17}
\end{align*}
$$

Where,

$$
P_{G i}, P_{D i}, Q_{G i}, Q_{D i}=i^{t h} \quad \text { bus real, reactive }
$$ power generation and demands respectively and $\left|Y_{i j}\right|$ is Bus admittance matrix.

4.4 Inequality constraints

Security and operational constraints are given as:
Real and reactive power outputs of Generators
$P_{G i}{ }^{\text {min }} \leq P_{G i} \leq P_{G i}{ }^{\text {max }}, i=1,2, \ldots N_{G}$
$Q_{G i}{ }^{\text {min }} \leq Q_{G i} \leq Q_{G i}{ }^{\text {max }}, i=1,2, \ldots N_{G}$
2) Bus voltage magnitudes
$V_{i}^{\min } \leq V_{i} \leq V_{i}^{\text {max }}, i=1,2, \ldots N$
3) Transformer tap positions
$T_{i}{ }^{\text {min }} \leq T_{i} \leq T_{i}^{\text {max }}, i=1,2, \ldots N_{T}$
4) shunt capacitor VAR injections
$Q_{C i}{ }^{\text {min }} \leq Q_{C i} \leq Q_{C i}{ }^{\text {max }}, i=1,2, \ldots C s$
5) Line Loadings
$S_{i} \leq S_{i}{ }^{\text {max }}, i=1,2, \ldots N_{L}$
6) Voltage stability index
$L_{j i} \leq L_{j i}{ }^{\text {max }}, i=1,2, \ldots N_{L D}$

4.5 UPFC Constraints

UPFC Series injected limits:
$V_{s e}{ }^{\text {min }} \leq V_{s e} \leq V_{s e}{ }^{\max }$
$\theta_{s e}{ }^{\min } \leq \theta_{s e} \leq \theta_{s e}{ }^{\max }$

Shunt injected limits:
$V_{s h}{ }^{\text {min }} \leq V_{s h} \leq V_{\text {sh }}{ }^{\text {max }}$
$\theta_{s h}{ }^{\min } \leq \theta_{s h} \leq \theta_{s h}{ }^{\text {max }}$

5. Flower Pollination Algorithm (FPA)

The following rules have been established for FPA technique to illustrate an ideal pollination process [30]:

Rule I: Self-pollination is treated as neighborhood pollination, happened by the natural world through the air stream or precipitation.

Rule II: Cross-pollination is treated as a comprehensive pollination and the pollinators (birds or insects) that are moving from long distance carry the pollens which would be treated as Levy flights.

Rule III: Local pollination have been occurring in the midst of the plant flowers itself or from the same class flowers.

Rule IV: The above mentioned two processes could be constrained by a control probability function $\mathrm{P}_{\mathrm{a}} \in[0,1]$. Because of the corporeal flower immediacy and the other characteristics airstream or precipitation, self pollination could have a momentous part on the whole pollination progression [31-32].

FPA optimization technique can be formulated from the afore mentioned rules, as follows:

Let y_{i} be the control vector of considered control variables that mentioned the $\mathrm{i}^{\text {th }}$ flower. The cross-
pollination is conceded out by producing arbitrary statistics $L(\lambda)$ given below:

$$
\begin{equation*}
\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}+1}=\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}+L(\lambda) \cdot\left(\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}-\boldsymbol{g}^{*}\right) \tag{29}
\end{equation*}
$$

The $\operatorname{dot}(*)$ in the above equation means element wise multiplication. The stride length $L(\lambda)$ is haggard commencing a conformity Levy circulation; the equation was named a Levy flight which impersonates pollinator's deeds. Mantegna's approximation was used to engender Levy random numbers [33].

Self pollination has been carried out with the step length as homogeneously disseminate systematic number vector c_{1} exists among 0 tol to organize the enormity of the elements metamorphosis of the upcoming flower generation.

$$
\begin{equation*}
y_{i}^{t+1}=y_{i}^{t}+C_{1} \cdot\left(y_{i}^{t}-y_{k}^{t}\right) \tag{30}
\end{equation*}
$$

Here, $\mathrm{t}=$ present iteration, $\mathrm{y}_{\mathrm{i}}{ }^{\mathrm{t}}$ and $\mathrm{y}_{\mathrm{k}}{ }^{\mathrm{t}}$ are the present pollen from the diverse flowers of the same class. It can be represented as, if $\mathrm{y}^{\mathrm{t}+1}$ and y^{t} are of same class, this homogeneously becomes a narrow random saunter.

The Levy flights can be changed to haphazard walks with a switching likelihood factor P_{a} as per the following rule:
If $\mathrm{Pa}>\operatorname{rand}(0,1)$
Do levy flights: $\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}+1}=\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}+\boldsymbol{L}(\lambda) \cdot\left(\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}-\boldsymbol{g}{ }^{*}\right)$
Else
Do random walks: $\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}+1}=\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}+\boldsymbol{C}_{1} .\left(\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}-\boldsymbol{y}_{\boldsymbol{k}}^{\boldsymbol{t}}\right)$
End

6. Adaptive Flower Pollination Algorithm (AFPA)

Most important aspects of FPA are the preliminary stage population and moving from self pollination to global pollination. It has a significant brunt on the computational encumber and the elucidation convergence. The following modifications were proposed to enhance the performance of the algorithm.

6.1 Looking for the best initial condition

The earliest alteration is, opening from a nearer or fittest solution by concurrently inspecting the conflicting guess. With this modification, the initial best solution can be chosen from the fittest (either from opposite guess). The probability theory reveals that, the probability of two contradictory solutions which belongs to the identical
feasible class has an opportunity of 50% that one is well again than the further. Therefore, beginning from the fittest of the two such as either presumption or contradictory presumption will be the impending to encompass an initial position more rapidly to the most advantageous way out. To achieve this, A contradictory vector to be required [34].

Let y be a present solution and the contradictory solution vector \boldsymbol{Y} can be obtained by it apparatus as:
$\boldsymbol{Y}_{\boldsymbol{i}}=\boldsymbol{a}_{\boldsymbol{i}}+\boldsymbol{b}_{\boldsymbol{i}}-\boldsymbol{y}_{\boldsymbol{i}}, \quad \mathrm{i}=1,2 \ldots \ldots \ldots \ldots \mathrm{n}$

Where $\left[a_{i}, b_{i}\right]$ are upper and lower limits of y_{i}.
Quasi-oppositional point: The elucidation point is distinct from the preceding conflicting position and it has been demonstrated to furnish improved solution than the regular conflicting vector [35]. Let $\boldsymbol{y} \in \square^{\boldsymbol{n}}$ be a solution point, $\boldsymbol{y} \in \square^{\boldsymbol{n}}$ be its conflicting point mentioned as in (31) and also $\boldsymbol{y}_{\boldsymbol{m}}=\frac{\boldsymbol{a}+\boldsymbol{b}}{2}$ be the midpoint among the limits [a, b]. The rudiments of the quasi contradictory solution vector ${ }_{Y}{ }_{q}$ is defined as:

If $\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{m} \boldsymbol{i}}$
$y_{q i}=y_{m i}+c\left(y_{i}-y_{m i}\right)$
Else
$y_{q i}=y_{i}+c\left(y_{m i}-y_{i}\right)$
End
Where $\mathrm{c}=[0,1]$ and $\mathrm{i}=1,2 \ldots \ldots . . \mathrm{n}$.

6.2 Moving from local to global pollination process

Another amendment proposed based on the methods proposed in reference [36]. It is based on the combining of equations (29) and (30) by means of scalar dynamic auto adjusted weights w_{1} and w_{2} which may vary based on the generation counter ' t '. The weight variations are obtained as follows:
$\boldsymbol{w}_{1}=\boldsymbol{w}_{1}^{\max }+\boldsymbol{t}\left(\frac{\boldsymbol{w}_{1}^{\max }{ }_{-\boldsymbol{w}_{1}^{\min }}}{\boldsymbol{t}_{\max }}\right)$
$\boldsymbol{w}_{2}=\frac{\min (\boldsymbol{F}(\boldsymbol{t}), \overline{\boldsymbol{F}})}{\max (\boldsymbol{F}(\boldsymbol{t}), \boldsymbol{F})}$

Where, $w_{1}^{\text {max }}, w_{1}{ }^{\text {min }}$ are the limits of w_{1} $\mathrm{t}_{\max }=$ Highest generation number.
$\mathrm{F}(\mathrm{t})=$ Fitness value at generation t .
$\overline{\boldsymbol{F}}=$ Average of the fitness functions of the present population. As a final point, accumulate an arbitrary scale factor γ (considered 0.15 here) and a Gaussian distribution vector $\left(\varepsilon_{2}=\mathrm{N}(0,1)\right)$ as an alternative of a uniform distribution to self random walks, the modified equation is:
$\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}+1}=\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}+\boldsymbol{w}_{1} L(\lambda) \cdot\left(\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}-g^{*}\right)+\gamma \boldsymbol{w}_{2} \varepsilon_{2} \cdot\left(\boldsymbol{y}_{\boldsymbol{i}}^{\boldsymbol{t}}-\boldsymbol{y}_{\boldsymbol{k}}^{\boldsymbol{t}}\right)$
This amendment moves the use of the probability. Switch P_{a} and Levy flights and Brownian motion have been merged into a solitary random walk expression.

7. Simulation results and discussion

The proposed technique was validated on IEEE-30 and IEEE-57 bus system in MATLAB programming environment.

7.1 Case 1: Testing on IEEE-30 Bus System

The considered test system has six generators inter related with 41 lines with a load demand of 283.4 MW and 126.2 MVAR [37]. The shunt VAR suppliers are provided at buses $10,12,15,17,20,21,23,24$ and 29 [38].Upon identifying the weak buses on the system using Fuzzy by considering L-Indices and voltage magnitudes and consequent results of top weak nodes are tabulated in Table 2.

Table 2. Weak nodes of the system

S. No	Bus No	Voltage (p.u)	L-Index	Severity	Rank
1	27	1.0326	0.0827	26.8642	1
2	22	1.0318	0.0813	26.2389	2
3	23	1.0301	0.0842	25.7536	3
4	29	1.0248	0.1113	25.0000	4
5	26	1.0075	0.1041	24.8783	5
6	24	1.0267	0.0822	24.8333	6
7	16	1.0321	0.0576	24.5239	7
8	19	1.0236	0.0829	23.6591	8
9	25	1.0251	0.0822	23.5564	9
10	12	1.0414	0.0579	17.8208	10

The bus 27 has utmost severity and treated as feeble node in the system as given in Table 1. The line between $27-30$ is elected as the best location of UPFC. AFPA-OPF

UPFC results of the network for minimization of fuel cost and power loss were shown in Table 3 and Table 5 respectively.

Table 3. Simulation results of FPA, AFPA \& AFPAUPFC

| Parameter | LIMITS | | | Min | Max |
| :---: | :---: | ---: | :---: | :---: | :---: | FPA \quad AFPA | AFPA |
| :---: |
| |
| |
| UPFC |

It is found that, total generating cost in proposed scheme is reduced to $798.01 \$ / \mathrm{h}$ with respect to FPA yielding $800.15 \$ / \mathrm{h}$ and AFPA yielding $799.15 \$ / \mathrm{h}$. Figure 3 shows the comparison of above results. It is also noted that, the L-Index is decreased to 0.1209 with respect to FPA yielding 0.1350 and AFPA yielding 0.1338 that gives enhanced voltage stability and the resultant graphical representations is as shown in Figure 4. The variations of voltage magnitudes of FPA and AFPA and AFPA with UPFC are shown in Figure 5.

Figure 3. Fuel cost for different OPF techniques

Figure 4. Bus voltages for different OPF techniques

Figure 5. L-indices for different OPF techniques

Table 4. Fuel cost comparison for different techniques

S.No	Method	Fuel Cost $(\$ / \mathrm{h})$
1	EP[39]	802.9070
4	IEP[39]	802.4650
5	SADE-AIM[40]	802.4040
6	PSO[38]	800.4136
7	PSO-DV[41]	800.2314
8	EAPSO-DV[41]	800.1010
9	FPA	800.15
10	AFPA	799.150
11	AFPA-UPFC	798.014

From the above it is apparent that the projected technique provides remarkable results with respect to the literature.

Table 5. OPF Results with Power loss as an objective

Parameter	LIMITS		PFA	AFPA	AFPA UPFC
	Min	Max			
$\mathrm{PG}_{\mathrm{G} 1}$	0.5	2.0	1.7608	1.7529	1.7625
PG2	0.2	0.8	0.4774	0.4750	0.4848
PG_{6}	0.1	0.35	0.2120	0.2031	0.2110
$\mathrm{PG}_{\mathrm{G} 8}$	0.1	0.3	0.1202	0.1201	0.1201
PG11	0.1	0.5	0.2126	0.2112	0.2152
PG13	0.12	0.4	0.1210	0.1200	0.1200
$\mathrm{V}_{\mathrm{G} 1}$	0.9	1.10	1.0833	1.0937	1.0829
V_{G} 2	0.9	1.10	1.0634	1.0756	1.0667
$V_{G 5}$	0.9	1.10	1.0337	1.0483	1.0442
$V_{G 8}$	0.9	1.10	1.0167	0.9830	1.0161
$\mathrm{V}_{\mathrm{G} 11}$	0.9	1.10	1.0297	1.0389	1.0341
$\mathrm{V}_{\mathrm{G} 13}$	0.9	1.10	1.0605	1.0272	1.0829
T11	0.9	1.10	1.0322	1.0929	1.0469
T_{12}	0.9	1.10	1.0026	1.0222	1.0240
T_{15}	0.9	1.10	0.9823	0.9854	0.9642
T36	0.9	1.10	0.9526	1.0124	0.9396
Qc10	0.0	0.2	0.1633	0.0510	0.2000
Qc12	0.0	0.2	0.0550	0.0000	0.1305
Qc15	0.0	0.2	0.1323	0.0934	0.0448
Qc17	0.0	0.2	0.1052	0.0819	0.0567
Qc20	0.0	0.2	0.0335	0. 0507	0.0470
Qc21	0.0	0.2	0.0115	0.1042	0.1445
Qc23	0.0	0.2	0.0431	0.0000	0.0000
Qc24	0.0	0.2	0.0000	0.1313	0.0340
Qc29	0.0	0.2	0.0123	0.0290	0.0000
$\mathrm{Ploss}^{\text {(P.u) }}$			0.0712	0.0695	0.0591
$L_{\text {Limax }}$	0.0	0.5	0.1254	0.1267	0.1209
$V_{\text {se }}$	0.0	0.2			0.0521
$V_{\text {sh }}$	0.9	1.1			0.9734

From Table 4, It is apparent that the system real power loss in proposed scheme has been reduced to 5.91 MW where it is 7.12 MW and 6.95 MW in FPA and AFPA respectively. The proposed method results obtained for the multi-objective function are tabulated in Table 6.

Table 6. OPF results for multi-objective function (f_{3})

Parameter	Limits		PFA	AFPA	AFPA UPFC
	Min	Max			
$\mathrm{PG}_{\mathrm{G} 1}$	0.5	2.0	1.3654	1.2757	1.2412
$\mathrm{P}_{\mathrm{G} 2}$	0.2	0.8	0.3988	0.4001	0.4033
PG_{G}	0.1	0.35	0.1897	0.1933	0.1917
PG8	0.1	0.3	0.1004	0.1000	0.1001
$\mathrm{P}_{\mathrm{G} 11}$	0.1	0.5	0.1500	0.1500	0.1500
$\mathrm{P}_{\mathrm{G} 13}$	0.12	0.4	0.1200	0.1202	0.1200
$V_{G 1}$	0.9	1.1	1.0977	1.1000	1.0998
V_{G} 2	0.9	1.1	1.0750	1.0778	1.0773
$V_{G 5}$	0.9	1.1	1.0583	1.0570	1.0553
$V_{G 8}$	0.9	1.1	1.0485	1.0654	1.0298
$\mathrm{V}_{\mathrm{G} 11}$	0.9	1.1	1.0484	1.0502	1.0459
$\mathrm{V}_{\mathrm{G} 13}$	0.9	1.1	1.0897	1.0840	1.0732
T11	0.9	1.1	1.0035	0.9981	1.0704
T_{12}	0.9	1.1	1.0408	1.0753	0.9996
T15	0.9	1.1	1.0151	0.9000	0.9000
T36	0.9	1.1	0.9604	0.9920	1.0125
Qc10	0.0	0.2	0.0000	0.0803	0.1853
Qc12	0.0	0.2	0.1732	0.0000	0.0000
$Q_{\text {c15 }}$	0.0	0.2	0.0693	0.0061	0.0897
Qc17	0.0	0.2	0.2000	0.0000	0.0000
Qc20	0.0	0.2	0.0635	0.0708	0.0730
Qc21	0.0	0.2	0.1103	0.1997	0.0777
Qc23	0.0	0.2	0.0000	0.0614	0.0000
Qc24	0.0	0.2	0.0000	0.0207	0.0218
Qc29	0.0	0.2	0.0329	0.0493	0.2000
Cost (\$/h)			833.56	846.21	852.16
f_{3}			800.23	799.38	798.01
$\mathrm{Li}^{\text {max }}$	0.0	0.5	0.1232	0.1301	0.1300
$V_{\text {se }}$	0.0	0.2			0.0518
$V_{\text {sh }}$	0.9	1.1			0.9949

From the Table 6, it is evident that the projected AFPA method with UPFC is also provided an optimum solution for multi-objective function.

7.2 Case 2: Testing on IEEE-57 bus system

The IEEE-57 bus system has 80 transmission lines together with 17 tap changing transformers, 7 generators
and 50 PQ buses with a overall loading of $\mathrm{P}=1250.80$ MW and $\mathrm{Q}=336.40$ MVAR and 11 shunt VAr compensators which are located at $18,19,23,25,27,28$, $29,30,32,35$ and 41 buses. The best five weak nodes presented in Table 7.

Table 7. Fuzzy severity of weak nodes

S. No	Bus No	Voltage (p.u)	L-Index	Severity	Rank
1	57	0.9376	0.2649	43.0895	1
2	56	0.9400	0.2104	37.6400	2
3	50	0.9658	0.2537	34.558	3
4	32	1.0346	0.247	30.651	4
5	33	1.0325	0.2487	29.6435	5

The bus 57 has utmost severity treated as weakest node and the line between $56-42$ is preferred for the most favourable location of UPFC. The AFPA-OPF results of the system with UPFC are given in subsequent tables.

Table 8. Comparison of FPA, AFPA \& AFPA-UPFC results

Parameter	Limits		FPA	AFPA	$\begin{aligned} & \text { AFPA } \\ & \text { UPFC } \end{aligned}$
	Min	Max			
PG 1	0.00	5.7588	1.9231	1.8674	1.8445
PG2	0.00	1.0000	1.0000	1.0000	1.0000
PG 3	0.00	1.400	0.5772	0.5759	0.5426
PG4	0.00	1.0000	1.0000	1.0000	1.0000
PG_{6}	0.00	5.5000	3.5045	3.2213	3.1100
PG6	0.00	1.0000	0.6421	0.7768	0.7121
PG_{G}	0.00	4.100	4.1000	3.9500	3.8481
$\mathrm{V}_{\mathrm{G} 1}$	0.90	1.10	0.9773	1.0125	1.0284
$\mathrm{V}_{\mathrm{G} 2}$	0.90	1.10	0.9654	1.0152	1.0321
$V_{\text {G3 }}$	0.90	1.10	0.9725	1.0120	1.0123
$V_{G 4}$	0.90	1.10	0.9845	1.0134	1.0157
$V_{G 5}$	0.90	1.10	0.9763	1.0008	1.0071
$V_{G 6}$	0.90	1.10	0.9684	1.0451	1.0152
$V_{G 7}$	0.90	1.10	0.9825	0.9946	1.0005
T1	0.90	1.10	1.0511	1.0080	1.0376
T2	0.90	1.10	0.9300	0.9724	0.9492
T3	0.90	1.10	0.9100	0.9657	1.0565
T4	0.90	1.10	0.9421	0.9231	1.1000
T5	0.90	1.10	1.0003	0.9745	1.1000
T6	0.90	1.10	0.9811	1.0245	1.0253
T7	0.90	1.10	0.9051	0.9889	0.9829
T8	0.90	1.10	0.9000	0.9957	0.9462
T9	0.90	1.10	0.9235	0.9494	0.9413
T10	0.90	1.10	0.9100	0.9345	0.9788
T 11	0.90	1.10	0.9231	0.9702	0.9879

T_{12}	0.90	1.10	0.9123	0.9978	1.1000
T_{13}	0.90	1.10	0.9421	0.941	0.9412
T_{14}	0.90	1.10	0.9624	0.9862	0.9325
T ${ }_{15}$	0.90	1.10	1.0221	0.9629	0.9000
T_{16}	0.90	1.10	0.9769	1.0163	0.9103
T 17	0.90	1.10	0.9314	1.0612	0.9764
Q c_{1}	0.00	0.20	0.1215	0.1414	0.0523
Qc2	0.00	0.20	0.1542	0.1804	0.0473
Qc3	0.00	0.20	0.1725	0.0524	0.1702
Qc4	0.00	0.20	0.1214	0.0151	0.0583
Qc5	0.00	0.20	0.0312	0.0389	0.1700
Qc6	0.00	0.20	0.0601	0.0645	0.0400
Qc7	0.00	0.20	0.1032	0.0742	0.0862
Qc8	0.00	0.20	0.0021	0.0502	0.0103
Qc9	0.00	0.20	0.0310	0.0624	0.0125
Qc10	0.00	0.20	0.0134	0.0545	0.0425
Qc11	0.00	0.20	0.0426	0.0831	0.0524
Cost (\$/h)			42506	42481	42235
Ploss (P.u)			0.1359	0.1468	0.1202
$L_{i}{ }^{\text {max }}$	0.00	0.50	0.2796	0.2941	0.1787
$V_{\text {se }}$	0.00	0.20			0.0200
$\theta_{\text {se }}$					122.876

Figure 6. Bus voltages for different OPF methods

Table 9. OPF results with Power loss as an objective

Param eter	Limits		FPA	AFPA	$\begin{aligned} & \text { AFPA } \\ & \text { UPFC } \end{aligned}$
	Min	Max			
PG_{1}	0.00	5.7588	2.136	1.9466	2.1102
PG2	0.00	1.0000	0.1079	0.7898	0.6452
PG3	0.00	1.400	1.1379	1.1400	. 0621
PG_{G}	0.00	1.0000	0.9001	1.0000	0.9631
$\mathrm{P}_{\mathrm{G} 5}$	0.00	5.5000	2.9174	3.1548	3.4621
PG_{6}	0.00	1.0000	0.7740	0.3757	0.1158
PG_{G}	0.00	4.100	3.910	4.1000	3.8910
$V_{G 1}$	0.90	1.10	0.9946	1.0185	1.0214

$\mathrm{V}_{\mathrm{G} 2}$	0.90	1.10	0.9954	1.0491	1.0412
$V_{G 3}$	0.90	1.10	0.998	1.016	1.0351
$\mathrm{V}_{\mathrm{G} 4}$	0.90	1.10	1.0222	1.1000	1.0157
$V_{G 5}$	0.90	1.10	1.0152	1.007	1.0002
$V_{G 6}$	0.90	1.10	0.9994	1.027	1.0208
$V_{G 7}$	0.90	1.10	1.0998	0.9821	1.0176
T	0.90	1.10	1.1000	0.9841	1.0364
T_{2}	0.90	1.10	0.9823	0.9586	1.0263
T3	0.90	1.10	0.9293	1.0434	1.0484
T4	0.90	1.10	1.0968	0.9399	0.9850
T5	0.90	1.10	0.9466	0.9835	0.9919
T6	0.90	1.10	1.0398	1.0033	0.9000
T7	0.90	1.10	0.9624	0.9648	0.9000
T8	0.90	1.10	0.9000	0.9834	0.9000
T9	0.90	1.10	1.0308	0.9931	1.0000
T_{10}	0.90	1.10	0.9307	0.9864	0.9543
T_{11}	0.90	1.10	0.9000	0.9609	0.9488
T_{12}	0.90	1.10	1.0033	1.0163	0.9564
T_{13}	0.90	1.10	0.9326	0.9493	0.9432
T_{14}	0.90	1.10	0.9238	1.0119	1.0035
T_{15}	0.90	1.10	1.0237	0.9736	0.9651
T_{16}	0.90	1.10	0.9139	1.0100	0.9720
T_{17}	0.90	1.10	0.9601	0.9714	0.9000
Qc1	0.00	0.20	0.0938	0.1127	0.0677
Qc2	0.00	0.20	0.135	0.1634	0.1292
Qc3	0.00	0.20	0.0736	0.1162	0.0120
Qc4	0.00	0.20	0.0713	0.0493	0.0574
Qc5	0.00	0.20	0.0204	0.1203	0.1178
Qc6	0.00	0.20	0.0637	0.0530	0.0146
Qc7	0.00	0.20	0.0723	0.1192	0.0754
Qc8	0.00	0.20	0.0821	0.0580	0.0825
Qc9	0.00	0.20	0.0206	0.0738	0.0167
Qc10	0.00	0.20	0.0674	0.0000	0.0597
Qc11	0.00	0.20	0.0387	0.0426	0.0236
Cost (\$/h)			44865	46213	45219
$\begin{aligned} & \text { Ploss } \\ & \text { (P.u) } \end{aligned}$			0.129	0.1154	0.1032
$\mathrm{Li}_{\text {max }}$	0.00	0.50	0.2805	0.2974	0.2231
$V_{\text {se }}$	0.00	0.20			0.0629
$\theta_{\text {se }}$					114.66

Table 10. OPF results for multi-objective function (f_{3})

PG_{G}	0.00	1.4000	1.3457	1.4000	1.1279
PG_{G}	0.00	1.0000	2.6864	3.1489	2.8174
$\mathrm{PG}_{\mathrm{G} 5}$	0.00	5.5000	3.8689	4.0000	3.9001
$\mathrm{PG}_{\mathrm{G} 6}$	0.00	1.0000	0.7945	0.8757	0.7640
$\mathrm{PG}_{\mathrm{G} 7}$	0.00	4.1000	3.7200	3.8000	4.0000
$V_{G 1}$	0.90	1.10	1.028	1.0261	1.0259
$V_{G 2}$	0.90	1.10	1.0357	1.0357	1.0379
$V_{G 3}$	0.90	1.10	1.0397	1.0397	1.0274
$V_{G 4}$	0.90	1.10	1.0495	1.0495	1.0181
$V_{G 5}$	0.90	1.10	1.0442	1.0442	1.0214
$V_{G 6}$	0.90	1.10	1.0416	1.0416	0.9961
$V_{G 7}$	0.90	1.10	1.0525	1.0525	1.0443
T	0.90	1.10	0.9870	1.0441	1.0585
T2	0.90	1.10	0.9310	0.9845	0.9541
T3	0.90	1.10	1.0743	1.0665	1.0314
T4	0.90	1.10	0.937	0.9491	1.0220
T5	0.90	1.10	0.9528	1.0300	0.9910
T6	0.90	1.10	1.0202	0.9742	0.9605
T7	0.90	1.10	0.9808	1.0083	0.9000
T8	0.90	1.10	0.9945	0.9221	0.9494
T9	0.90	1.10	0.9817	0.9877	1.0048
T10	0.90	1.10	0.9620	0.9626	0.9426
T_{11}	0.90	1.10	0.9528	0.9243	0.9107
T12	0.90	1.10	0.912	1.0153	0.9996
T_{13}	0.90	1.10	1.005	0.9881	1.0677
T14	0.90	1.10	1.0123	1.0036	1.0021
T_{15}	0.90	1.10	0.988	0.9693	0.9664
T16	0.90	1.10	1.036	0.9678	0.9512
T17	0.90	1.10	0.918	1.0069	1.0116
Qc1	0.00	0.20	0.127	0.0618	0.0938
Qc2	0.00	0.20	0.134	0.1919	0.135
Qc3	0.00	0.20	0.162	0.0774	0.0736
Qc4	0.00	0.20	0.093	0.0412	0.0703
Qc5	0.00	0.20	0.103	0.0358	0.0254
Qc6	0.00	0.20	0.030	0.0738	0.0661
Qc7	0.00	0.20	0.192	0.0000	0.0415
Qc8	0.00	0.20	0.080	0.0469	0.0708
Qc9	0.00	0.20	0.038	0.0856	0.1904
Qc10	0.00	0.20	0.0214	0.0972	0.0624
Qc11	0.00	0.20	0.0426	0.1793	0.0701
f_{3}			42494	42453	42332
$\mathrm{Li}^{\text {max }}$	0.00	0.50	0.1391	0.1318	0.1209
$\mathrm{V}_{\text {se }}$	0.00	0.20			0.0191
$\theta_{\text {se }}$					112.47

From the Table 7, $8 \& 9$, it is evident that proposed AFPA technique with UPFC is very efficient to acquire optimum solution for single and multi-objective function.

8. Conclusion

Standard test networks IEEE-30 \& IEEE-57 bus systems were selected to check the efficacy of the projected method for the considered single and multi objective functions. Fuzzy approach has been used to find the location of UPFC in the considered test system that effectively eliminated the masking effect in contingency ranking of the other proposed methods.

The proposed method i.e AFPA with UPFC was very effective in eliminating the drawbacks of FPA and AFPA while finding the best possible control settings of the control variables. The proposed method reduced the fuel cost from $802.9 \$ / \mathrm{h}$ to $798.01 \$ / \mathrm{h}$ i.e $4.89 \$ / \mathrm{h}$ compared to existing literature and the power loss has been reduced to 83% of FPA where as in the case of multi-objective function the reduction in the weighted sum from 800.23 to 798.01 with respect to FPA. Here, in addition to proposed objectives, the inclusion of UPFC in the projected technique enhanced the stability margin and reduces voltage deviation too.
This research work may also be extended by placing multiple facts devices in optimal places for single and multi objective optimization problems and also be extended to support the system under contingency conditions which gains lot of attention especially for planning and operation of the complex power systems.

References

[1] J. Carpentier, "Contribution e létude do Dispatching Economique," Bull. Soc. Franc. Elect., pp. 431-447, 1962.
[2] Stephen Frank \& Steffen Rebennack (2016) An introduction to optimal power flow: Theory, formulation, and examples, IIE Transactions, 48:12, 1172-1197.
[3] P. Biswas, P. Suganthan and G. Amaratunga, "Optimal Power Flow Solutions Using Algorithm Success History Based Adaptive Differential Evolution with Linear Population Reduction", 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 249-254.
[4] Mohd Herwan Sulaiman, Zuriani Mustaffa, Ahmad Johari Mohamad, Mohd Mawardi Saari, Mohd Rusllim Mohamed, Optimal power flow with stochastic solar power using barnacles mating optimizer, International transactions on electrical energy systems, vol.31, Issue 5, May 2021.
[5] S. Surender Reddy and P.R Bijwe "Multi-Objective Optimal Power Flow Using Efficient Evolutionary Algorithm", International Journal of Emerging Electric Power Systems, April 1, 2017.
[6] Y. R. Sood, "Evolutionary Programming Based Optimal Power Flow and its Validation for Deregulated Power System Analysis", Electrical Power and Energy System, Elsevier, Vol. 29, No. 1, pp. 67-75, 2007.
[7] LinWM, Cheng F S, Tsay M T(2002) An improved tabu search for economic dispatch with multiple minima. IEEE Trans Power Syst. 17(1):108-112.
[8] Abdullah Khan ,Hashim Hizam ,Noor Izzri bin Abdul Wahab,Mohammad Lutfi Othman, "Optimal power flow using hybrid firefly and particle swarm optimization algorithm"

PLOS
ONE
https://doi.org/10.1371/journal.pone. 0235668 August 10, 2020
[9] Man Ding, Hanning Chen, NaLin, Shikai Jing, Fang Liu, Xiaodan Liang, WeiLiu, "Dynamic population artificial bee colony algorithm for multi-objective optimal power flow", Saudi Journal of Biological Sciences Volume 24, Issue 3, March 2017, PP:703-710.
[10] Layth Tawfeeq Al-Bahran and Ali Qasim Abdulrasool "Multi objective functions of constraint optimal power flow based on modified ant colony system optimization technique", IOP Conference Series: Materials Science and Engineering, Volume 1105,December 2020, Baghdad, Iraq
[11] A. Panda, M. Tripathy, "Optimal Power Flow Solution of Wind Integrated Power System Using Modified Bacteria Foraging Algorithm", Elect. Power and Energy Systems, Elsevier, Vol. 54, pp.306-314, 2014.
[12] Spoorthi Rakesh, Shanthi Mahesh, "A comprehensive overview on variants of CUCKOO search algorithm and applications", Electrical Electronics Communication Computer and Optimization Techniques (ICEECCOT) 2017 International Conference on, pp. 1-5, 2017.
[13] M.A. Abido, "Optimal Power Flow Using Tabu SearchAlgorithm", Electric Power Components System, Vol. 30, pp. 469-483, 2002.
[14] S. Sivasubramani, K. S. Swarup, "Multi-Objective Harmony Search Algorithm for Optimal Power Flow Problem", Electrical Power and Energy Systems. Elsevier, Vol. 33, pp. 745-752, 2011.
[15] H. R. E. H. Bouchekara, "OPF Using Black-Hole-Based Optimization Approach", App. Soft Computing. Elsevier, Vol. 24, pp. 879-888, 2014.
[16] M. Sailaja, S. Maheswarapu, "Enhanced Genetic Algorithm Based Computation Technique for Multi-Objective OPF Solution", Electrical. Power and Energy Systems, Elsevier, Vol. 32, pp. 736-742, 2010.
[17] B. Mandal, P. K. Roy, "Multi-Objective Optimal Power Flow Using Quasi-Oppositional Teaching Learning Based Optimization", Applied Soft Computing, Elsevier, Vol. 21, pp. 590-606, 2014.
[18] S. Duman, U. Güvenç, Y. Sönmez, N. Yörükeren, "Optimal Power Flow Using Gravitational Search Algorithm", Energy Conversion and Management, Elsevier, Vol. 59, pp. 86-95, 2012.
[19] X. S. Yang, "Flower Pollination Algorithm for Global Optimization", in: Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, Vol. 7445, pp. 240-249, 2012.
[20] X. S. Yang, M. Karamanoglu, X. He., "Multiobjective Flower Algorithm for Optimization", International Conference on Computational Science . Vol. 18, pp. 861868, 2013.
[21] K. S. Pandya, D. A. Dabhi and S. K. Joshi, "Comparative Study of Bat \& Flower Pollination Optimization Algorithms in Highly Stressed Large Power System", Power Syst. Conf. (PSC), Clemson University, 2015.
[22] Hari Mohan Dubey, Manjaree Pandit, B.K. Panigrah, "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism forwind integrated multiobjective dynamic economic dispatch", Renewable Energy, Elsevier, Vol. 83, pp. 188-202,2015.
[23] Sarjiya, F. P. Sakti and S. P. Hadi, "Optimal Power Flow Based on Flower Pollination Algorithm," 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 329-334, 2018.
[24] Taranto GN, Pinto LMVG, Pereira MVF. Representation of FACTS devices in power system economic dispatch. IEEE

Trans Power Syst 1992;7 (2):572-576.
[25] Padhy, N.P. \& M. A., Abdel-Moamen. (2008). A Generalized Newton's Optimal Power Flow Modelling with Facts Devices. International Journal of Modelling and Simulation. 28. 229-238.
[26] Ambriz-Perez H, Acha E, Fuerte-Esquivel CR. Advanced SVC model for Newton-Raphson Load Flow and Newton optimal power flow studies. IEEE Trans Power Syst 2000;15 (1):129-136.
[27] R. P. Singh, V. Mukherjee, D. Prasad and W. A. Ansari, "Solution of optimal power flow problem of system with FACTS devices using MDE algorithm," 2020 3rd International Conference on Computer Applications \& Information Security (ICCAIS), 2020, pp. 1-6.
[28] Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S.; Chatthaworn, R.; Watson, N.R. A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems. Energies 2018, 11, 2270.
[29] Kessel P, Glavitch H (1986) Estimating the voltage stability of a power system. IEEE Trans Power Deliv 1(3): 346-354.
[30] X. S. Yang, "Flower Pollination Algorithm for Global Optimization", in: Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, Vol. 7445, pp. 240-249, 2012.
[31] Pavlyukevich, I. Lévy flights, "Non-Local Search and Simulated Annealing", J. Computational Physics, Vol. 226, pp. 1830-1844, 2007.
[32] Reynolds, A.M., Frye, M.A., "Free-Flight Odor Tracking in Drosophila is Consistent with an Optimal Intermittent Scale-Free Search", PLoS One, 2, e354, 2007.
[33] R. N. Mantegna,"Fast, Accurate Algorithm for Numerical Simulation of Lévy Stable Stochastic Process." Phys Rev E., Vol. 49, No. 5, pp. 4677-4683, 1994;
[34] H. R. Tizhoosh. Opposition-Based Learning, "A New Scheme for Machine Intelligence", International Conference on Computational Intelligence for Modelling, Control and Automation 2005, Vol. 1, pp. 695-701, 2005.
[35] S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama,"QuasiOppositional Differential Evolution". IEEE Congress on Evolutionary Computation, pp. 2229-2236, 2007.
[36] Dwaipayan Chakraborty, SankhadipSahaand, Oindrilla Dutta, "DE- FPA: A Hybrid Differential Evolution-Flower Pollination Algorithm for Function Minimization", International Conference on High Performance Computing and Applications (ICHPCA), Bhubaneswar, India, 2014.
[37] Alsac O, Stott B (1973) Optimal load flow with steady state security. IEEE Trans. On Power Electronics, PAS-93, 745751.
[38] Abido MA (2002) Optimal power flow using particle swarm optimization. Electr Power Energy Syst 24(7): 563571.
[39] Ongsakul W,tantimaporn.T. Optimal power flow by improved evolutionary programming. Electr. Power comput, Syst 34(2006): 79-95.
[40] C.Thitithamrongchai,B.Eua-arporn,self adaptive differential evolution based optimal power flow for units with non smooth fuel cost functions, J.Electr.Syst.32(2007): 88-99.
[41] K. Vaisakh • L. R. Srinivas • Kala Meah, Genetic evolving ant direction PSODV hybrid algorithm for OPF with nonsmooth cost functions, Electr Eng (2013) 95:185-199

