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Abstract

Due to its usefulness in various social contexts, from Intelligent Transportation Systems (ITSs) to the reduction
of urban pollution, road traffic prediction represents an active research area in the scientific community,
with strong potential impact on citizens’ well-being. Already considered a non-trivial problem, in many
real applications an additional level of complexity is given by the large amount of data requiring Big Data
domain technologies. In this paper, we present the first steps of a novel approach integrating both classic
and machine learning models in the Spark-based big data architecture of the H2020 CLASS project, and we
perform preliminary tests to see how usually little-considered variables (different data aggregation levels,
time horizons and traffic density levels) influence the error of the different models.
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1. Introduction
Research in the urban logistics field, but more generally
in a Smart City context, is experiencing a significant
increase due to the numerous improvements it brings to
public services. Specifically, the road traffic prediction
task plays a fundamental role in terms of city mobility,
and it is also useful as a decision support for defining
traffic restrictions in order to reduce air pollution
and improve public well-being. Since vehicles flows
can be thought as time series, several statistical and
machine learning traffic forecast models are exploited
in this scenario. However, their accuracy depends
on several factors which are often not sufficiently
investigated, such as data granularity, forecast type,
traffic conditions, etc.

The work presented in this paper starts from the
H2020 CLASS project1 and the real use-case given
by the MASA2 area; in the considered setting, an
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1Edge and Cloud Computation: A Highly Distributed Software for
Big Data Analytics (CLASS), https://class-project.eu/
2Modena Automotive Smart Area, https://www.automotivesmartarea.it

innovative big-data analytics framework [1] exploits
cloud data management techniques based on Apache
Spark offering efficient storage, real-time querying and
updating of the high-frequency data incoming from
the edge (pole-mounted cameras and smart/connected
vehicles) at different granularity levels.

In this paper, we focus on the first steps and tests
for supporting traffic forecasting in such a challenging
scenario: (i) differently from many state-of-the-art
proposals which concentrate either on “classic” forecast
models (such as ARIMA) in non-big data settings [2,
3] or on machine learning models (such as Decision
Trees, DT) when big data support is needed [4, 5],
we present a novel approach integrating both worlds
within the Apache Spark Big Data infrastructure by
a joint exploitation of the Spark’s MLlib (supporting
DT) and Spark’s Pandas Function API (for ARIMA);
(ii) we perform preliminary tests on such algorithms in
our real use-case; (iii) we analyze the accuracy trying
go give useful first answers to a number of questions
which are not usually contemplated (e.g., “How forecast
accuracy varies in relation to the granularity of the data
and to the traffic density?”, “Are next-hour prediction
more accurate than next-minute or next-15-minutes?”),
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by considering the results of the different models at
different data aggregation levels (1 minute, 15 minutes,
1 hour), time horizons (1 step, 1-3-6 hours), and traffic
density levels. Finally, some execution performances
will also be reported. The long term aim is that this
initial research can eventually help in bringing us closer
to better managed smart cities and services, improving
citizens’ well-being.

The rest of the paper is organized as follows:
in Section 2 we briefly report on related work;
Section 3 and 4 give an overview of the proposed
approach and detail the specific data preprocessing
steps, respectively; experimntal evaluation is discussed
in Section 5. Finally, conclusions and future work are
presented in Section 6.

2. Related works
Several recent research studies have demonstrated,
at least conceptually, the possibility of utilizing and
managing Big Data to improve and create new smart
city services [6, 7]. While there are several works
showing the benefits of big data information extraction
/ analysis, in many cases the focus is mainly application
specific and on the analysis of the possible benefits
rather than on presenting actual data management
solutions / architectures [6]. Our past work [8], based
on prior data management experiences in real-world
smart city situations [9, 10], demonstrates a platform
with data processing features for both real-time and
historical data management; however, this is still based
on a centralized relational architecture rather than on
modern bigData/noSQL technologies.

Focusing on specific services in a Smart City context,
scientific works concerning road traffic prediction are
becoming increasingly common. As reported in a recent
survey [2], while the most common approach is to
use statistical forecasting models such as ARIMA, the
use of machine learning (e.g., Decision Tree) and deep
learning models like LSTM is becoming more and
more popular. However, design patterns (such as type
model selection and data management infrastructure)
strongly depend on the specific application context.
On one hand, there are approaches such as the one
presented in [3], which tests ARIMA and compares it
with a hybrid model also incorporating non-linearity,
GARCH, concluding that ARIMA is better, or [2], which
compares ARIMA with other “classic” forecast models.
All these works consider a non-big data context, thus
the exploitation of big data platforms such as Spark
and the use of ML models are not considered. On the
other hand, others propose and test machine learning
models in Spark, including Decision Tree [4] and neural
networks [5], but do not consider classic statistical
forecast models. Instead, in this work we propose an
approach based on Apache Spark supporting machine

Figure 1. Overall architecture overview

learning forecast models but also capable of integrating
statistical forecasting models such as ARIMA through
the Pandas Function API. Similarly to other works
[11], we consider how the traffic volume affects the
prediction. Moreover, unlike many researches [12–14]
where the aim is rather to understand how external
factors (atmospheric conditions or road indicators)
affect the forecast, in this paper we consider how the
concepts of data granularity and time horizon impact
on the forecast accuracy.

3. Overview of the approach
The data management architecture we consider in this
work is the one we devised in the CLASS project
[1], which enables the management of real-time data
(through Spark Structured Streaming) coming from the
edge and their storing at different granularities (1 min,
15 min, 1 hour) by means of hierarchical aggregations
(see Figure 1). In this context, the approach we propose
extends this architecture and exploits two different
data management paths to enable effective road traffic
prediction:

• MLlib path: thanks to Spark’s machine learning
library we are able to efficiently execute ML
models;

• Pandas Function API path: by means of this Spark’s
functionality, it is possible to integrate statistical
forecasting models in the Spark ecosystem.

In this work we focus on the following two models,
which are representative of each of the paths:

• Decision Tree (DT): a supervised machine learning
algorithm implemented in Spark MLlib, whose
ability to solve regression problems makes it
possible to forecast road traffic flow after an initial
training step;

• ARIMA: one of the most common statistical mod-
els used for time series prediction (implemented
with the support of Spark Pandas Function API).
More precisely, we adopted ARIMAX, trough
which consider time information (hour and/or
weekend) as external regressors.

In addition to the different models available, the two
paths also differ in their execution mode (Figure 2):
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Figure 2. Execution mode of the two data management paths

Figure 3. Data processing steps

whereas with MLlib ML jobs are submitted one at a
time (but more jobs can be executed in parallel), with
the Pandas Function API, n jobs can be directly run
simultaneously. Moreover, while for the second path
each single model can only manage time series whose
dimension does not exceed the memory of the cluster
executors, the first model enables the execution also on
potentially very large time series.

4. Data processing
Depending on the different adopted methodologies,
aggregated data needs specific (pre)processing steps. As
reported in Figure 3, the first three steps are common to
the two paths:

1. Data resampling: resampling is performed in order
to get equally spaced observations in relation to
the data granularity level;

2. Null values management: we associate zero values
to null observations in order to handle no-vehicle-
flow situations (fill forward or interpolation
would lead to incorrect problem modeling);

3. Time extraction: time information like hour and
weekend are extracted and used as additional
features in forecasting models.

For ML models (MLlib path), two additional steps are
required (and implemented through MLlib’s Pipeline
object): (4a) Lag extraction obtains lag values for
each observation and (5a) Vector assembly creates a
single vector containing all the extracted features. For
statistical models (Pandas Function API path), instead,
a Logarithmic transformation (4b) is needed, performed
through the Pandas module.

Figure 4. Average 1 Step MAPE for the two models at different
data granularities

Figure 5. 1 Step forecast for a single time series in relation to
different time granularities

5. Experimental Evaluation
We performed a series of preliminary tests on our real
use-case in order to evaluate prediction accuracy and
to give initial answers to how accuracy is influenced
by data/prediction granularity, traffic density, and
time horizon. Moreover, we also present preliminary
efficiency figures. We considered the complete scenario
of 500 different map points / time series (7 days
duration) at the 3 granularities (1 hour, 15 min, 1
min), and from this we selected two groups of different
significant road points, representative of high and low
traffic densities. As to model configuration: for DT
features like lag values, hour and weekend information
are used, and for model parameters, variance is defined
as the way to compute nodes impurity while maxDepth
parameter is set to 5 with the aim to reduce the
probability of overfitting; for ARIMA, we employed a
grid-search methodology in which the best parameters
are chosen in relation to Akaike’s Information Criterion
(AIC) value. The considered accuracy metric is the
Mean Absolute Percentage Error (MAPE). Moreover, for
the DT model, the training phase is done on the first 80
percent of total data and then tested on the remaining
20 percent; for ARIMA, a cross validation on a rolling
basis is used so to respect temporal dependency between
observations. Tests are executed on a server with 3.3
GHz Intel Core i7 CPU and 16 GB RAM.
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Figure 6. Average 1 Step MAPE details for the two traffic levels

1 step prediction and time granularity impact. First
of all we consider 1 step prediction accuracy with time
series at the different granularities, to answer questions
like: are next-hour predictions more accurate than next-
minute or next-15-minutes ones? Figure 4 reports the
obtained average errors. As expected, the use of a fine
granularity and the consequent presence of a higher
number of model information, leads to a decrease in
the error (as also shown in Figure 5) On average, for
all aggregation levels, ARIMA seems to get a higher
accuracy value compared to DT.

Traffic density impact. Figure 6 reports average
errors in relation to the two traffic levels for
each considered model and at the different data
granularities. We note that, relatively to all aggregation
levels and for each model (ARIMA and DT), 1 step
forecast produces, on average, a lower error when traffic
density is high: when the average flow of vehicles is
consistent (and the roads more congested), the data
is possibly less subject to random fluctuations, thus
making the forecast more accurate. Moreover, for the
two traffic levels, the behaviour, w.r.t. the different data
granularities, is in line with the one shown in the
previous test.

Time horizon impact. In the previous tests we
focused on 1 step prediction, in which the forecast was
made with a short time horizon coinciding with the
given data granularity. The aim of the following test is
to make predictions over more distant time horizons
(i.e., over the next 1 hour, 3 hours and 6 hours) in
order to see how the forecast error changes, also on the
basis of the different data aggregations. For example,
if the target is to predict the next 3 hours average
traffic density, we proceeded as follows: for 1 hour (15
minutes, 1 minute) data aggregation granularity, we
made 3 (12, 180, respectively) steps forecast and then
computed the average. In this preliminary evaluation,
we focused on the ARIMA model and the results are
reported in Figure 7.

Figure 7. Average MAPE at different time horizons and time
aggregations (ARIMA)

From the obtained results it is possible to see that
the increase of the time horizon leads to a consequent
increase in the forecast error. In other words, this
means that, for a given data aggregation granularity,
we get a bigger error if we want to predict further into
the future. As explained above, each data aggregation
requires a specific n-steps forecast (where n is low for
hourly data and increases for 15 minutes and 1 minute
data). Due to this aspect, another interesting aspect
to note is the different error rate growth between the
different granularities. While with 1 hour aggregation
we see an error increment of about 2 points, for 15
minutes and 1 minute it is about 6 and 11 points
respectively. So, to answer questions like: Given a specific
forecast time horizon, which data granularity should we
use to get the lowest error? we could conclude that: (a) to
predict the average next hour traffic density, the use of
1 minute data granularity leads to best accuracy levels
compared to 15 minutes and 1 hour data; (b) to predict
the average next 6 hours traffic density, the use of 1
minute data granularity (requiring a 60*6-step forecast)
leads to a bigger error compared to 1 hour and 15
minutes aggregations which require 6-step and 4*6-step
forecast respectively.
Preliminary efficiency evaluation. Even if in this

first research phase we are not specifically focused
on efficiency, we will nonetheless provide some early
performance results derived from the execution of the
two different data management paths, MLlib for DT
and Pandas Fuction API for ARIMA, on our standard
configuration (we plan to perform tests on dedicated
parallel servers with cluster support in the future).
In the test shown in Figure 8 (A), we compare the
execution time between the Spark Pandas Fuction
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Figure 8. Execution time comparisons

API configuration we described in this paper and the
standard Pandas execution: as it is possible to see,
even if Spark is executed without cluster support,
simultaneous execution of 5 different time series with
ARIMA model results more efficient than in normal
Pandas implementation, for each granularity level. This
justifies this architectural choice not only for enabling
ML models support but also from an efficiency point
of view. Furthermore, in Figure 8 (B) we reported
time execution for ARIMA and DT for a single time
series computation and in relation to the different
data aggregations. In this case, it is possible to note
that ARIMA performances are good but require more
time on very long time series in 1 minute granularity,
since its time is affected by the complex automatic
parameter optimization. On the other hand, DT is
particularly efficient for all granularities also in this
basic configuration setup; this makes us confident that
future parallel optimized execution will enable a very
high number of concurrent predictions to be made in
real-time.

6. Conclusions and future work
In this paper we proposed a novel approach for
traffic forecast integrating both classic and machine
learning models in a Spark-based big data architecture.
The preliminary tests allowed us to understand the
impact of different variables which are often not
considered together in state of the art (different
data aggregation levels, time horizons and traffic
density levels). Although the current work represents
a good starting point, in the future we plan to
continue the development and testing of our approach
by considering further models to integrate and
by improving the current ones through grid-search
techniques for machine learning approaches, outlier
detection mechanisms as well as the use of additional
features like weather conditions. Moreover, building
on recent data analytics experiences in different
scenarios [15–18], we also plan to complement the
approach with a complete dashboard for data analysis,
possibily exploiting interpretable machine learning

techniques. In the context of the MASA use-case and,
more in general, in different smart city contexts, the
techniques presented in this work could become the
basis for supporting more complex tasks like public
transportation logistic, road trip optimization and
decision support to reduce air pollution, ultimately
helping in improving citizens’ well-being.
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