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Abstract 
INTRODUCTION: Innovations in offshore wind farm operation and maintenance require intelligent monitoring platforms 
that can leverage high-resolution SCADA data to enhance predictive precision and operational effectiveness. With the use 
of deep learning algorithms, specifically LSTM, this work achieves improved forecasting and anomaly detection accuracy 
on a real wind turbine dataset recorded in Turkey in 2018. 
OBJECTIVES: The proposed approach involves extensive data preprocessing, including cleaning, synchronization, and 
normalization, followed by advanced feature extraction using signal processing transforms such as the Fast Fourier 
Transform and wavelet transforms. 
METHODS: Different predictive models, including Linear Regression, Random Forest Regression, Support Vector 
Regression, Gradient Boosting Machines, and LSTM, were trained and tested within a Python setting. The LSTM model 
achieved a remarkable improvement, with a Mean Absolute Error of 78.6 kW, compared to traditional machine learning 
methods such as RF Regression, SV Regression, and Gradient Boosting Machines. The enhanced accuracy results from the 
LSTM's ability to derive intricate temporal patterns and nonlinear relationships inherent in sequential turbine operational 
data. 
RESULTS: The results affirm the potential of deep learning approaches in reshaping offshore wind turbine management and 
highlight the importance of tailored temporal modeling for resolving the specific challenges of renewable energy systems. 
CONCLUSION: The system not only accurately predicts power production but also performs anomaly detection and 
optimises maintenance scheduling, resulting in enhanced reliability and energy production for offshore wind farms. By 
integrating these data-oriented approaches with an intelligent command and supervision system, the strategy facilitates 
proactive decision-making and real-time operation control. 
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1. Introduction 

The global shift towards renewable energy has made 
offshore wind power a core component of green energy 
infrastructure. As the world faces increasing pressure to 
achieve its climate objectives and reduce carbon emissions, 
countries worldwide are investing heavily in offshore wind 
farms to capitalise on the powerful and consistent wind 
currents along the coast [1] [2].  Such installations,  

 
 
generally located far from the coast and in adverse sea 
conditions, require round-the-clock and effective O&M 
practices for longevity and economic feasibility [3] [4] [5]. 
With numbers and sizes of offshore wind turbines on the 
rise, so does the complexity of their operation and 
maintenance practices [6] [7]. Conventional O&M 
techniques, which depend on predetermined checks and 
reactive maintenance, are no longer adequate to manage 
such gigantic systems [8] [9]. These procedures are likely 
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to result in increased downtime, longer fault detection 
times, and higher operational costs [10]. 

To that end, the integration of smart supervision and 
command platforms is key to ensuring that offshore wind 
farm operations and maintenance (O&M) are optimised 
[11] [12]. These platforms utilise data collected from 
numerous sources—such as Supervisory Control and Data 
Acquisition systems, sensors, weather stations, and 
historical maintenance records—to generate real-time, 
actionable advice. However, all this massive offshore-
produced data remains dormant due to concerns over data 
heterogeneity, data quality, and access to sophisticated 
advanced analytical tools for decision-making and 
interpretation [13]. Advanced artificial intelligence and 
machine learning technology offer solid capability to 
transform raw offshore wind data into insightful 
information. Specifically, LSTM networks prove to be a 
good fit for modelling time-series data, such as sensor 
readings from turbines, by tapping into complex temporal 
relationships [14] [15]. LSTM models are particularly 
suitable for predictive equipment health and forecasting 
impending equipment failures, enabling the transition from 
reactive to predictive maintenance [16] [17]. Data 
preprocessing is a crucial requirement for successful 
AI/ML-based analysis. Data from offshore wind sensors 
usually suffer from missing values, noise, and device 
synchronization between devices. These issues need to be 
resolved using strict preprocessing methods, such as outlier 
removal, imputation, normalization, and time 
synchronization [18] [19] [20]. 

The approach presented here combines advanced 
preprocessing with predictive modelling, utilising LSTM, 
to evaluate turbine health, identify anomalies, and provide 
failure predictions. The smart system enables the operators 
to make prompt and informed decisions, minimize 
unplanned outages, and decrease maintenance expenses. 
One of the innovations presented in this paper is an end-to-
end pipeline from raw data to decision support. In contrast 
to conventional systems that rely on intermittent checks, 
the designed platform continuously tracks working 
parameters in real-time and processes them near real-time.  
It supports intervention at an early stage to prevent small 
issues from becoming major failures, thereby improving 
turbine availability and extending asset life. 

Furthermore, this study examines the performance of 
multiple signal processing and feature engineering 
methods to reach maximum model performance. Using 
historical fault patterns and operational trends, the platform 
can adaptively change its forecasting potential, offering a 
learning system capable of improving over time. The use 
of LSTM networks enables the temporal aspect of turbine 
operation to be captured more accurately than using 
conventional models. Performance is compared with 
publicly known offshore wind data and is contrasted with 
traditional predictive methods. The outcomes indicate that 
the introduced method exhibits considerable improvement 
in predictive precision and operating effectiveness. 

Offshore O&M traditionally employs reactive 
strategies, where maintenance is scheduled following 

failure or according to scheduled intervals. Our prediction 
system relies on real-time streams of SCADA data to detect 
faults in advance, forecast operational risk, and schedule 
maintenance based on actual-time turbine conditions—
cutting delays, costs, and operational disruptions. With the 
integration of AI-driven decision-making into supervision 
and control platforms, offshore wind farms can be directed 
towards smart maintenance strategies that involve ensuring 
longevity, reducing costs, and contributing to meeting 
global renewable energy needs. Key Contributions of this 
Paper are, 

1. Developed a data-driven framework for 
offshore wind turbine health assessment 
using LSTM models. 

2. Implemented advanced data preprocessing 
techniques to clean, normalize, and 
synchronize multi-sensor data. 

3. Extracted meaningful features from raw 
sensor signals using signal processing 
methods, such as the Fast Fourier Transform, 
which is utilised to process periodic 
components of the signal, and the wavelet 
transform. 

4. Achieved early fault detection and failure 
forecasting to enable proactive maintenance 
scheduling. 

5. Demonstrated improved operational 
efficiency and reduced downtime through 
accurate predictive maintenance. 

The subsequent sections of the paper are structured as 
follows: Section 2 provides an extensive review of the 
related literature in the field of operation and maintenance 
of offshore wind power, highlighting major achievements 
and prevailing issues. Section 3 presents the central 
problem statement that this research addresses. Section 4 
outlines the proposed methodology, including data 
preprocessing, feature extraction, and the application of a 
predictive model based on LSTM. Section 5 presents the 
experimental outcomes, performance assessment, and 
observations gained from the model's predictions. Section 
6 finally concludes the paper by summarizing major 
contributions and indicating directions for future research 
with the aim of further advancing intelligent supervision 
and command systems within offshore wind energy. 

2. Related Works 
Offshore wind power has emerged as a crucial 

renewable energy source globally, with increasing installed 
capacity driven by technological innovation and supportive 
public policies [21]. Efficient operation and maintenance 
are essential due to the harsh offshore environment and the 
high cost of repairs and downtime. Literature specifies 
complexity in offshore O&M due to logistical complexity, 
hostile weather conditions, and issues of equipment 
reliability [22]. Cost reduction and asset availability 
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improvement have been espoused through data-driven 
approaches. Recent research has focused on data-driven 
offshore wind operations and maintenance (O&M) models 
that integrate sensor data, Supervisory Control and Data 
Acquisition (SCADA) systems, and weather data to 
support informed decision-making [23]. They utilise big 
data and cloud computing to collect, store, and process 
heterogeneous datasets for fault diagnosis and performance 
optimization. Data integration is a problem but crucial for 
building predictive maintenance models [24]. 

Machine learning models have been extensively 
utilized for predicting faults in offshore wind turbines and 
detecting anomalies. Support Vector Machines, Random 
Forest, and Deep Learning models such as LSTM have 
been employed for fault prediction and anomaly detection 
[25]. LSTM models are excellent at learning temporal 
dependencies of sensor data, improving the accuracy of 
early fault detection [26]. Anomaly detection methods are 
crucial for identifying exceptions to typical working 
conditions in proactive maintenance. Statistical methods, 
as well as cluster-based and neural network-based 
methodologies, have been proposed to detect early 
indicators of turbine malfunctions [27]. The integration of 
anomaly detection and predictive models is used to 
enhance decision support systems for O&M. 

Digital twin technology is increasingly applied to 
offshore wind operations and maintenance (O&M), 
providing virtual copies of physical assets for simulation 
and real-time monitoring [28]. Digital twins integrate 
physical simulation, sensor data, and predictive models to 
deliver advanced diagnostics and optimised maintenance 
schedules. The technology enhances command platforms 
with data-driven intelligence by providing actionable 
insights [29]. High-quality data is the foundation of trusted 
decision-making for offshore wind operations and 
maintenance (O&M). Sensor malfunctions, 
communication losses, and environmental noise can lead 
to data inconsistencies and missing values, which in turn 
impact model performance [30]. Literature emphasizes the 
importance of effective preprocessing methods, data 
fusion, and imputation techniques to enhance the quality of 
the data [31]. 

Real-time control and supervisory systems are 
important for the premature detection of anomalies and 
issuing maintenance commands for offshore wind farms 
[32]. They integrate IoT devices, edge computing, and 
cloud analytics to process data with low latency, providing 
support for informed decision-making to operators. 
Scalability and cyber-security are important aspects in their 
design [33]. Optimizing maintenance scheduling helps 
reduce operational costs and downtime. Approaches such 
as mixed-integer linear programming, genetic algorithms, 
and reinforcement learning have gained prominence in 
scheduling inspection and repair activities efficiently. 
Accurate forecasting of power generation and wind speed 
enhances O&M planning by predicting load variations and 
component stresses, thereby improving maintenance 

operations and minimising the impact on power 
generation.  

Artificial intelligence enhances offshore wind 
operations and maintenance (O&M) decision-making by 
automating data and generating recommendations that can 
be implemented [34]. AI techniques, such as deep learning, 
Bayesian networks, and fuzzy logic, have been applied in 
fault diagnosis, performance optimisation, and resource 
allocation. AI systems provide faster response times and 
increased operational reliability [35]. Some of the 
upcoming trends in O&M research for offshore wind 
include hybrid AI models, digital twins combined with 
edge-cloud computing, and greater cybersecurity for 
supervisory systems [36]. Problem-solving for 
explainability, model generalization, and real-time 
adaptability is suggested to make fully autonomous O&M 
operations possible  [37].  

These upcoming trends will make offshore wind 
farms smarter and stronger. Enhancement of sensor 
technologies is critical to obtaining real-time data required 
for offshore wind turbine condition monitoring [38]. 
Sensors, including vibration, temperature, acoustic 
emission, and strain gauges, provide comprehensive 
operating information. Fibre optic sensors and wireless 
sensor networks are increasingly being utilised for 
enhanced robustness and remote monitoring in offshore 
environments [39]. Sensors generate immense volumes of 
data on which data-driven O&M procedures are developed 
[40]. Edge computing has been a viable option to 
counteract latency and improve bandwidth utilisation by 
processing sensor data near the point of generation, as 
opposed to relying solely on cloud servers [41]. It is 
particularly useful in offshore wind farms where there is a 
need to make decisions quickly under constrained 
communication infrastructure.  

Edge platforms enable rapid anomaly detection and 
initial analysis, thereby enhancing operational and 
maintenance (O&M) timeliness [42]. Reinforcement 
learning is being applied in ways that increasingly improve 
offshore wind turbine maintenance optimization by finding 
policies for balancing operational efficiency and risk [43]. 
RL agents can learn to dynamically adjust maintenance 
schedules according to current system conditions and 
environmental factors, thereby optimising cost reduction 
and extending asset life [44].  RL architectures also 
accommodate decision-making under uncertainty, as 
common in offshore conditions [45][46]. As the increasing 
interconnectedness of offshore wind farms via IoT and 
cloud platforms becomes more prevalent, cybersecurity 
threats pose a significant risk to compromise operational 
security and data integrity [47]. Tampering with data, 
denial-of-service attacks, and unauthorised access attacks 
compromise the maintenance schedule and result in 
financial loss [48]. 

Thirusubramanian Ganesan (2021) proposed a 
machine learning-driven AI framework for detecting 
financial fraud in IoT environments using anomaly 
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detection, clustering, and adaptive learning. This 
methodology is adopted in our proposed work to monitor 
offshore wind power systems by identifying operational 
anomalies and optimizing maintenance decisions through 
intelligent supervision. The integration enhances fault 
detection accuracy, real-time responsiveness, and 
predictive maintenance efficiency in complex offshore 
environments [49]. Accurate wind speed and power 
production forecasts improve O&M scheduling by 
predicting load variations and potential stress on the 
turbine's components [50]. Integrating weather prediction 
models with turbine data facilitates more efficient 
scheduling for maintenance, minimizing interruptions to 
power production  [51] [52]. While independent ML 
models are primarily concerned with predictive accuracy, 
integrated SCADA command platforms combine sensor 
analysis, trended historical data, and control feedback 
mechanisms to support proactive decision-making and 
operational performance optimization. This is a major 
distinction in offshore conditions, wherein integrated 
control systems enhance reliability and reduce downtime. 
Existing research focuses on designing resilient security 
frameworks, encryption mechanisms, and intrusion 
detection systems for offshore wind networks [53].  
Harikumar et al. (2024) presented a hybrid wind-solar 
energy model using ANN and expert systems to optimize 
energy performance and environmental quality. Your 
proposed offshore wind platform applies this approach by 
leveraging ANN-based predictive analytics for smart 
maintenance and command decisions. This enables reliable 
operations, balanced energy output, and intelligent 
supervision aligned with clean energy goals. [54]. Kadiyala 
et al. (2025) introduced a real-time IoT-enabled business 
intelligence framework using Likert-scale surveys and 
regression-based optimization for fast and accurate 
decision-making. Your offshore wind platform adopts this 
approach by analyzing IoT sensor data in real time to 
support predictive maintenance and supervisory control. 
This strategy improves operational efficiency, enhances 
responsiveness to offshore dynamics, and enables 
intelligent, data-driven decisions. [55]. 

3. Problem Statement 
Offshore wind farms encounter significant 

operational and maintenance challenges due to harsh 
environmental conditions, complex equipment, and vast, 
heterogeneous data from various sensors, resulting in the 
inability to promptly detect faults, accurately predict 
failures, and optimize resource utilization. Traditional 
maintenance methods tend to be reactive and fail to 
capitalise on the full potential of data-driven insights, 
resulting in increased downtime and operational costs. The 
developed strategy, through the application of advanced 
data preprocessing and LSTM-type predictive modeling, 
overcomes these limitations by effectively cleaning and 
synchronizing multi-sensor time-series data to yield useful 
features and model temporal dependencies of turbine 

behavior. This enables accurate estimation of health and 
early anomaly detection to allow proactive scheduling of 
maintenance for minimum surprise failures, optimal 
resource utilization. 
Objectives 

1. Development of a robust predictive model for 
turbine health assessment using LSTM networks. 

2. Application of comprehensive data preprocessing 
methods for enhancing data quality and 
consistency. 

3. Extraction of significant features from sensor data 
through advanced signal processing techniques. 

4. Implementation of early anomaly detection 
mechanisms for timely fault identification. 

5. Improvement of maintenance scheduling 
efficiency to minimize downtime and operational 
costs. 

4. Proposed Methodology for Intelligent 
Supervision and Predictive Maintenance 
in Offshore Wind Power Using LSTM Deep 
Learning Networks 

The research methodology for the Intelligent 
Supervision and Command Platform, which involved the 
use and maintenance of offshore wind power, utilised data-
driven decision-making through the utilisation of high-
resolution Supervisory Control and Data Acquisition 
systems to deliver time-series turbine data. The method 
begins by conducting extensive data preprocessing, 
including cleaning, synchronization, and normalization, to 
ensure data quality and consistency. Sophisticated feature 
extraction methods, such as the Fast Fourier Transform, 
wavelet transform, and statistical analysis, are used to 
capture the temporal and frequency-domain features of 
turbine behaviour. ML and DL models—namely Linear 
Regression, XGBoost, and LSTM networks—are then 
trained to predict power output, identify anomalies, and 
schedule optimal maintenance. The LSTM model, in 
specific, leverages temporal dependencies inherent in 
sequential data to facilitate accurate prediction and 
proactive decision-making. This combined framework 
enhances operational effectiveness, dependability, and fault 
handling for offshore wind farms by delivering actionable 
information and real-time supervisory monitoring. Figure 1 
shows the Proposed Methodology for Intelligent 
Supervision and Predictive Maintenance in Offshore Wind 
Power Using LSTM Deep Learning Networks. 
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Figure 1: Proposed Methodology for Intelligent 
Supervision and Predictive Maintenance in Offshore 
Wind Power Using LSTM Deep Learning Networks 

4.1 Data Collection 

The data source that was utilized is the Wind Turbine 
Supervisory Control and Data Acquisition Dataset [52] that 
is retrieved from Kaggle. The data comes from a wind 
turbine commissioned in Turkey in 2018. It covers 
seasonal fluctuation (winter and spring cycles), 10-minute 
sample rates, and sensor calibration records validated by 
the supplier. Additionally, environmental metadata, such 
as temperature and humidity, were included to test forecast 
accuracy under different operating conditions. This high-
resolution time-series data captures actual operating 
conditions, such as turbine downtime or maintenance, and 
thus is beneficial for use like wind power forecasting, 
anomaly detection, predictive maintenance, efficiency 
optimization, and data-driven power curve modeling. The 
dataset is made available for research purposes and 
provides information on turbine performance and 
environmental interactions in the wind energy sector. 
Table 1 presents a summary of the Data Collection. 

 
Table 1: Summary of Data Collection 

 

 

4.2 Data Preprocessing by Data Cleaning, 
Synchronization, and Normalization 
Methods 

Data preprocessing is a crucial process that sanitises 
raw data for accurate analysis and modelling. It involves 
numerous techniques such as data cleaning, 
synchronization, and normalization, each to enhance data 
quality and consistency for forthcoming tasks. 

Data cleaning eliminates discrepancies, such as 
outliers and missing values, that may skew model outputs. 
The outliers are detected through statistical methods like 
the Z-score, calculated by using Equation (1): 

𝑍𝑍𝑖𝑖 = 𝑥𝑥𝑖𝑖−𝜇𝜇
𝜎𝜎

            (1) 
Where μ represents the mean value and σ denotes the 

standard deviation of the dataset. Points with |𝑍𝑍𝑖𝑖| > 3 are 
considered outliers. The Interquartile Range method also 
identifies outliers outside; it is given in Equation (2): 

𝑄𝑄1 − 1.5 × IQR  to  𝑄𝑄3 + 1.5 × IQR       (2) 
Missing data are managed using imputation methods, 

such as mean/median replacement, forward/backward fill, 
or interpolation, to maintain continuity in time-series data. 
Missing data in SCADA time series were handled using 
forward fill and linear interpolation, chosen to maintain 
temporal continuity. Mean-based imputation was used to 
fill large gaps and avoid time-dependent fluctuations that 
could introduce bias. These techniques minimize signal 
distortion with recovered feature reliability during 
prediction. 

Data synchronization ensures that multi-sensor data 
streams remain aligned in time, despite varying sampling 
rates and data acquisition times. Resampling and linear 
interpolation are employed. Missing values at time t are 
estimated by linear interpolation as given in Equation (3): 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥(𝑡𝑡0) + 𝑥𝑥(𝑡𝑡1)−𝑥𝑥(𝑡𝑡0)
𝑡𝑡1−𝑡𝑡0

× (𝑡𝑡 − 𝑡𝑡0)      (3) 
where, t Target timestamp, 𝑡𝑡0,  𝑡𝑡1Known timestamps 

before and after t, 𝑥𝑥(𝑡𝑡0 ), 𝑥𝑥(𝑡𝑡1 ) : Known values at 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 
Jia Kun Wang et al. 

6 

𝑡𝑡0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡1, x(t): Interpolated value at time t. To rectify 
variable sampling between sensors, linear interpolation and 
resampling were applied after synchronising the data. This 
gave equal time alignment. Prior poor alignment caused lag 
artifacts in model predictions; the improved method 
enhanced LSTM learning effectiveness by preserving 
sequential integrity. 

To normalize feature scales, Min-Max normalization 
and Z-score standardization are employed. Min-Max 
normalization scales data to [0,1], it is given in Equation 
(4): 

𝑥𝑥′ = 𝑥𝑥−𝑥𝑥min
𝑥𝑥max−𝑥𝑥min

           (4) 
Where, x is the original feature value, 𝑥𝑥min Minimum 

value of the feature, 𝑥𝑥max Maximum value of the feature, 
𝑥𝑥′ Normalized value scaled to [0, 1] Min-Max 
normalization was performed on bounded parameters such 
as power output and wind speed to range value to [0,1]. Z-
score standardization was reserved for features with 
dynamically changing ranges, such as vibration or 
temperature, in order to perform zero-mean and unit-
variance normalization. These techniques weren't used in 
sequence but picked based on feature behavior and the 
need for modeling 

whereas Z-score standardization centralizes data with 
zero mean and unit variance, it is given in Equation (5): 

𝑥𝑥′ = 𝑥𝑥−𝜇𝜇
𝜎𝜎

             (5) 
where, x is the original feature value, 𝜇𝜇  Mean value 

of the feature, σ is the Standard deviation of the feature, 
𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥′ Standardized value with zero mean and unit 
variance. Merging data cleaning, synchronization, and 
normalization techniques prepares the dataset for effective 
machine learning and analytics. These preprocessing 
methods remove noise, synchronize multi-source data, and 
standardise data for uniform scaling, all of which 
contribute to enhancing the accuracy and reliability of 
predictive models in wind turbine monitoring and 
forecasting. The data has an imbalance of ~78% normal 
functioning and 4% anomaly labels. SMOTE (Synthetic 
Minority Over-sampling Technique) and random 
undersampling were applied at training time to balance 
classes and prevent model bias toward majority labels. 
Table 2 presents data preprocessing methods, including 
data cleaning, Synchronization, and Normalization. 

 
Table 2: Data Preprocessing by Data Cleaning, 
Synchronization, and Normalization Methods 

 

 

 

4.3 Feature Extraction Using Signal 
Processing, Statistical Features, and 
Dimensionality Reduction 

Feature extraction is necessary to convert raw 
Supervisory Control and Data Acquisition systems that 
deliver time-series turbine data into descriptive 
representations that enhance model accuracy in tasks such 
as anomaly detection and power forecasting. Signal 
transformation techniques, statistical modeling, and 
voluntary dimension reduction are employed in the process 
to acquire meaningful and compact features from time-
series wind turbine data. The Fast Fourier Transform 
efficiently extracts global periodic patterns for detecting 
seasonal load variations, while the wavelet transform 
localises short-time fault signals in time-frequency space. 
The FFT is not suitable for short-time events, and the 
choice of wavelet (e.g., Morlet vs. Haar) affects 
localisation quality, leading to sensitivity to noise and 
reconstruction error.  

Features were chosen based on correlation analysis, 
variance cutoffs, and model importance weights (derived 
from XGBoost). Aspects such as wind velocity, LV 
ActivePower, and RMS had significant predictive 
importance, while wind direction made a low contribution 
and was eliminated to reduce noise. The Fast Fourier 
Transform is utilised to process the periodic components of 
the signal, converting a time-domain signal into its 
component frequencies so that periodic patterns and 
anomalies in operational behaviour can be detected. For a 
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discrete signal x(n) of length N, the Fast Fourier Transform 
is given in Equation (6): 

 
𝑋𝑋(𝑘𝑘) = ∑  𝑁𝑁−1

𝑛𝑛=0 𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁, 𝑘𝑘 = 0,1, … , 𝑁𝑁 − 1          
(6) 

 
where, 𝑥𝑥(𝑛𝑛) = time-domain signal (e.g., wind speed), 

𝑋𝑋(𝑘𝑘) = frequency-domain representation, 𝑗𝑗 = imaginary 
unit.  

In comparison to the Fast Fourier Transform, the 
wavelet transform provides time-frequency localisation, 
which is particularly useful in detecting transient events or 
localised faults. The Continuous Wavelet Transform is 
represented in Equation (7): 
𝑊𝑊(𝑎𝑎, 𝑏𝑏) = 1

�|𝑎𝑎| ∫  ∞
−∞ 𝑥𝑥(𝑡𝑡)𝜓𝜓∗ �𝑡𝑡−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑑𝑑            (7) 

where, 𝑥𝑥(𝑡𝑡) = input signal, 𝜓𝜓(𝑡𝑡) = mother wavelet, 
𝑎𝑎, 𝑏𝑏 = scale and translation parameters, 𝑊𝑊(𝑎𝑎, 𝑏𝑏) = 
wavelet coefficients. 

Statistical analysis across sliding time windows helps 
quantify the distribution and variability in signal 
behaviour. Commonly extracted features are given from 
Equation (8) to Equation (12): 

• Mean (𝜇𝜇) : 

𝜇𝜇 = 1
𝑁𝑁

∑  𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖                   (8) 

• Variance (𝜎𝜎2) : 

𝜎𝜎2 = 1
𝑁𝑁

∑  𝑁𝑁
𝑖𝑖=1 (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2             (9) 

• Skewness ( 𝛾𝛾 ): 

𝛾𝛾 = 1
𝑁𝑁

∑  𝑁𝑁
𝑖𝑖=1 �𝑥𝑥𝑖𝑖−𝜇𝜇

𝜎𝜎
�

3
               (10) 

• Kurtosis (к): 

𝜅𝜅 = 1
𝑁𝑁

∑  𝑁𝑁
𝑖𝑖=1 �𝑥𝑥𝑖𝑖−𝜇𝜇

𝜎𝜎
�

4
              (11) 

• Root Mean Square (RMS): 

RMS = �1
𝑁𝑁

∑  𝑁𝑁
𝑖𝑖=1  𝑥𝑥𝑖𝑖

2             (12) 

These characteristics help determine normal versus 
abnormal behaviour and enable downstream machine 
learning models to detect patterns effectively. Table 3 
shows Feature Extraction Using Signal Processing, 
Statistical Features, and Dimensionality Reduction. 
 

 
Table 3: Feature Extraction Using Signal 

Processing, Statistical Features, and Dimensionality 
Reduction 

 

 

4.4 Model Development 

In this research, three models are considered: linear 
regression, XGBoost, and Long Short-Term Memory 
(LSTM) networks. These three models are selected to solve 
different aspects of the prediction problem—linear trends, 
nonlinear patterns, and temporal relationships, 
respectively. Every model trains the input feature matrix X 
and the target variable y, trying to maximize performance 
through iterative training. Although the intelligent 
supervision platform automatically produces actionable 
alarms and predictive recommendations, ultimate 
operation decisions and command execution are controlled 
by human operators. The system semi-automatically 
integrates the visual dashboards and prioritization logs for 
maintenance scheduling and anomaly response. Although 
nonlinear data is known to have limitations, linear 
regression offers a basic measure of model interpretability 
and performance metrics comparison. This addition assists 
in measuring the relative benefit obtained by ensemble and 
deep learning on wind power forecasting problems. 

The direct proportionality assumption accompanies it 
and is an excellent starting point for power prediction. The 
model is represented in Equation (13): 

𝑦̀𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯ + 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛    
    (13) 

where 𝑦̀𝑦 is the predicted power output, 𝑥𝑥𝑖𝑖 are input 
features (e.g., wind speed, direction), and 𝛽𝛽𝑖𝑖 are 
coefficients learned during training. The model is trained 
by minimizing the Mean Squared Error, it given in 
Equation (14): 
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MSE = 1
𝑛𝑛

∑  𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖 − 𝑦̀𝑦𝑖𝑖)2      

   (14) 
XGBoost effectively identifies nonlinear correlations 

and feature interactions, making it well-suited for fault 
detection and anomaly classification. The XGBoost 
prediction comes as in Equation (15): 

𝑦̀𝑦 = ∑  𝐾𝐾
𝑘𝑘=1 𝑓𝑓𝑘𝑘(𝑥𝑥), 𝑓𝑓𝑘𝑘 ∈ ℱ      

   (15) 
where 𝑓𝑓𝑘𝑘 are individual regression trees and ℱ is the 

function space of all possible trees. The model is trained by 
maximizing an optimized regularized objective function 
that blends a loss function (e.g., squared loss for 
regression) and a penalty term to avoid overfitting. Figure 
2 shows the Architecture of LSTM. 

 

 
 

Figure 2: Architecture of LSTM 
 

Supervisory Control and Data Acquisition systems 
deliver time-series turbine data, and LSTMs are most 
appropriate for learning temporal patterns and predicting 
future values from sequential data. The LSTM unit is 
governed by the following equations (16) to (21): 

• Forget gate: 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�       
                   (16) 

• Input gate: 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                                                                                
(17)                                                                                            
  

• Candidate state: 𝐶̀𝐶𝑡𝑡 = tanh (𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶)                                                                                  
(18) 

• Cell state: 𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶̀𝐶𝑡𝑡                                                                                                       
(19) 

• Output gate: 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                                                                                              
(20) 

• Hidden state: ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh (𝐶𝐶𝑡𝑡)                                                                                                          
(21) 

where σ is the sigmoid activation function, ⊙ denotes 
element-wise multiplication, 𝑥𝑥𝑡𝑡 is the input at time t, and 
ℎ𝑡𝑡 is the output. LSTM learns how to retain relevant 
information over time, improving performance for 
sequential data tasks. Table 4 shows Machine Learning 

Models for Wind Turbine Supervisory Control and Data 
Acquisition Data Analysis. 

For the tuning of hyperparameters grid search was 
used. Hyperparameters of XG Boost such as learning_rate 
∈ {0.01,0.1,0.2}, max_depth ∈ {3,6,9}, n_estimators ∈ 
{100,300,500} were tuned. For LSTM, a grid search was 
conducted for the number of hidden units (in {50, 100, 
200}), batch size (in {32, 64}), and learning rate (in {0.001, 
0.0001}). The models were assessed on the Mean Absolute 
Error and R² score on the validation set. 

Linear Regression is applied for interpretability and 
as a baseline power prediction. XGBoost is chosen due to 
its ability to capture non-linear interactions among features 
and its improved generalization performance on tabular 
data. LSTM is particularly suitable for modelling long-
term temporal relations in sequential Supervisory Control 
and Data Acquisition (SCADA) data, with enhanced 
accuracy in anomaly detection and power forecasting. 

To avoid overfitting in LSTM networks, dropout 
layers (with a rate of 0.3) were inserted between the dense 
layers. Early stopping with a patience of 20 epochs on 
validation MAE was utilized. L2 regularisation with λ = 
0.001 capped weight growth for improved generalisation 
and noise resistance. 

For real-time use, the model is deployed with 
SCADA pipelines via Kafka streaming and TensorFlow 
Serving. The average prediction latency (inference plus 
preprocessing) is maintained under 250 ms. Edge buffer 
queues are utilized to buffer delayed data and provide near-
instant anomaly alarms to operators. 

To tackle long-term dependencies and mitigate 
vanishing gradient issues, LSTM cells were created with 
forget gates and tanh activation, using a gradient clipping 
value of 1.0. This maintains important time-series trends 
across turbine sensor signals, making backpropagation 
over long sequences more stable. 

 

Table 4: Machine Learning Models for Wind Turbine 
Supervisory Control and Data Acquisition Data 

Analysis 
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Every model is trained across the feature matrix X 

and its corresponding labels y using the respective 
optimization methods: gradient descent with linear 
regression and LSTM, and gradient boosting with 
regularisation for XGBoost. Training progress is 
monitored through loss curves, and early stopping where 
applicable to prevent overfitting. Trained models are then 
transferred to the evaluation phase to score prediction 
accuracy and stability on unseen Supervisory Control and 
Data Acquisition systems that deliver time-series turbine 
data. 

 
Algorithm: Data-Driven Decision-Making for 
Offshore Wind Power Supervision and 
Maintenance 
Input: 

• Raw SCADA data from offshore wind 
turbines, including time-stamped 
features such as: 

o LV Active Power  

o Wind Speed at hub level 

o Theoretical Power Curve values 

o Wind Direction 

o Other relevant operational 
parameters 

Output: 
• Accurate power output forecasts 

• Detected anomalies or faults in 
turbine operation 

• Optimized maintenance scheduling 
recommendations 

• Actionable supervisory commands for 
operation control 

Steps: 
1. Data Collection: 

• Retrieve a high-resolution 
SCADA dataset with 10-minute 
interval recordings from 
offshore wind turbines. 

2. Data Preprocessing: 

o Perform data cleaning to 
remove outliers and handle 
missing values using 
statistical methods and 
imputation techniques. 

o Synchronize multi-sensor data 
streams by resampling and 
linear interpolation. 

o Normalize features using Min-
Max scaling or Z-score 
standardization. 

3. Feature Extraction: 

o Apply signal processing 
techniques such as FFT and WT 
to extract frequency and time-
frequency domain features. 

o Compute statistical features 
(mean, variance, skewness, 
kurtosis, RMS) over sliding 
windows. 

o Optionally, reduce feature 
dimensionality if necessary. 

o  
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4. Model Training:

o Train machine learning models
(Linear Regression, XGBoost)
and deep learning models (LSTM
networks) using the extracted
features and historical power
output as the target.

o Optimize model
hyperparameters through
iterative training.

5. Prediction and Anomaly Detection:

o Use trained models to forecast
future power output.

o Detect operational anomalies
based on deviations between
predicted and actual values or
changes in feature behaviour.

6. Decision-Making and Control:

o Generate maintenance 
scheduling alerts based on
predicted faults and
anomalies.

o Provide real-time supervisory
commands to optimize turbine
operation and maximize energy
production.

This algorithm ensures the efficient utilization of 
Supervisory Control and Data Acquisition (SCADA) data 
for enhanced management of offshore wind turbines 
through intelligent, data-driven methods. 

5. Results and Discussion

Both the linear regression, XGBoost, and LSTM
models performed consistently, with LSTM offering 
improved accuracy in handling temporal relations. The 
findings support the use of data-driven approaches in 
enhancing wind turbine monitoring and predictive 
maintenance, with all the developed models implemented 
via Python and relevant machine learning libraries. An 
ANOVA test was conducted to compare the MAE scores 
of LSTM, XGBoost, and Gradient Boosting models. The 
obtained p-value (< 0.01) establishes statistical 
significance in performance disparity. Post-hoc Tukey 
analysis indicates that LSTM performed better with a 95% 
confidence interval. 

Figure 3: LV Active Power Time Series Plot 

The LV Active Power Time Series Plot in Figure 3, 
over a sample period, characterises the variation in the 
wind turbine's electrical power output at every 10-minute 
interval. The plot illustrates the dynamic variability in 
power generation due to varying wind conditions and 
operating conditions. Peaks represent the periods of high-
power generation with favourable wind speeds, and 
troughs can represent turbine downtime, maintenance 
activities, or less than full wind availability. The plot as a 
whole provides valuable information about the trend in 
turbine performance and temporal variability, which are 
essential to optimizing operation and predictive 
maintenance scheduling. 

Table 5: Descriptive Statistics of Key Operational 
Features 

Table 5 presents descriptive statistics of significant 
operational characteristics of wind turbine Supervisory 
Control and Data Acquisition data. It provides the central 
tendency and spread of substantial parameters. The mean 
and median values are similar for LV ActivePower and 
Theoretical Power Curve, indicating uniform power 
generation in accordance with manufacturer requirements, 
with high variability as indicated by standard deviations of 
approximately 350 kW. The wind speed averages 7.85 m/s, 
with high variability, indicating fluctuating environmental 
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conditions. Wind Direction spans the entire 360 degrees, 
indicating diverse wind patterns affecting turbine 
operation. These statistics are the baseline findings on the 
behaviour of the turbine and its interaction with the 
environment. 

Figure 4: Wind Speed Distribution Histogram 

The Wind Speed Distribution Histogram in Figure 4 
indicates the frequency of different wind speed ranges 
recorded at the hub height of the turbine. The distribution 
is employed to identify dominant wind conditions under 
which turbine operation is carried out with diminishing 
frequencies at very low and very high wind speeds due to 
natural variability. This distribution is necessary for energy 
production capacity analysis as well as for designing 
effective control measures for the turbine. 

Table 6: Turbine Operational Status Distribution 

Table 6 presents the breakdown of the wind 
turbine's operational status throughout the dataset duration. 
Most of the time was spent on normal operation, at 78.2%, 
which translates to continuous and effective operation. 
Downtime, including both scheduled and unscheduled 
interruptions, at 12.5%, indicates when the turbine was not 
producing power. Planned maintenance at 5.3% suggests 
that routine maintenance activities are needed for 

reliability. Anomaly events, which are abnormal operating 
patterns that may indicate faults or anomalies, occur at a 
rate of 4.0% of the time. This breakdown is significant in 
providing information regarding the availability of the 
turbine and informing maintenance and fault detection 
priorities. 

Figure 5: Measured Power Scatter Plot against 
Theoretical Power Curve 

Measured Power Scatter Plot (LV ActivePower) 
against Theoretical Power Curve in Figure 5 demonstrates 
the relative measured electrical output of the turbine to that 
which the manufacturer allocates for a given wind speed 
interval. Scattered points close to the diagonal indicate that 
the turbine is operating as intended under such conditions, 
while discrepancies indicate underperformance resulting 
from mechanical inefficiencies, environmental conditions, 
or operational problems. Visualization is pivotal in 
assessing turbine efficiency, underperformance 
identification, and maintenance or optimization potential. 

Table 7: Correlation Matrix Among Key Features 
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Table 7 presents the correlation matrix among the 
important attributes of the wind turbine dataset, 
quantifying the strength and direction of linear 
relationships between variables. LV ActivePower exhibits 
extremely high positive correlations with Wind Speed 
(0.89) and Theoretical Power Curve (0.92), as expected, 
confirming that power output closely approximates wind 
conditions and manufacturer estimates. Similarly, Wind 
Speed and Theoretical Power Curve also exhibit an 
extremely high correlation (0.95). Wind Direction exhibits 
extremely low correlations with all the other variables, 
indicating it has very little direct influence on power output 
or wind speed in this dataset. This matrix facilitates an 
understanding of feature interdependencies crucial for 
modeling and analysis. 

Figure 6: Correlation Heatmap 

The important feature, the Correlation Heatmap in 
Figure 6, indicates the direction and strength of 
relationships among key variables. Strong positive 
correlations between actual or predicted power and theory 
or wind speed indicate that as wind speed increases, so do 
the actual and predicted power outputs of the turbine, 
indicating expected turbine performance. Low or near-zero 
correlations with wind direction suggest that wind 
direction is not a significant contributor to power 
generation in this dataset. Feature interaction 
understanding, feature selection for modeling, and 
decision-making for operation are enabled by this heatmap. 

Table 8: Performance Metrics of Predictive Models 
for Power Forecasting 

Table 8 presents a comparison of performance 
metrics of various predictive models used to forecast wind 
turbine power output. Random Forest and XGBoost also 
perform well, with comparable error rates and R² values 
above 0.9, albeit with shorter training times than LSTM. 
Linear Regression, with the lowest training time, has the 
largest errors and the lowest R², as might be expected from 
its low ability to capture complex nonlinear relationships. 
These findings guide model choice to achieve maximum 
accuracy for computational expense. 

Table 9: Anomaly Detection Summary 

Table 9 summaries anomaly detection findings 
for the last half year of data, categorizing different kinds of 
abnormal events affecting turbine performance. Sudden 
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Power Drops are the most frequent anomaly, happening 45 
times with an average of 30 minutes, and are most likely 
caused by grid instability. Excessive Vibration events, 20 
in number, reveal potential mechanical faults that must be 
checked. Sensor Malfunctions, though less frequent, have 
the longest average of 60 minutes and reveal data quality 
issues that can compromise monitoring. Wind Speed 
Sensor Errors, which happen 15 times, affect forecasting 
performance and necessitate sensor maintenance or 
calibration. Summary justifies targeted interventions to 
enhance turbine reliability. 

Figure 7: Bar Chart of predictive model performance 
measures 

The Bar Chart of predictive model performance 
measures in Figure 7, comparing various algorithms 
employed to predict wind turbine power output, indicates 
the Mean Absolute Error of the different models used. The 
Lower Mean Absolute Error was used to assess prediction 
accuracy, indicating better prediction precision. Models 
like the LSTM Neural Network proved to be the most 
precise, as they can identify complex temporal structures 
in the data. Less sophisticated models, such as Linear 
Regression, have larger errors, indicating less accurate 
predictions. This comparison helps determine the most 
effective modelling method for predicting reliable power. 

Figure 8: Turbine Operation Status Pie Chart 

The Turbine Operation Status Pie Chart in Figure 8 
presents the percentage of time the wind turbine is in 
various operational states. The largest slice is for normal 
operation, which means that the turbine is running 
smoothly for most of the time. The smaller slices represent 
downtime, scheduled maintenance, and anomaly events, 
indicating the time the turbine is down, undergoing 
scheduled maintenance, or exhibiting abnormal behaviour. 
The visualization offers a clear insight into turbine 
availability and reliability, which are crucial factors in 
determining operational efficiency and maintenance 
planning. 

Table 10: Performance Evaluation of Predictive 
Models 

The comparison of performance in Table 10 
emphasises the excellence of the proposed LSTM Neural 
Network model on the Turkish Wind Turbine Supervisory 
Control and Data Acquisition data (2018), attaining the 
best Mean Absolute Error (78.6 kW). These observations 
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validate the use of LSTM architectures for accurate wind 
power prediction in real offshore turbine settings. 

Figure 9: Performance Comparison of Wind Power 
Forecasting Models 

The bar chart in Figure 9 indicates the performance of 
four predictive models for wind power forecasting, as 
assessed by Mean Absolute Error, Root Mean Square, and 
R² score. The proposed LSTM model exhibits minimal 
errors and achieves a maximum R², indicating increased 
accuracy in identifying temporal patterns. Traditional 
models, such as RF and SV Regression, contain increased 
errors and decreased R², indicating reduced accuracy in 
prediction. The visualisation provides a clear picture of the 
performance benefits of LSTM in wind turbine power 
generation forecasting. 

5.1 Discussion 

The comparative study of various predictive models 
demonstrates the unique strengths of the presented LSTM 
Neural Network for wind power output prediction. Its 
ability to handle the temporal dependencies of operating 
data leads to more accurate and reliable forecasts than 
conventional machine learning methods. While models 
based on RF Regression [56], SV Regression [57], and 
Gradient Boosting Machines are strong performers with 
excellent robustness against nonlinearities and noise, they 
lack the ability to capture the sequential characteristics of 
wind turbine data [58]. The enhanced performance of the 
LSTM model demonstrates that the use of deep learning 
frameworks, particularly for time-series data, is vital for 
improving forecasting accuracy and decision-making in 
wind power operation and maintenance [59]. To counteract 
concept drift due to varying turbine dynamics or 
environmental changes, an automatic retraining schedule 
and drift detection using the Kolmogorov-Smirnov test 
were implemented. The model indicates drift when 
prediction distributions are outside historical baselines and 
invokes auto-update programs with batch incremental 
learning. Training was performed on hardware equipped 
with 32 GB of RAM, an NVIDIA RTX 3080 GPU, and an 
Intel i9 CPU. The training duration of the LSTM took ~3 
hours per fold over 10 epochs. Maximum memory 
consumption was ~10 GB, and inference mode utilises 

around 2 GB of GPU memory, both of which are suitable 
for edge or cloud deployment. Mean Linear Regression 
provided quick inference but weak nonlinear performance. 
XGBoost achieved a balance of speed and stability but no 
temporal memory. LSTM performed well in sequential 
learning, albeit at an increased computational expense. Our 
hybrid model fills these gaps by coupling temporal, 
nonlinear, and interpretable elements, optimized for 
SCADA data. Fault prediction lead time was assessed in 
terms of anomaly anticipation periods. The platform 
detects abnormal patterns around 3–6 hours ahead of 
failure limits being exceeded, providing ample time for 
mobilization of maintenance teams and logistics planning 
in offshore environments. 

6. Conclusion and Future Work

The new model can learn intricate temporal patterns
of wind turbine operation from high-resolution 
Supervisory Control and Data Acquisition systems that 
deliver time-series turbine data and shows improved 
forecasting performance compared to conventional 
machine learning models. Improved predictive ability 
enables more efficient operation, enhanced maintenance 
planning, and improved anomaly detection, resulting in 
higher turbine reliability and overall energy production 
maximization. 

Subsequent research can explore the incorporation of 
additional environmental and operational variables, such as 
temperature, humidity, and mechanical health indicators of 
turbines, to improve prediction ability and robustness. 
Hybrid models that combine deep learning with physics-
based models of turbines can offer improved 
interpretability and generalization capabilities across 
various turbine types and locations. Moreover, the 
establishment of real-time adaptive systems capable of 
dynamically updating predictions and maintenance plans 
in response to new streams of data would enable more cost-
effective and reactive wind farm management. Last but not 
least, the application of the strategy to multi-turbine and 
farm-level optimization would unleash more potential in 
large-scale offshore wind power systems. Although the 
proposed system demonstrates promising performance in 
single-turbine SCADA data, further work is needed to 
extend it to multi-turbine scenarios. Existing claims are 
thus limited to single turbine-level operation and anomaly 
detection. Future studies can combine real-time sensor 
fusion with external weather models, apply the framework 
to multi-turbine adaptive control, and create hybrid 
physics-informed deep learning models. The integration of 
edge computing and federated learning would enable 
decentralized analysis of data and model updating in a 
privacy-preserving manner for offshore installations. 
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